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Abstract

Background: Aberrant regulation of cell migration drives progression of many diseases, including

cancer cell invasion and metastasis formation. Analysis of tumour invasion and metastasis in living

organisms to date is cumbersome and involves difficult and time consuming investigative

techniques. For primary human tumours we establish here a simple, fast, sensitive and cost-effective

in vivo model to analyse tumour invasion and metastatic behaviour.

Methods: We fluorescently labelled small explants from gastrointestinal human tumours and

investigated their metastatic behaviour after transplantation into zebrafish embryos and larvae. The

transparency of the zebrafish embryos allows to follow invasion, migration and micrometastasis

formation in real-time. High resolution imaging was achieved through laser scanning confocal

microscopy of live zebrafish.

Results: In the transparent zebrafish embryos invasion, circulation of tumour cells in blood vessels,

migration and micrometastasis formation can be followed in real-time. Xenografts of primary

human tumours showed invasiveness and micrometastasis formation within 24 hours after

transplantation, which was absent when non-tumour tissue was implanted. Furthermore, primary

human tumour cells, when organotopically implanted in the zebrafish liver, demonstrated

invasiveness and metastatic behaviour, whereas primary control cells remained in the liver.

Pancreatic tumour cells showed no metastatic behaviour when injected into cloche mutant

embryos, which lack a functional vasculature.

Conclusion: Our results show that the zebrafish is a useful in vivo animal model for rapid analysis

of invasion and metastatic behaviour of primary human tumour specimen.
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Background
Approximately 90% of all cancer deaths arise from the
metastatic spread of primary tumours [1]. Metastasis for-
mation is a complex, multi-step process in which primary
tumour cells invade neighbouring tissues, enter the sys-
temic circulation (intravasate), translocate through the
vasculature, arrest in distant capillaries, extravasate into
the perivascular tissue, and finally proliferate from
micrometastases into macroscopic secondary tumours
[2]. Invasiveness and early formation of metastases are the
main reasons why for example pancreatic cancer contin-
ues to have a dismal prognosis, with a 5 year survival rate
of <5% and a mean life expectancy of <6 month [1].

Zebrafish and their transparent embryos have been
employed in several useful models for therapeutic drug
research and preclinical studies [3]. High throughput
screening (HTS) in zebrafish embryos has been estab-
lished and is nowadays commonly used for different
applications [3-5]. A number of unique features make this
animal model very attractive: zebrafish are inexpensive to
maintain, breed in large numbers, develop rapidly ex vivo,
and can be maintained in small volumes of water [6].
Recently, the zebrafish and its transparent embryos have
also come into view as a new model system to investigate
tumour development, cancer cell invasion and metastasis
formation [7-11]. Mary Hendrix and her group have pio-
neered the field of cancer cell transplantation in zebrafish
embryos and could show that transplanted human malig-
nant melanoma cells are not rejected, survive and even
exhibited motility [12,13]. Haldi et al. observed the for-
mation of tumour-like cell masses when xenotransplant-
ing human melanoma cells in slightly older zebrafish
embryos [14]. Several independent studies have now
shown that human melanoma cells and other cancer cell
lines are able to induce neovascularization when
xenografted in the zebrafish [14,11,15,16].

The role of the small GTPase RhoC in tumour formation,
angiogenesis and cell invasion was investigated in real-
time in 1-month-old immunosuppressed zebrafish
xenografted with the human breast cancer cell line MDA-
435 [11]. This study achieved high-resolution imaging of
the dynamic cell-vascular interface in transparent juvenile
zebrafish. All these innovative studies established the use
of the zebrafish xenotransplantation model for the analy-
sis of cancer cell lines. In this study we now show that
zebrafish embryos can even be used to directly transplant
human tumour tissue and primary human tumour cells.
Zebrafish embryos thus provide a simple, fast and cost-
effective method to test the metastatic behaviour of pri-
mary tumours in an in vivo vertebrate animal model that
also permits high throughput drug screening.

Methods
Animal care and handling

Zebrafish (Danio rerio) (Tuebingen line, alb strain (Albi-
nos) and Tg(fli1:eGFP) were handled in compliance with
local animal care regulations and standard protocols of
the Netherlands and Germany. Fish were kept at 28°C in
aquaria with day/night light cycles (10 h dark versus 14 h
light periods). The developing embryos were kept in an
incubator at constant temperatures. The cloche (clo)
mutant line has been previously described [17]. Hetero-
zygous fish (clo-/+) are kept and bred under normal condi-
tions. 25% of offspring will consist of homozygous clo-/-

mutants which lack functional vasculature and circulation
75% will be siblings with no phenotype. Lack of circula-
tion, an enlarged pericardium and curvature of the tail (at
a later time point) are hallmarks of the cloche phenotype.

Cell culture

EpRas cells were cultured at 37°C in DMEM high glucose
containing L-glutamine, 4% FCS and 1:100 Pen/Strep
(GIBCO, Invitrogen). PaTu8988T and PaTu8898S cells
were cultured in DMEM high glucose, with 10% FCS and
1:100 Pen/Strep. The EpRas cells were treated with recom-
binant human TGF-1(RD systems) at a final concentra-
tion of 2 ng/ml. To induce epithelial to mesenchymal
transition (EMT), cells were seeded at 70% confluency in
6-well plates and media containing TGF-1 (2 ng/ml final
concentration) was added and replaced every other day
for 10 days. After this period, cells were ready for injec-
tion.

Cell staining, injections and incubations

Cells were stained with either CM-Dil (red fluorescence)
or DiO (green fluorescence) (Vybrant, Invitrogen). Cells
were seeded in 6-well plates, grown to confluency
trypsinized (without EDTA for EpRas cells or with EDTA
for all other cells used). Subsequently, cells were washed
with 67% DPBS (GIBCO, Invitrogen), transferred to 1.5
ml Eppendorf tubes and centrifuged 5 min, at 1500 rpm.
Cells were re-suspended in DPBS containing either CM-
Dil (4 ng/ul final concentration) or DiO (200 M final
concentration). Cells stained with CM-Dil were incubated
4 min at 37°C and then 15 min at 4°C. Cells stained with
DiO were incubated 20 min at 37°C. After this period
cells were centrifuged 5 min at 1500 rpm, the supernatant
discarded and cells re-suspended in 100% FCS, centri-
fuged again and washed 2 times with 67% DPBS. Cells
were suspended in 67% DPBS for injection into the
embryos. 2 dpf zebrafish embryos were dechorionated
and anesthesized with tricaine (Sigma). Using a manual
injector (Eppendorf; Injectman NI2), the cell suspension
was loaded into an injection needle (15 m internal- and
18 m external-diameter). Cells were now injected in 2
dpf albino or Tg(fli1:eGFP) zebrafish embryos. After injec-
tion, embryos were incubated for 1 h at 31°C and checked
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for cell presence at 2 hpt. Fish with fluorescent cells out-
side the implantation area at 2 hpt were excluded from
further analysis. All other fish were incubated at 35°C for
the following days.

Tissue preparation for transplantation into zebrafish 

embryos

Human material from surgical resection specimens was
obtained at the Universitätsklinikum Greifswald accord-
ing to local ethical guidelines and after obtaining
informed patient consent. Tumour tissue and control tis-
sue were cut into very small pieces using a scalp blade. A
piece of tissue was then transferred to a 2 ml Eppendorf
tube, washed with 67% DPBS and stained with 1:500 CM-
Dil. The tissue was incubated for 6 min at 37°C and 20
min at 4°C. Washing procedures were the same as men-
tioned above for the cells. Before transplantation small
pieces of stained tissue were further disaggregated using
Dumont forceps (No.5) into a relative size of 1/5 to 1/2
the size of the yolk. Tissue pieces with the correct size were
transferred to agarose plates in which the embryos were
laying, ready for transplantation. For tumour and control
transplantations, a glass transplantation needle was used
to transfer the tissue into the yolk. With the glass trans-
plantation needle a piece of tissue was picked up, put on
top of the yolk and then pushed inside. The yolk usually
sealed itself and in the majority of embryos, the tumour
remained in the yolk. After transplantation, embryos were
incubated for 1 h at 31°C, then embryos were checked for
presence of tissue and incubated at 35°C for the following
days.

Cell dissociation from tissue

Tissue samples were cut in very small pieces using a scalp
blade. Cut tissue pieces were then transferred to 6 ml glass
containers with 3 ml isolation media (180 ml DMEM
high glucose, 20 ml 100 mM HEPES, 46 ml 5% BSA) and
Collagenase (Invitrogen) (50 l of a 6 mg/ml stock solu-
tion for each 12 ml of isolation media). Tissue was incu-
bated in a water bath for 15 min at 37°C. The supernatant
was decanted and tissue pieces were cut further into
smaller pieces using a scalp blade. Tissue pieces were
again incubated 15 min at 37°C in 3 ml isolation media
with collagenase. Afterwards tissue pieces were transferred
to 15 ml falcon tubes and cells were dissolved by pipetting
up and down through serial cut blue pipette tips (5 differ-
ent diameters). The cell suspension was now filtered
through 2 sheets of gaze, into 2 ml Eppendorf tubes and
centrifuged 5 min at 1500 rpm. The supernatant was dis-
carded and cells re-suspended in isolation media. The
described procedure was then repeated once. For injec-
tions, cells were stained with either CM-Dil or DiO and
injected into 2 dpf zebrafish embryos, as described above.

Western-Blotting

Pancreatic cancer cell lines PaTu-S and PaTu-T were lysed
in iced Triton-X-100 lysis buffer (0.1%) containing pro-
tease inhibitors (1 ml/mg tissue, 10 g/ml aprotinin, 10
g/ml leupeptin, 0,01 M sodiumpyrophosphate, 0,1 M
sodiumfluoride, 1 mM dihydrogenperoxide, 1 mM L-phe-
nyl-methyl-sulfonyl-fluoride [PMSF] and 0,02% soybean-
trypsininhibitor). Protein concentration was determined
by a modified Bradford-assay (Bio Rad Laboratories,
München, Germany) and equal amounts of protein were
used in subsequent experiments. Cell lysates were sepa-
rated by SDS-PAGE on a 7.5% polyacrylamide gel in a dis-
continuous buffer system and gels were blotted on
nitrocellulose membranes (Hybond C, GE Healthcare
Europe GmbH). After overnight blocking in NET-gelatine
(10 mM Tris/HCl pH 8.0, 0.15 mM NaCl, 0.05% TWEEN
20, 0.2% gelatine) immunoblot analysis was performed
followed by enhanced chemoluminescence detection (GE
Healthcare Europe GmbH) using horseradish peroxidase
coupled sheep anti-mouse IgG or goat anti-rabbit IgG GE
Healthcare Europe GmbH). Monoclonal E-cadherin anti-
body (Clone 36), directed against the carboxy-terminus,
was purchased from Transduction Laboratories (San
Diego, CA, USA) as well as antibodies against -, -, and
-Catenin. A polyclonal G3PDH antibody was purchased
from Biozol (Eching, Germany).

Immunofluorescence microscopy

PaTu-S and PaTu-T cells grown on glass coverslips for 24–
48 h were washed 3 times with PBS, fixed for 15 min in
4% paraformaldehyde and permeabilised in 0.1% Triton-
X-100 for 5 min. Blocking of unspecific binding was
achieved by a 1 h incubation in 10% Aurion BSA-c
(Aurion, Waageningen, The Netherlands). Following a
primary antibody incubation over night (dilutions 1:100)
and subsequent PBS washing steps detection was per-
formed using dichlortriacinyl aminofluoresceine (DTAF)
or Cy3-coupled sheep IgG (dilutions 1:200). Nuclei were
stained by a 30 sec. incubation with DAPI (1:10000 in
PBS). After a final washing step in PBS cell were mounted
in Vectashield (Vector Labs, Burlingame, CA, USA).
Microscopic Images were taken using an AxioCam digital
microscope camera on a Zeiss Axiophot microscope.

In vitro migration assay ("scratch"-assay)

The scratch-assay was performed as previously described
by Liang et al. [18]. Cells were grown to confluency in 6-
well dishes and mitomycin C was added at 10 M for 2 h.
Then the cell monolayer was scraped in a straight line with
a 200 l pipette tip. Pictures of the scratch were taken
under an invert Olympus microscope at 0 h, 12 h and 24
h.
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Histology of zebrafish embryos

Transversal sections at 4 M thickness were prepared as
described before [19]. Coupes were directly imaged with
fluorescence microscopy or differential interference (DIC)
microscopy. After fluorescent pictures were taken, Hema-
toxylin/Eosin (HE) staining was performed as described
earlier [20].

Whole mount immunofluorescence of zebrafish embryos

Zebrafish embryos at 2 dpt were fixed overnight in 4%PFA
in PBS at 4°C. After fixing, embryos were washed with
BSAc 0.1%-TritonX100 1% in PBS (blocking buffer; 3 × 10
minutes). Subsequently, the embryos were incubated for
2 hrs in blocking buffer at RT. Incubation with the pri-
mary antibody (Mouse anti-Proliferating Cell Nuclear
Antigen, PCNA, from Zymed Laboratories, 1:100) was
done overnight at 4°C. After washing (3 × 10 minutes)
with blocking buffer, embryos were incubated with the
secondary antibody (Fluorescein (DTAF)-conjugated
AffiniPure Goat anti-Mouse IgG, Jackson Immuno
Research Laboratories, Inc., 1:100) for 1 hr. and washed
afterwards with blocking buffer (3 × 10 minutes).
Embryos were mounted in 3% methylcellulose to orient
them properly for imaging. Imaging was done with confo-
cal scanning laser microscopy (Biorad 1024ES; Software:
Biorad Laser sharp 2000).

Imaging, selection and positioning of transplanted 

zebrafish embryos

Confocal pictures were taken either with the Biorad Con-
focal microscope 1024ES (Zeiss microscope) combined
with Krypton/Argon laser, or the dual laser scanning con-
focal microscope Leica DM IRBE (Leica) or with the Nikon
TE300 confocal microscope and a coherent Innova 70C
laser (Chromaphor, Duisburg, Germany). Pictures were
further taken by DIC microscopy using the Axioplan 2
microscope with an AxioCam MR5 camera (Carl Zeiss).
Further, fluorescent stereomicroscope pictures were taken
with the Leica DFC 420C camera attached to a Leica
MZ16FA microscope. Two hours post implantation the
embryos were anesthetized with tricaine and positioned
laterally, with the site of the implantation to the top, on
3% methylcelulose, on a slide with depression. Each time
two rows of twenty embryos were screened. Two hours
post implantation every embryo that showed cells outside
the area of implantation was discarded and not consid-
ered for the experiment.

Results
Tumour cell xenografts in zebrafish embryos

Mouse mammary epithelial cells (EpH4) transformed
with oncogenic Ras (EpRas) have been used to establish a
mouse tumourigenesis model over a decade ago [21]. In
these EpRas cells, TGF- signalling causes epithelial to
mesenchymal transition (EMT) which transforms cells to

a highly invasive phenotype and enables distant metasta-
sis formation when transplanted into nude mice [22]. Ini-
tially, we evaluated metastasis formation using this well-
characterized system in the zebrafish cell xenograft model.
We transplanted fluorescently labelled EpRas cells into
the yolk sac of 2 day old zebrafish embryos to study met-
astatic behaviour in vivo. EpRas cells that had been stimu-
lated with TGF- for 10 days prior to injection, showed
metastatic behaviour in the zebrafish, comparable to
results previously reported in mice [21-23]. Following
EMT the cells invaded embryonic tissue, entered the circu-
lation and homed in at distant tissues and organs. EpRas
TGF treated cells were found in blood islands, brain, cau-
dal fin, caudal vein, gill arches, heart, intestine, liver, man-
dible, optic cup (eye), otic cup, pericardium, somites,
swim bladder. However, they had a tendency to invade
and home in to muscle tissue, head structures, caudal fin
and blood islands (Fig. 1 and Additional File 1). To a
lesser extent, we observed invasion of these cells into the
liver or other organs of the gastrointestinal tract. In con-
trast, unstimulated EpRas control cells remained at the
place of injection in the yolk and neither invaded the
developing zebrafish nor did they enter blood circulation
(Fig. 1 and Additional file 2). In three independent exper-
iments the average percentage of migrating cells observed
for the EpRas TGF--stimulated cells was 46.6% (SD +/-
2.0; p-value < 0.001) compared to 0.5% (SD +/- 0.7; p-
value < 0.001) for the parental EpRas cells (see Additional
file 1). Furthermore, the TGF- stimulated EpRas cells
formed tumour cell masses in the developing zebrafish
(Fig. 1), which resemble the formation of metastases in
nude mice[23]. In the zebrafish, cells begin to invade the
embryo already several hours after injection (on average 4
hours post injection)(see Additional File 3) and tumour
cell masses are visible as early as 3 days post implantation
(dpi).

For optimal visualization, we used the transgenic
zebrafish line, Tg(fli1:eGFP)[11,24], which expresses GFP
under the fli1 promotor (an early endothelial marker) and
therefore exhibits a green fluorescent vasculature [11,24].
In a time lapse movie (see Additional file 4; rate: 1 frame/
minute) we show an example of fluorescently labelled
EpRas TGF- cells (3 dpi) which have invaded the
zebrafish body, have translocated into the vasculature and
have colonized at distant sites in the zebrafish larvae (5
dpf). Some cells are visible in the blood stream whereas
others have extravasated from the vasculature. Evaluation
of metastasis formation in the zebrafish model is there-
fore significantly faster than in currently used mouse
models, where it may take several weeks until metastases
become detectable [23]. The sensitivity of the zebrafish
tumour xenograft model further allows observation of
individual cells and their daughter cells in vivo.



BMC Cancer 2009, 9:128 http://www.biomedcentral.com/1471-2407/9/128

Page 5 of 14

(page number not for citation purposes)

We also compared the two established human pancreatic
tumour cell lines, PaTu8988-S and PaTu8988-T [25]
(referred to herein as PaTu-S and PaTu-T) in their invasive
and metastatic potential in a single zebrafish. Both sister
cell lines originate from liver metastases of the same
human pancreatic adenocarcinoma [25]. E-Cadherin
expression in PaTu-S cells (Fig. 2A and 2B(a)) correlates
with the maintenance of functional cell-cell contacts (Fig.
2B) and a reduced tendency of cells to migrate (Fig.
2C)[26,27]. Whereas PaTu-S cells show localization of E-

cadherin/-catenin complexes at the plasmamembrane
(Fig. 2B(e)), PaTu-T cells lack E-Cadherin expression (Fig.
2A and 2B(b)) and -catenin is mainly localized in the
cytoplasm (Fig. 2B(d). This observation is paralleled by
enhanced migratory capabilities of PaTu-T cells compared
to PaTu-S cells, which we confirmed in an in vitro migra-
tion assay ('scratch assay' [28] (Fig. 2C and Additional file
5).

We then labelled PaTu-S cells with green fluorescence and
PaTu-T cells with red fluorescence. When implanted suc-
cessively in the yolk sac of the same zebrafish embryo,
green PaTu-S cells remained in the yolk, whereas red
PaTu-T cells displayed invasion and metastatic behaviour
(Fig. 2D and Additional file 1). Similar results were
observed when cells were mixed prior to injections (data
not shown).

PaTuT cells were found in the brain, caudal vein, gill
arches, gut, heart, intestine, liver, operculum, pericar-
dium, somites, swim bladder. They showed a tendency to
invade and home in to organs of the gastrointestinal tract.
Micrometastasis was often observed in organs such as the
liver, the gut and the intestine. Invasion and homing in of
these cells into muscle tissue was observed to a lesser
extent. This behaviour was qualitative different from what
we observed for TGF- treated EpRas cells. We further
tested the metastatic behaviour of PaTu-T cells in
homozygous cloche mutants (cloche-/-), which lack a func-
tional vasculature and circulation ([17] Additional File 6).
In contrast to control zebrafish, no metastatic behaviour
was observed in the cloche-/- fish, indicating that the
observed invasion/migration of PaTu-T cells indeed
involves metastasis formation through the vascular sys-
tem. Zebrafish were followed until three days post injec-
tions (Fig. 2E; see Additional file 1 and see Additional file
7).

Human tumours transplanted into zebrafish display 

metastatic behaviour

We then pursued our primary goal to employ the
zebrafish also as a simple, fast and effective test system for
metastasis formation of primary human tumours. After
informed patient consent small fragments of tumour
explants from pancreas, colon and stomach carcinoma, as
well as tumour-free areas from the same resection speci-
men were fluorescently labelled with CM-DIL and directly
xenotransplanted into the yolk sac of zebrafish embryos.
Tumour and non-tumour control cells were followed live
by laser scanning confocal microscopy. Tumour cells
started to invade the embryo on average 12 hours post
injection and micrometastasis formation was visible as
early as 24 h post injection. In parallel, we also investi-
gated and compared the invasive and metastatic behav-
iour of tumour cells that had been dissociated from

Migration and cell mass formation of Ha-Ras transformed mouse mammary epithelial cells injected into the yolk sac of zebrafish embryosFigure 1
Migration and cell mass formation of Ha-Ras trans-
formed mouse mammary epithelial cells injected 
into the yolk sac of zebrafish embryos. EpRas (parental) 
and EpRas cells stimulated with TGF- (EpRasTGF) were 
labelled and ectopically injected into the yolk sac of 2 dpf 
zebrafish embryos. In A, E and F transgenic zebrafish 
embryos expressing GFP under an endothelial promotor 
(Tg(fli1:eGFP) were used. An example of newly injected 
EpRas cells at 1 hour post injection is given in (A). In (B) an 
ectopic tumour cell mass formed in the yolk sac by 
EpRasTGF cells is shown. Examples of cell masses formed by 
EpRasTGF cells at distance from the place of injection are 
shown for the tail region (C) and blood islands with sur-
rounding ventral fin (D). Pictures in B-D were taken at 3 dpi. 
While EpRas cells remained in the yolk and never invaded the 
embryo (E), EpRasTGF cells invaded, migrated and formed 
distant micrometastases, which are indicated with arrows 
(F). Red fluorescence of cells is still visible after 7 dpi (E, F). 
Images G to J show tumour cell masses (cm) and migrated 
cells in blood islands (blood isl.), the liver, heart, intestine and 
the caudal fin of 6 dpi larvae. Scales shown are for A: 200 m; 
D-H: 600 m, for B, C, I and J: 100 m. 3D reconstructions 
of EpRAS and EpRasTGF cells in zebrafish larvae are shown 
in two supplemental movies (see Additional file 2 and Addi-
tional file 3).
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Implantation of two pancreatic cancer cell lines into the same zebrafish embryoFigure 2
Implantation of two pancreatic cancer cell lines into the same zebrafish embryo. (A) Western blot analysis shows 
that PaTu-S but not PaTu-T cells express E-cadherin and both express -, - and -catenin. GAPDH expression is shown as a 
control. (B) Cellular localization of E-cadherin and -catenin was analysed by immunofluoresscence. E-cadherin expression is 
shown for PaTu-S cells (a) and absence of E-cadherin expression for PaTu-T cells (b). Dapi staining was used to visualize cell 
nuclei in blue. -catenin localization is shown for PaTu-S (c) and for PaTu-T (d). Co-localization of E-cadherin (green) and -cat-
enin (red) in PaTu-S cells is indicated by yellow staining of the plasmamembrane (e). (C) An in vitro migration assay ('scratch 
assay') shows differences in migration of the two cell lines (PaTu-S: a-c and PaTu-T: d-f). Similar results were obtained in four 
independent experiments. Gap closure (gap width) over time is shown in Additional file 5. (D) Non-invasive PaTu-S cells 
(green) and invasive PaTu-T cells (red) were implanted consecutively in the same embryo (a and b) (Scales: 250 m (a) and 300 
m (b)). (E) Homozygous cloche mutants [17] were injected with PaTu-T cells and followed over time. Shown is an example of 
a cloche-/- zebrafish at 3 dpi (scale bar: 300 m). In contrast to control zebrafish none of the tested cloche-/-mutants showed 
any sign of metastatic behaviour (see Additional file 1 and Additional file 7). The cloche phenotype and its lack of a functional 
vasculature and circulation is observable by DIC microscopy (see Additional file 6).
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primary human tumours by collagenase digestion prior to
transplantation.

In total, pancreatic tumours of four different patients were
analysed. Three had carcinomas of the pancreas head and
one had an adenocarcinoma of the ampulla vateri with
infiltration of the pancreas (cancer grades and pTMN
stages for all tumours are shown in table 1). On average
59.8% (SD +/- 5.2) of transplanted pancreatic tumour
fragments showed invasion and migration in the develop-
ing zebrafish (table 1 and Fig. 3). Evaluation criteria for
invasion and migration were that at least 5 cells had to be
identified outside of the yolk and detectable within the
developing zebrafish (table 1). Development of microme-
tastases was assessed by the presence of daughter cells at 3
dpt. The results are listed in table 1 and in Fig 4 examples
of micrometastases in different tissues detected in sections
of 5 dpf zebrafish are shown at high resolution (Fig. 4B, C,
D, G, H, K and 4L). An example showing proliferating
pancreatic tumour cells and the initial formation of a
micrometastasis is given in Fig 5(E). Cell division is fur-
ther indicated by PCNA immunostaining of invasive
tumour cells in the zebrafish embryo (see Additional file
8). After 5 dpf embryos fall under strict local animal
experiment regulations, therefore most embryos were not
followed for longer periods. It is likely that the number of
micrometastases would still increase over time.

Invasive cells were found for pancreatic tumours in blood
islands, caudal fin, caudal vein, gut, heart, hindbrain,
intestine, liver, mesonephric duct, mesonephric tubule,
mandible, operculum, pericardium, somites, swim blad-
der, for the colon tumour in caudal vein, gut, heart, intes-
tine, liver, pericardium; and for the stomach tumours in
the caudal vein, gill arches, heart, intestine, liver, mandi-
ble, otic cup, pericardium;

Similar to preferences observed for PaTu-T cells, tumour
cells of implanted gastrointestinal tumor tissue fragments
had a tendency to invade and home in to organs of the
gastrointestinal tract. Micrometastasis were often
observed in the liver, the gut and the intestine. Homing in
of these cells in muscle tissue and the formation of
micrometastasis was rarely observed. Although we
observed qualitative differences for the preferential hom-
ing in of the two cell lines tested (PaTu-T and TGF-
treated EpRAS cells), a future study, with a larger cohort of
tumour specimen and tumour types is necessary to deter-
mine tumour specific preferences.

Fig 3 shows examples of fish embryos directly after trans-
plantation (A, B) and at 1- and 3-dpt (C-G). Cell invasion
and micrometastasis formation of pancreatic tumour cells
is clearly detectable 24 h after transplantation (E). Similar
results were also obtained for transplanted tissue frag-

ments of a colon adenocarcinoma (43.9% invasion and
migration) and two moderately differentiated adenocarci-
nomas of the stomach (average 53.5%, SD +/- 1.2) (p-val-
ues in all tumour experiments were < 0.001). As a control
for the tumours we used colon and gastric mucosal frag-
ments or peritumoural, non-transformed tissue of the
respective tissue explants from the same patients. In the
pancreas the non-transformed tissue controls mostly
showed histological manifestations of chronic pancreati-
tis and only one was considered as having a normal pan-
creatic histology.

Histological sections of control pancreas and of pancreatic
cancer tissue of human patients are shown in Fig 3(J, K).
In all control transplantations of chronic pancreatitis
specimen and of fragments of normal pancreas, colon and
stomach tissue cellular invasion and migration was never
observed (see Additional file 1 and Fig. 3D, F). In addi-
tion, we also tested the metastatic behaviour of a benign
tumour. Tissue fragments of adenomateous colonic pol-
yps (0,4 cm and 1 cm) were investigated, which had not
yet invaded through the lamina muscularis mucosae. No
metastasis was observed for either of them in the zebrafish
embryo (Additional file 1). Comparable results were seen
when cells were dissociated from tumour or control tissue
samples prior to their injection into the zebrafish. All four
primary pancreatic tumour cells showed cellular invasion
and migration with an average of 48.8% (SD +/- 9.0) (see
Additional file 1). In the case of dissociated primary colon
and stomach tumour cells 44.4% and 35.3% of cell injec-
tions, respectively, resulted in cellular invasion and migra-
tion (see Additional file 1).

Xenotransplantation experiments of tumour fragments as
well as the injection of isolated primary tumour cells
allowed to discriminate between non-invasive chronic
pancreatitis and infiltrating pancreatic adenocarcinoma.
In real-time, we show an example of pancreatic tumour
cells in the zebrafish 1 day after a pancreatic cancer frag-
ment was transplanted (see Additional file 9). This movie
shows circulating tumour cells and tumour cells which
have extravasated into the perivascular tissue of a 3 day
old zebrafish. A moving primary human tumour cell pass-
ing through the caudal vein and into an intersegmental
vessel is also visible. In a supplemental movie we show
how a pancreatic tumour cell is slowly traversing through
the caudal vein of a 3 dpt Tg(fli1:eGFP) zebrafish (see
Additional file 10). In Fig 4 histological sections of
zebrafish embryos transplanted with a pancreatic human
tumour are shown at 3 dpt. Examples of micrometastases
in the liver (B, C and D) and near the mesonephric duct
(G and H) are shown at higher magnifications. A cell mass
is further shown in K and L.
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Table 1: Tumour xenotransplantations into 2 day old zebrafish

Tumour 
Transplants 
(grade and 
pTMN 
stage)

Number 
transplants

(survivors)

Migration [presence of 
micro-metastases at 3 
dpi]

total 
>5 
[%]

Control 
Transplants

Number 
transplants

(survivors)

Migration
[presence of micro-
metastases at 3 dpi]

total 
>5 
[%]

p-
value

<5 5 to 20 >20 <5 5 to 20 >20

1 Pancreas
G2; T3; N1 
(13/14) R1, 
M1

80 (64) 0 20
[4]

25 [20] 70.3% Normal 
Pancreas

80 (73) 0 0 0 0 6.3 × 
10-5

2 Pancreas
G2; pT3, 
pN1, pM1

60 (42) 2
[0]

18
[4]

6
[4]

57.1% Chronic 
Pancreatitis

60 (50) 0 0 0 0 1.1 × 
10-5

3 Pancreas
G2; pT1, pN1 
(1/18) pM1

80 (46) 0 18
[5]

8
[7]

56.5% Chronic 
Pancreatitis

80 (59) 0 0 0 0 1.9 × 
10-4

4 Pancreas
G3; pT3, pN1 
mi (1/11) 
pM1

80 (65) 0 24
[6]

12
[9]

55.4% Chronic 
Pancreatitis

80 (58) 0 0 0 0 5.4 × 
10-5

5 Colon
G2; pT3 pN1 
(2/14) LN 
metas.

80 (66) 0 15
[7]

14
[10]

43.9% Normal 
Tissue

80 (72) 0 0 0 0 0.9 × 
10-6

6 Stomach
G2: pT3 pN2 
(11/18 LK)

80 (62) 0 23
[6]

11
[9]

54.8% Normal 
Tissue

80 (68) 0 0 0 0 2.9 × 
10-5

7 Stomach
G2; ypT2b, 
ypN0 (0/20)

80 (48) 0 18
[5]

7
[6]

52.3% Normal 
Tissue

80 (51) 0 0 0 0 1 × 
10-6

Primary 
tumour cell 
injections

Number
transplants

(survivors)

Migration
[presence of micro-
metastases at 3 dpi]

total 
>5 
[%]

Primary 
control cell 
injections

Number
transplants

(survivors)

Migration
[presence of micro-
metastases at 3 dpi]

total 
>5 
[%]

p-
value

<5 5 to 20 >20 <5 5 to 20 >20

1 Pancreas 80 (63) 3
[0]

38
[10]

4
[4]

66.6% Normal 
Pancreas

80 (69) 0 0 0 0 9.1 × 
10-5

2 Pancreas 80 (66) 0 23
[7]

3
[2]

39.4% Chronic 
Pancreatitis

80 72 2
[0]

0 0 0 7.6 × 
10-5

3 Pancreas 80 (63) 0 22
[7]

6
[5]

44.4% Chronic 
Pancreatitis

80 (61) 1
[0]

0 0 0 4 × 
10-4

4 Pancreas 80 (63) 0 23
[6]

5
[4]

44.4% Chronic 
Pancreatitis

80 (63) 1
[0]

0 0 0 5 × 
10-4

5 Colon 80 (65) 0 24
[7]

5
[4]

44.4 Normal 
Tissue

80 (59) 1 0 0 0 2.7 × 
10-5

6 Stomach 80 (68) 0 24
[6]

0 35.3 Normal 
Tissue

80 (69) 0 0 0 0 6.8 × 
10-6
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Figure 3
Tumour transplantation in zebrafish. Primary human tumours of the pancreas, the stomach and the colon were trans-
planted into 2 dpf embryos. Non-tumour tissue was used as control. At the respective time points indicated laser confocal 
microscopy images were taken. Images A and B show newly transplanted embryos with normal pancreas (NP) and pancreatic 
tumour (PT) respectively. Image C shows an example of an embryo transplanted with an adenocarcinoma of the pancreas at 1 
day post transplantation (dpt) in which tumour cells have already invaded the embryo. Images D to G are confocal microscopy 
images of transplanted embryos at 1 dpt and 3 dpt. Normal, non-transformed pancreas transplants remain in the yolk and cells 
never migrate or spread in the embryo (D and F). In contrast, tumour transplants show metastatic behaviour (E and G). Some 
of the cell masses are marked with arrows, including one formed near the retina of the eye (G). On the bottom an example is 
shown for brain metastases of a transplanted gastric cancer (stomach tumour) in a Tg(fli1:eGFP) zebrafish 3 days after implan-
tation(H). Cell masses are visible in the rhombencephalon (hindbrain) surrounding the otic capsule and near the gill arches (H). 
A colon tumour transplant shows a migrated tumour cell in the caudal vein region at 3 dpt (I). Both pictures (H and I) were 
taken by confocal microscopy. HE staining of representative histological sections of normal human pancreas tissue (J) and pan-
creatic cancer (K) are shown. Scales shown are in A-E: 300 m; F, G: 400 m; in H: 100 m and in I: 20 m.

Tumours as numbered in the table: 1Pancreas head carcinoma; 2Well differentiated ductal adenocarcinoma of the Pancreas head; 3Moderately 
differentiated ductal adenocarcinoma of the Pancreas head; 4Poorly differentiated adenocarcinoma of the ampulla vateri with infiltration of the 
pancreas; 5Adenocarcinoma of the colon; 6Moderately differentiated adenocarcinoma of the stomach; 7Moderately differentiated tubular 
adenocarcinoma of the stomach. For the tumour cell injections in the lower half of the table numbers 1–6 indicate the tumour sources of the 
dissociated cells. There is a significant difference between all tumours and controls and all p-values of a student t-test were below 0.001. Tumour 
grading and classification is according to histopathological examination. Development of micrometastases was assessed by the presence of daughter 
cells at 3 days post transplantation (dpt).

Table 1: Tumour xenotransplantations into 2 day old zebrafish (Continued)
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Organotopic transplantation of primary human tumour 

cells in the fish liver and the effects of protease inhibitors 

on the invasiveness of implanted tumour cells and tumour 

fragments

Some xenograft models that have been established in the
mouse involve the orthotopic transplantation of specific
human tumours and tumour cells [29,30]. Surgical ortho-
topic implantations (SOI) of tumour cells or of resected

primary tumour fragments into immune deficient mice
have proven useful for studying their growth and meta-
static potential [31].

Here we transplanted freshly dissociated primary pancre-
atic tumour cells and normal pancreatic control cells into
the liver of zebrafish larvae. For these experiments, we
used the Tg(fli1:eGFP) transgenic zebrafish line (with the

Histology of zebrafish embryos transplanted with a human pancreatic tumourFigure 4
Histology of zebrafish embryos transplanted with a human pancreatic tumour. Transversal sections of zebrafish 
embryos transplanted with a primary human pancreatic tumour show the presence of micrometastases in different tissues at 3 
dpt in 5 day old zebrafish. (A) The transversal section is approximately 40 m caudal to the anterior end of the liver. The liver 
is circled with a thin white line and contains many tumour cells and some micrometastases. The square in the liver contains sev-
eral micrometastases, of which one is depicted in higher magnification in B (fluorescence), C (DIC) and D (overlay). The upper 
square shows tumour cells and micrometastases around the mesonephric tubule (msn. tubule) and the mesonephric duct (msn. 
duct). The enlargement of the square is shown in F and J (HE staining). In both, F (white arrow) and J (black arrow) microme-
tastasis is indicated (high magnifications in G and H). In (E) HE staining of a transversal section approximately 24 m rostral to 
the anterior start of the liver is shown and overlayed with the fluorescent image. A larger cell mass is indicated by an arrow. 
The same cell mass is indicated in I in which also a liver metastasis is seen. The cell mass is shown in high magnification in K (flu-
orescent picture) and in L (HE staining). Scales shown are A and E 1 mm, B-D, F-H and J-L 10 m and in I: 500 m.
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advantage of a fluorescent vasculature), which allows an
exact localization and injection into the highly vascular-
ised liver.

Primary cells of control pancreatic tissue, when trans-
planted into the liver, remained at the site of the injection
and did not invade the developing zebrafish nor did they
enter the blood circulation (Fig. 5). In contrast, primary
tumour cells invaded the neighbouring tissue, entered the

Implantation of primary human tumour cells into the zebrafish liverFigure 5
Implantation of primary human tumour cells into the zebrafish liver. (A-D) Organotopic implantation of primary 
tumour cells into the liver of larvae of Fli-1 zebrafish. Representative examples of zebrafish at 5 days of development injected 
with primary normal pancreatic cells (NPC) and with primary dissociated pancreatic tumour cells (A and C, respectively) are 
shown. The same fish are depicted at 1 day post injection (1 dpi). While normal pancreatic cells remained at the site of implan-
tation in the liver (B), pancreatic tumour cells invaded the embryo and formed distant metastases, indicated with arrows (D). 
Scales indicated are: A-D 300 m. Individuals were followed for up to 7 dpi and untransformed control cells never invaded the 
host embryos and remained in the liver for the entire observation period (data not shown). Image E shows an example of pro-
liferating tumour cells of a transplanted pancreatic tumour fragment on consecutive days. The single cell on the right seen at 1 
day post transplantation is divided into two daughter cells on 2 dpt and four cells are visible at 3 dpt. Dual colour laser scanning 
confocal images of the Fli-1 zebrafish are shown and in the smaller insert the red fluorescence of the CM-Dil labelled tumour 
cells can be seen.
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circulation and migrated and homed in at distant tissues
and organs (Fig. 5).

Furthermore we investigated in our zebrafish xenotrans-
plantation model the effects of protease inhibitors on the
invasiveness of implanted tumour cells and tumour frag-
ments. Two different protease inhibitors were able to
inhibit the invasiveness of tumour cells and of a primary
pancreatic tumour (see Additional file 1).

Discussion
Analysis of tumour metastasis in an in vivo model
depends on intrinsic tumour cell properties, host factors
and the experimental techniques used. The engraftment of
human neoplasms in the mouse normally requires the use
of nude (athymic) or severe combined immune deficient
(SCID) mice that are T-and B-cell deficient. In these ani-
mal models further attention has to be paid to the site of
implantation, as host factors may differ between tissues
and organs. Nude mice also have an upregulated innate
immunity and elevated numbers of natural killer cells and
tumoricidal macrophages, which may limit tumour
growth or even prevent metastasis. Efficacy of pharmaco-
logical and toxicological studies in murine xenograft
models normally use tumour growth, body weight loss
and mortality as parameters of toxicity. These studies are
cumbersome, time consuming and drug activity against
xenografts does not always correlate with its clinical activ-
ity [32].

In our study we established the zebrafish as a robust in
vivo model for investigating invasiveness and metastatic
behaviour of human primary tumours. It is known that
early zebrafish embryos do not reject xenotransplanted
human cells [13-15], whereas 1 month old zebrafish
already need to be immune suppressed [11].

The early embryos and larvae used here did not reject the
primary tumour xenografts, most likely due to the fact
that their immune system is not fully developed. It has
been observed that while lymphopoiesis and lymphoid-
organogenesis are initiated at the middle to late embryo
period, they remained in their rudimentary and immature
form throughout the early larval stages. The major matu-
ration events leading to immune competence occur
between 2 and 4 weeks post fertilisation (wpf), coinciding
with the larval to juvenile transitory phase [33].

The observed metastasis in an animal model primarily
should reflect the intrinsic metastatic ability of the
tumour cells, but may depend to some extent also on the
experimental system. Other experimental animal systems
have demonstrated that only a small subset of metastatic
cells (approximately 2%) survive and grow at secondary
sites [34]. The significantly higher percentage of microme-

tastases observed using fish embryos may in part reflect
the absence of the humoral immune response and/or
other selective pressures on tumors cells which would lead
to tumor cell death following extravastaion into second-
ary organs.

The transparency of the fish embryo enables an investiga-
tion of fluorescently labelled tumour cells in real time and
at high resolution. The unique availability of transgenic
zebrafish without a functional vasculature [17] further
allowed us to show that the metastatic spread of tumour
cells in zebrafish embryos involves the vascular system.
Even the very early steps of invasion, circulation of
tumour cells in blood vessels, colonization at secondary
organ sites and metastasis formation can be observed this
way-something which to date cannot be investigated in
established mouse tumour models. Advantages of the
model system such as good accessibility, easy handling,
low costs and short incubation times make it a promising
system for future functional studies in primary tumours.

The experiments described here provide the basis for the
future development of a screening methodology of drugs,
which inhibit invasion and metastasis of human tumours.
Recently, adult zebrafish with an almost entirely transpar-
ent body have been described, as a novel tool for in vivo
transplantation analysis [35]. These will be of interest for
additional comparative analysis of metastasis formation
of primary tumours in the immune competent animal.

Conclusion
We demonstrate here the applicability of the zebrafish
embryo as an in vivo model for the analysis of metastatic
behaviour of human tumour cells, including resection
specimen from human tissue. High resolution imaging of
live zebrafish has and will further assist in better under-
standing the underlying mechanisms of cancer cell inva-
sion and metastasis formation. Advantages of the model
system such as good accessibility, easy handling, low costs
and rapidness are unparalleled by other vertebrate organ-
isms and make it a promising system for future functional
studies in primary tumours. The advantages of the "short
term" zebrafish embryo model could nicely complement
established "longer term" tumour models, e.g. mouse
models, and may be a valuable and efficient tool to eval-
uate novel therapeutic strategies for cancer.
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