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ABSTRACT

This paper presents a novel method to describe and analyze strate-

gic interactions in settings that include multiple actors, many pos-

sible actions and relationships among goals, tasks and resources.

It shows how to reduce these large interactions to a set of bilat-

eral normal-form games in which the strategy space is significantly

smaller than the original setting, while still preserving many of its

strategic characteristics. We demonstrate this technique on the Col-

ored Trails (CT) framework, which encompasses a broad family of

games defining multi-agent interactions and has been used in many

past studies. We define a set of representative heuristics in a three-

player CT setting. Choosing players’ strategies from this set, the

original CT setting is analytically decomposed into canonical bi-

lateral social dilemmas, i.e., Prisoners’ Dilemma, Stag Hunt and

Ultimatum games. We present a set of criteria for generating strate-

gically interesting CT games and empirically show that they indeed

decompose into bilateral social dilemmas if players play accord-

ing to the heuristics. Our results have significance for multi-agent

systems researchers in mapping large multi-player task settings to

well-known bilateral normal-form games in a way that facilitates

the analysis of the original setting.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]; J.4 [Social and Be-

havioral Sciences]

General Terms

Design, Experimentation
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1. INTRODUCTION
Computer systems are increasingly being deployed in task set-

tings where multiple agents interact and make decisions together—

whether collaboratively, competitively or in between—in order to

accomplish individual and group goals. Often, such interactions

can be modeled and analyzed in terms of complex game-theoretic

games. A fundamental problem when performing an analysis of

such games is dealing with large action spaces. Once we go beyond

typical two-player two-action normal form games, the curse of di-

mensionality occurs in terms of finding equilibria and analyzing

dynamics. For example, when analyzing the evolutionary dynam-

ics of auctions or Poker, we need to abstract over atomic actions by
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introducing metastrategies [18, 16, 14], thus reducing large-scale

interactions to smaller games.

Recently a new testbed has been introduced to enable evaluation

and comparison between computational strategies for a wide va-

riety of complex multi-agent task settings, i.e. the Colored Trails

(CT) framework [3].1 CT has spawned many publications in di-

verse multi-agent settings, such as repeated negotiation, interrup-

tion management, team formation and space research [4, 12, 10].

CT is particularly attractive because it is grounded in a situated task

domain and is rich enough to reflect features of real-life interac-

tions. The CT framework encompasses a family of different games

that provide an analogue to the ways in which goals, tasks and re-

sources interact in real-world settings. CT is parametrized to allow

for increasing complexity along a number of dimensions, such as

task complexity, the availability of and access to information, the

dependency relationships that hold between players, and the com-

munication protocol. In abstracting from particular domains, CT

provides a general framework to analyze multi-agent interactions.

In a similar vein as the aforementioned work in e.g. auctions

or Poker, this paper suggests a way of reducing multi-player in-

teractions in the CT framework to a set of smaller games. It pro-

vides a mapping between a particular CT task setting and normal-

form games in a way that preserves much of the strategic quali-

ties of the original setting. To this end, it defines a set of heuris-

tic metastrategies for each player that are domain-independent and

make minimal assumptions about the way other players make de-

cisions. These metastrategies allow a reduction to canonical bilat-

eral social dilemma games taking place between (pairs of) play-

ers, i.e., Stag Hunt, Prisoners’ Dilemma, and Ultimatum games.

In these games, the metastrategies correspond to Nash equilibria

and/or Pareto-optimal strategies. The mapping from CT game in-

stances to well-known social dilemmas allows to compare partici-

pants’ behavior in CT with prior results from these smaller, more

traditional settings. Given the mapping of the CT game to social

dilemmas, our analysis is extended by assessing the effect of adding

social factors to participants’ decision-making.

In the paper, we also lay down a set of criteria that make gener-

ated CT game instances strategically interesting for human play-

ers (e.g., they enforce negotiation). Results from simulation ex-

periments that sample thousands of such strategically interesting

CT game instances confirm that participants’ outcomes from play-

ing metastrategies in the original game instances correspond to the

outcomes from playing the same strategies in the reduced Prison-

ers’ Dilemma, Stag Hunt, and Ultimatum games. The results in this

paper have significance for agent-designers in that they facilitate

the comparison of computational strategies in different task set-

tings with results obtained in more traditional idealized settings.

Moreover they allow to generate new types of interactions in task

settings that meet scientifically and strategically interesting criteria.

1Colored Trails is free software and is available for download at
http://www.eecs.harvard.edu/ai/ct. A complete list of publications
can also be found at this link.
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2. RELATED WORK
The idea to consider aggregate or metastrategies for facilitating

(game-theoretic) analysis of a complex game is not new. In related

work, strategies are often aggregated using heuristics, allowing the

construction of e.g. heuristic payoff tables [18, 19]. Generally, a

normal-form-game payoff matrix is replaced by a heuristic payoff

table, since assembling all possible actions into a matrix is imprac-

tical for complex games (the resulting matrix would have too many

dimensions). A heuristic allows to define metastrategies over the

atomic actions, reducing the number of actions that have to be ex-

plicitly taken into account. A metastrategy typically represents a

philosophy, style of play, or a rule of thumb.

Recent domains in which the heuristic approach has been fol-

lowed include auctions [17, 11] and Poker [16]. In these do-

mains, expert knowledge is available to assist in the establish-

ment of suitable heuristics. For instance, in auctions, there are

many well-known automated trading strategies such as Gjerstad-

Dickhaut, Roth-Erev, and Zero Intelligence Plus [15, 14]. In Poker,

experts describe metastrategies based on only a few features, such

as players’ willingness to participate in a game, and players’

aggression-factor once they do participate. Examples of metastrate-

gies in Poker, based on these features, are the tight-passive (a.k.a.

Rock), tight-aggressive (a.k.a. Shark), loose-passive (a.k.a. Fish)

and loose-aggressive (a.k.a. Gambler) metastrategies. Depending

on the actions taken by a player over a series of games, it may be

categorized as belonging to a specific type of player, i.e., as using a

certain metastrategy. This allows researchers to analyze real-world

Poker games, in which the metastrategy employed by each player

in a particular series of games can be identified. Subsequently, ob-

tained payoffs in this series of games may be used to compute

heuristic payoff tables for each metastrategy [16]. These tables then

allow to study the evolutionary dynamics of Poker.

In this paper, we pursue a similar approach, although a lack of

heuristic expertise implies that we need to first perform an in-depth

study of the game and possible means of aggregating strategies.

Since expert knowledge on heuristics within the CT framework is

not available, we cannot readily label a certain chip exchange as

being, e.g., an egocentric or a social one. We aim to provide an

analysis that does allow us to label chip exchanges in this manner.

We discuss three distinct levels within the CT framework. On the

highest level, we have the complete framework itself, i.e., all pos-

sible CT games. The intermediate level identifies a certain game

within the framework, e.g., the three-player variant we study in this

paper. The lowest level is a game instance, e.g., one specific board

configuration with a certain allocation of chips and a certain posi-

tion for each of the three players and the goal. Going up from the

lowest level, we see that players can perform certain actions in a

CT game instance, can adhere to certain strategies in a CT game,

and can use certain metastrategies in the CT framework.

While we restrict our analysis to one CT game (the three-player

variant discussed below), the same analysis also applies to other

games within the framework. Therefore, the analysis indeed leads

to the identification of metastrategies. These metastrategies may be

used as a solid basis to come up with heuristic payoff tables.

3. COLORED TRAILS
We focus on a three-player negotiation variant [2] of CT that in-

cludes a board of 4x4 squares, colored in one of five colors. Each

player possesses a piece located on the board and a set of colored

chips. A colored chip can be used to move a player’s piece to an

adjacent square (diagonal movement is not allowed) of the same

color. The general goal is to position pieces onto or as close as

possible to a goal location indicated by a flag. Each player receives

points purely based on its own performance. There are three distinct

players in the game: two proposers (P1 and P2) and a responder

(R). Figures 1(a) and 1(c) show two examples of game instances.

The two instances will be used as running examples throughout the

paper. Game instances include game boards with goal and player

locations, as well as the chip sets that have been allocated to each

player. The CT game is divided into a sequence of three phases and

ends with an automatic evaluation.

Initial phase. The game board and the chip sets are allocated to the

players. This initial phase allows participants to locate their own

piece on the board and reason about the game. For example, in

Figure 1(a), proposer P1 is missing a green chip to get to the goal

(by moving left-up-up), proposer P2 is missing a gray or green

chip (moving up-up-right or up-right-up) to get to the goal, and

responder R is missing a gray chip and a blue chip to get to the

goal (moving right-3up-right). The game state is fully observable

at this point, except that proposers cannot see each other’s chips.

Proposal phase. The two proposers can make chip exchange of-

fers to the responder. Both proposers make offers to the responder

simultaneously; they cannot observe each other’s offer.

Reaction phase. The responder is presented with the two propos-

als. It can only accept one or reject both proposals and is not al-

lowed to make a counter-proposal.

Termination and scoring phase. In this phase, players automati-

cally exchange chips if they have reached agreement, and the icon

of each player is advanced as close as possible towards its goal

(using the Manhattan path with the shortest distance) given the re-

sult of the negotiation. The game ends and scores are automatically

computed for each player: for every step between the goal and the

player’s position, 25 penalty points are subtracted. For every chip

the player has not used, it receives 10 extra points.

In the current paper, we use the following terminology associated

with scores. First, the base score for a player p ∈ {R, P1, P2} is

the score the player receives when there is no agreement.2 Second,

the gain for a player p and a chip exchange proposal s denotes the

difference in the score in the game (given that s is realized) and the

base score, and is denoted as Gp (s).The base score for p, i.e., the

gain when there is no agreement, is denoted as Gp (∅).

For example, in Figure 1(a), GP1 (∅) = −20. This is because

if there is no agreement, the player can only move one square to

the left by using its red chip. It is still two squares away from the

goal, yielding 2×25 = 50 penalty points. It has 3 remaining chips,

yielding 3 × 10 = 30 points. In this particular game, GP2 (∅) =
−20 as well, with the optimal move being one to the right, using

one red chip. The responder has a base score of −25; it can spend

two blue chips to go right and upward, yielding a distance of 3 to

the goal (i.e., 75 penalty points) and 5 remaining chips (50 points).

One possible proposal for P1 is to offer a red and a grey chip for a

blue chip, a green chip, and three yellow chips from the responder.

In this case the proposer can get to the goal, and receives a gain

of 60. Meanwhile, the responder can use this exchange to get one

square away from the goal, but it uses all of its chips then. The gain

from this exchange to the responder is zero.

4. DEFINING METASTRATEGIES
Although the rules of the CT game are simple, it is not trivial to

analyze. Both proposers need to reason about the tradeoff between

2Whenever we are not referring to one specific proposer, we will use
the general notation ‘P ’ when we imply ‘P1 and/or P2’.
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(a) First example Colored Trails game instance.
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(b) Gain graph of the game instance presented in (a).

(c) Second example Colored Trails game instance.
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(d) Gain graph of the game instance presented in (c).

Figure 1: Example Colored Trails game instances and gain graphs. In (a) and (c), the three players (R, P1 and P2) are shown, along

with their chip sets. The two proposers cannot observe each others’ chip sets. All players can see the board, on which their locations

are indicated, as well as the goal state (a yellow flag). In (b) and (d), we show the gain graphs for both proposers. These graphs

plot proposer gain versus responder gain for each possible proposal with non-zero benefit. The convex hull in this graph denotes the

Pareto-front. The meta-strategies PF, RF and QF are located on this front, as indicated. In (b), QF is a pure meta-strategy; in (d), it

is a mixed meta-strategy (of PF and RF), since there is no proposal on the convex hull between PF and RF.

making beneficial offers to the responder and offers that are ben-

eficial for themselves, especially because they compete with each

other for making the best offer to the responder. Moreover, the num-

ber of possible strategies is large. In the example instance presented

in Figure 1(a), the number of unique proposals for P1 is 240, while

P2 can choose from 144 unique proposals.3 The responder can

choose to accept or reject any of these offers, so the size of the

strategy space for the responder is 240 × 144 × 2. The size of the

combined strategy space makes it difficult to analyze this game in

a principled way. In this section we show how to reduce this large

setting to smaller interactions in a way that preserves the strategic

flavor of the original CT scenario.

The analysis presented in this section is not specifically tailored

to (three-player) CT. Basically, any multi-agent one-shot negotia-

tion setting may be analysed in the manner presented here; as with

CT, agents may each have a large number of actions to choose from,

making straightforward game-theoretic analysis very hard. We will

discuss this after outlining the analysis.

4.1 Initial Assumptions
We first describe two assumptions we make about the various play-

ers in the game. We will relax the first assumption later.

Rational responder. The responder R has three possible actions,

i.e., to accept the proposal of P1, to accept the proposal of P2, or

3Two proposals are unique if they do not use the same chips.

to accept neither of them. For the responder, the game is thus sim-

ilar to an Ultimatum game with proposer competition [9]. Initially,

in our analysis, we assume that the responder plays according to

a rational strategy. If both proposals do not provide it with a pos-

itive gain, it rejects both; if both proposals yield an equal gain, it

accepts one of them with equal probability for both; if one proposal

is strictly better, it accepts this proposal.

Semi-rational proposers. In order to select a strategy, i.e., a pro-

posal to offer to the responder, proposers have to take into account

the gain resulting from each proposal for themselves as well as the

responder. For our analysis, we assume that proposer P limits the

set of possible proposals to those that (1) lead to a non-negative

personal gain, i.e., GP (s) ≥ 0, and (2) have a chance of being ac-

cepted by the responder, i.e., GR(s) ≥ 0. For example, in Figure

1(a), P1 (P2) has 79 (50) valid proposals given this limitation.

4.2 Analysis of Scenario
A CT game with only one proposer and one responder is highly

similar to the canonical Ultimatum game. In this game, the optimal

strategy s for the proposer P against a rational responder maxi-

mizes its gain while providing a non-negative gain for the respon-

der (i.e., the optimal strategy is arg maxs GP (s)). However, in the

two-proposer setting we consider, proposers compete with each

other, which means proposers have to take into account the gain

of the responder. To facilitate analysis, we plot the gains GR(s)
against GP (s) for each possible proposal s in a gain graph. Gain
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Figure 2: Extensive-form representation of the three-player ne-

gotiation variant of CT with two proposer metastrategies. The

payoff for the rational responder R is not shown.

graphs for the two example games are given in Figures 1(b) and

1(d). In the interaction between a proposer and the responder, the

Pareto-dominant proposals are located on the convex hull, as indi-

cated in the figures.

Two proposer metastrategies. We note the following proposals

located on the convex hull.

1. Proposer focus (PF). PF is the strategy in which the pro-

poser first maximizes its own gain, and then finds the maxi-

mum gain for the responder.

PFP = arg max
s′

GR(s′), s′ ∈ arg max
s

GP (s), s ∈ S.

2. Responder focus (RF). RF is the strategy in which the pro-

poser first maximizes the responder’s gain, and then finds the

maximum gain for itself.

RFP = arg max
s′

GP (s′), s′ ∈ arg max
s

GR(s), s ∈ S.

We call these proposals metastrategies, as their definition does not

depend on the actual CT setting. The proposals corresponding to

the metastrategies PF and RF for the example CT games appear in

Figures 1(b) and (d). In the example instance of Figure 1(b), the

strategy PF for P1 corresponds to the chip exchange we mentioned

before (in which P1 offers one red chip and one gray chip in ex-

change for a blue, a green, and three yellow chips, leading to a

gain, if accepted, of 60 for P1 and 0 for R), while RF corresponds

to giving a blue chip, a red chip, and a gray chip in exchange for

two green chips (leading to a gain of 20 for P1 and 55 for R here).

Interactions between metastrategies. Suppose that proposers

play only the metastrategies PF and RF. We show an extensive-

form representation of the resulting CT scenario in Figure 2 (for

proposer 2). We do not list the payoff for the responder from play-

ing its rational strategy. In the figure, the two decision nodes of P2
are grouped into into one information set, because the players make

their proposals simultaneously. Once P2 has chosen, the static and

rational strategy of the responder (which is indicated in the figure)

leads to certain expected gains.4 Here, A denotes the gain that a

4When calculating these expected gains, we assume that metastrat-

proposer receives when playing PF and being accepted; C denotes

the gain for RF being accepted. Clearly, this extensive-form game

can be represented in a 2x2 matrix game which omits the respon-

der’s strategy. The gain matrix of the symmetrical game between

the two proposers is given below.

PF RF

PF 1

2
A, 1

2
A 0,C

RF C,0 1

2
C, 1

2
C

Since the game between the two proposers is a 2x2 matrix game,

it is straightforward to analyze. The game depends on the relation-

ship between A and C, as follows. For A < 2C, the game is a

Prisoners’ Dilemma, with one Nash Equilibrium at (RF, RF) and

a Pareto-optimal outcome at (PF, PF). For A ≥ 2C, we obtain

a Stag Hunt game, with two Nash Equilibria; the RF-equilibrium

(shorthand notation) is risk-dominant, while the PF-equilibrium is

payoff-dominant. Both the Prisoners’ Dilemma and the Stag Hunt

game are well-known social dilemmas [13].

The strategic qualities of the original CT game are preserved in

the 2x2 matrix game played between metastrategies. In the original

CT game, the RF metastrategy corresponds to offering the best pos-

sible offer to the responder. RF is therefore also the risk-dominant

proposal in the original game, because it guarantees a positive gain

to the proposer. Even if both proposers play RF, the expected gain

for each proposer will be positive. In contrast, the PF metastrategy

is payoff-dominant but risky, because it provides a low (or even

zero) gain to the responder. It will yield the most positive possi-

ble gain (payoff) for the proposer if the other proposer also plays

PF, but will yield no gain at all otherwise. The proposers’ dilemma

in the original game (favoring themselves or the responder) is thus

accurately reflected in the reduced 2x2 matrix game.

In the example CT instance shown in Figure 1(a) and (b), we find

that the PF strategy yields a gain to the proposer of 60 and a gain

of 0 to the responder if accepted, while the RF strategy yields a

gain of 20 to the proposer and 55 to the responder. Hence, A = 60
and C = 20 here, and A > 2C; the game played between the two

proposers is thus a Stag Hunt. In a similar manner, we can conclude

that the CT game of Figure 1(c) and (d) is a Prisoners’ Dilemma,

because A = 25 and C = 15 yields A < 2C.

Introducing a third metastrategy. While we distinguish only two

metastrategies thus far, a proposer’s actual strategy s may be mixed,

yielding (in theory) infinitely many possible (mixed) strategies s

based on the two metastrategies.

We now demonstrate that a proposer can benefit from employing

a metastrategy other than such a mixed strategy s. This is illustrated

in Figure 3 (left and right). In the gain graph, all mixed strategies

of PF and RF are located on the straight line connecting PF and RF.

From the proposer’s perspective, any mixed strategy s is strictly

dominated by a strategy s∗ for which GP (s∗) > GP (s). This con-

straint is met by all points to the right of s in the plot. Given that

the responder behaves rationally, we say that s∗ strictly dominates

s iff GR(s∗) > GR(s). All points above s in the plot meet this

constraint. Thus, strategies that lie in the white area of the graphs

in Figure 3 strictly dominate the mixed strategy s.

egy pairs (e.g., PFP1 and PFP2) yield the same gain for the re-
sponder, so the responder is indifferent to the two metastrategies.
In other words, we assume the CT game instance is symmetrical. A
CT game instance may generally not be (fully) symmetrical, unless
we explicitly generate only symmetrical games. As we will discuss
in our experimental section, using our set of criteria that lead to
strategically interesting games, we find games that are symmetrical
in expectation, even though symmetry is not a criterium.
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Figure 3: Pure or mixed strategies on the convex hull may

strictly dominate a mixed strategy of PF and RF. In the exam-

ple on the left, we find a pure strategy s∗ on the convex hull

that strictly dominates a mixed strategy s of PF and RF. On the

right, a mixed strategy s∗ strictly dominates s.

In some cases, the convex hull may lie on the straight line be-

tween PF and RF, as for instance in the second example game (Fig-

ure 1(d)); then, there is no strategy that strictly dominates s. In

other cases however, as in Figures 3 and 1(b), the convex hull may

be located above the line PF-RF. In these cases, we can always find

a strategy s∗ that strictly dominates s, except if s is a pure strategy

itself, i.e., if s assigns a probability of 1 to a certain metastrategy.

For instance, in Figure 3 (left), we find a pure strategy s∗ on the

convex hull that dominates s. In Figure 3 (right), a mixed strategy

s∗ on the convex hull dominates s. In Figure 1(b), both proposers

have three pure strategies (and an infinite number of mixed strate-

gies involving one or more of these pure strategies) that dominate

a mixed strategy of PF and RF.

Thus, proposers indeed may benefit from employing additional

metastrategies, since these additional metastrategies may dominate

(mixed strategies of) the two metastrategies we already defined.

We therefore introduce a third metastrategy, named QF (where Q is

chosen simply because it is between P and R), which is to play the

median proposal on the convex hull. Note that the median may be

defined for any number of proposals on the convex hull; for an even

number, we probabilistically select a proposal from the two median

ones. Thus, proposals corresponding to the third metastrategy may

again be found in any CT game.

Figures 1(b) and 1(d) show the mixed metastrategy QF for the

two example CT instances. We see that the first instance has a pure

QF metastrategy which dominates a mixed strategy of PF and RF.

The gain graph shows that QF yields a proposer (responder) gain of

40 (35) here. The second instance has no strategies on the convex

hull that dominate a mixed strategy of PF and RF; still, QF may

be defined by choosing probabilistically from PF and RF. The (ex-

pected) gain for QF is then the average of the gains for PF and RF,

i.e., 20 for the proposers and 17.5 for the responder.

Interactions between three metastrategies. With three metas-

trategies, the game between the two proposers becomes a 3x3 ma-

trix game as follows.

PF QF RF

PF 1

2
A, 1

2
A 0,B 0,C

QF B,0 1

2
B, 1

2
B 0,C

RF C,0 C,0 1

2
C, 1

2
C

Here, A ≥ B ≥ C. As with the two-strategy game, we can find

different types of game depending on the relation between A, B,

and C. It is easy to see that potential equilibria are located on the

diagonal of the matrix. Moreover, as in the two-strategy game, (RF,

RF) is an equilibrium. Depending on the values of A, B, and C,

we may distinguish four different games. For all games in which

A < 2B < 4C, (RF, RF) is the sole equilibrium. For A ≥ 2B ≥
4C, all three diagonal strategies are equilibria. For A < 2B and

B ≥ 2C, the equilibria are (RF, RF) and (QF, QF). For A ≥ 2B

and B < 2C, we find equilibria at (RF, RF) and (PF, PF).

In the example of Figure 1(a), we find B = 40 (A = 60 and C =
20 still holds); thus, A < 2B and B = 2C, meaning the 3x3 matrix

game has two equilibria, i.e., the RF- and the QF-equilibrium. In

Figure 1(c), we find A = 25, B = 20 and C = 15, so A < 2B

and B < 2C, yielding a single equilibrium at (RF, RF).

Adding social factors to the responder model. Thus far we have

assumed the responder to be rational. Empirical evidence (in Ul-

timatum game settings) suggests that human responders are actu-

ally not fully rational [5]. One of the most well-known alternative

models for Ultimatum-game responder behavior is inequity aver-

sion [1]. The responder does not act directly on its gain GR(s), but

instead on a utility function UR(s), which depends on its own gain,

but also on how it compares to the gain of the proposer, GP (s). The

original model distinguishes two components in the utility function,

namely greed and compassion, both of which decrease the respon-

der’s utility in comparison to the actual gain. The greed component

is generally far stronger (in humans); we do not consider the com-

passion component here. Translated to our settings, the responder’s

utility function may be then defined as follows.

UR(s) =

{

GR(s) GR(s) ≥ GP (s)
GR(s) − αR (GP (s) − GR(s)) otherwise

There is one parameter, αR, which determines how strongly the

responder dislikes a proposal which gives a proposer more gain

than the responder.

To illustrate the effect of inequity aversion, we apply it to the

gain graph of proposer 1 in the first example game (Figure 1(a) and

(b)). The effect for αR = 0.5 is visualized in Figure 4. For pro-

posals that give the proposer more gain than the responder (i.e.,

below the diagonal), the utility (perceived gain) for the respon-

der is lower than the actual gain. As a result, some proposals that

may be accepted by a rational responder are not accepted by an

inequity-averse responder. As is visible from the figure, the convex

hull changes, as does the location of the PF metastrategy. If the re-
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Figure 4: Effect of inequity aversion on the utility (perceived

gain) of the responder: the convex hull and the metastrategies

change. PF will no longer be accepted by the responder, which

means proposers need to offer PF’ instead.
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sponder is inequity-averse and the proposers do not take this into

account, they may coordinate (without communication) to offer the

PF proposal, expecting that one of them will be accepted, while in

reality, the responder will reject both proposals.

Instead of offering PF, proposers should offer PF’, yielding a

gain of 50 instead of 60 in the example. They are able to find PF’

if they are aware of the inequity aversion present in the respon-

der (i.e., the value of αR), which implies they can calculate the

modified gain graph. We deal with both unaware as well as aware

proposers in our empirical evaluation.

4.3 Generalizing the analysis
In this section we show that our analysis may be generalized to

more than three metastrategies and other variants of the CT game.

An arbitrary number of metastrategies. We may introduce ad-

ditional metastrategies in a similar manner as the third one; e.g.,

we could have five metastrategies, corresponding to the minimal,

first quartile, median, third quartile, and maximal proposal on the

convex hull. Generally speaking, for n metastrategies, we obtain an

nxn matrix game. The n diagonal strategies may each be equilib-

ria or not, except the ever-present RF-equilibrium. Depending on

the gains for each metastrategy pair, we may thus distinguish 2n−1

different possibilities for equilibria in the nxn game.

Generalizing to other CT variants. The analysis above is specifi-

cally performed on the three-player negotiation variant of CT. How-

ever, results generalize to other games within the CT framework,

since chip exchanges are a vital part of the framework [7]. We will

provide a few pointers here. A common different variant is a two-

player negotiation game (i.e., one proposer and one responder), po-

tentially with multiple phases and/or alternating roles [8]. The one-

shot two-player game also allows us to construct the gain graph and

identify the metastrategies. Since the dilemma (and the associated

competition) between the proposers is missing, the single proposer

may get away with offering PF every time.5

More generally, the concept of the gain graph naturally extends

to negotiation games with any number of proposers and responders.

For instance, a game with three proposers and one responder leads

to a three-player social dilemma between the proposers, which may

be modeled for instance as a Public Goods game, and interactions

similar to the Ultimatum game between each proposer and the re-

sponder. In a game with multiple responders we can still construct

gain graphs between pairs of proposer(s) and responders, with an

Ultimatum game with responder competition [6] taking place be-

tween these pairs. Analytical and experimental studies in the Ulti-

matum game clearly indicate that players benefit from an increased

number of opponents in the opposite role (e.g., responders fare well

with more proposers) [6, 9].

5. EMPIRICAL EVALUATION
In this section, we outline how strategically interesting instances of

the CT game may be generated. We then discuss how players that

perform actions according to the metastrategies may be heuristi-

cally implemented. Finally, we generate a large number of games,

have our heuristic players play them, and evaluate the empirical

payoff tables, which can be compared with analytical results.

5.1 Strategically interesting games
This section outlines three criteria that ensure strategically inter-

esting games, i.e., games that require strategic thinking from their

5Repeated games fall outside the scope of this paper.

players, and thus facilitate researchers to study this strategic think-

ing. Basically, strategically interesting games are fair games that

require negotiation and mutual dependence.

Baseline scores. The initial board state (positions and chip sets)
should yield baseline scores that are comparable for all three play-
ers. We generate games that limit the difference in baseline scores
to be less than a certain ǫ.

max {GP1 (∅) , GP2 (∅) , GR (∅)}

−min {GP1 (∅) , GP2 (∅) , GR (∅)} < ǫ

Negotiation requirement. No player should be able to reach the
goal location on its own without engaging in a chip trade. We define
isSolution(P, C) = true iff player P can reach the goal given a
chip set C. The initial chip set of a player P is given by chips(P ).

¬isSolution(P1, chips(P1)) ∧

¬isSolution(P2, chips(P2)) ∧

¬isSolution(R, chips(R))

Mutual dependence. Due to the negotiation requirement, both pro-
posers depend on a subset of the responder’s chip set. In turn, the
responder relies on a subset of either proposer 1 or proposer 2. A
one-sided proposal (i.e. asking for all chips or dispensing of all
chips) may not lead to a chip set allowing both the proposer and the
responder to reach the goal.

∃CP1,CR ∈ chips(P1) ∩ chips(R) s.t.

CP1 ∩ CR = ∅ ∧ isSolution(P1, CP1) ∧ isSolution(R, CR)

∃CP2,CR ∈ chips(P2) ∩ chips(R) s.t.

CP2 ∩ CR = ∅ ∧ isSolution(P2, CP1) ∧ isSolution(R, CR)

We implement these three criteria by generating many pseudo-

random games and checking them against the criteria, keeping only

those games that match. In a similar manner, we may introduce ad-

ditional criteria, such as symmetry (see the discussion following).

5.2 Experimental setup
For the empirical evaluation of the proposed metastrategies we gen-

erate a database of 10K games that adhere to the criteria listed

above (we chose ǫ = 20). Below, we discuss how the metastrate-

gies are implemented in heuristic players and how empirical pay-

offs are computed from games played between these players.

Heuristic players. We implemented three heuristic players, each

following one of the three metastrategies, i.e. PF, QF and RF. All

three heuristic players start by enumerating all possible chip ex-

change proposals. Proposals that yield negative gains for either the

proposer or the responder are neglected. Heuristic players follow-

ing metastrategies PF and RF are a straightforward implementation

of the definitions given earlier. Metastrategy QF requires to com-

pute the PF and RF strategy points in the gain graph, as well as

the convex hull connecting both.6 The median proposal on the con-

vex hull is then selected. For an even number, the heuristic player

probabilistically selects a proposal from the two median ones.

Computing empirical payoffs. A single entry of the empirical

payoff matrix is computed as follows. The row determines the

metastrategy played by P1, while the column determines the metas-

trategy for P2. For each game in the database, chip exchanges pro-

posed by the players are evaluated by the responder and if a pro-

posal is excepted, chips are exchanged and scores evaluated. The

resulting payoff is the difference between final and baseline scores

(i.e. gain) averaged over all 10K games. This process leads to a full

empirical payoff table for the game as a whole.

6While any convex hull algorithm is adequate, our implementation
is based on the time-efficient Graham scam algorithm.
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5.3 Results
In this section, empirical payoff tables obtained by the metastrate-

gies are presented and compared to the predicted payoff tables.

Two-strategy game. With two metastrategies PF and RF, we obtain

an empirical payoff table as follows.

PF RF

PF 21.0, 20.6 2.9, 11.7
RF 11.8, 2.6 6.5, 6.2

The empirical payoffs yield a Stag Hunt game, with A ≈ 42 and

C ≈ 12. When we compare the empirical payoff table to the ana-

lytical one, we notice two things.

First, the game is nearly, but not completely symmetrical. This

may be explained by the relatively small size of the board, which

leads to relatively large differences (i.e. possible disbalances) be-

tween the two proposers. On the small board we use, symmetry

arises from repeated play. The game is guaranteed to be symmetri-

cal in expectation, since proposers’ positions are randomized.

Second, there are (small) positive values where we expected val-

ues of 0. In some instances, a certain proposer’s PF proposal is

preferred by the responder over the other proposer’s RF proposal.

Once again, this issue may be dealt with by using larger boards,

which would reduce the probability that PF ‘wins’ from RF. How-

ever, larger boards are (even) more difficult for human players.

Three-strategy game. The empirical payoff table for the three-

strategy game is given below. The values in the corners of the table

are identical to those in the two-strategy game.

PF QF RF

PF 21.0, 20.6 5.7, 24.3 2.9, 11.7
QF 24.5, 5.6 14.8, 14.2 6.0, 9.8
RF 11.8, 2.6 10.0, 5.7 6.5, 6.2

We see that B ≈ 25. It is interesting to consider the interactions

between the ‘neighboring’ metastrategies. Looking at the interac-

tion between PF and QF, we find a Prisoners’ Dilemma. The QF

metastrategy is very strong against PF, giving proposers a strong

incentive to defect. Between QF and RF, we find a Stag Hunt. The

payoff table thus yields a game with two equilibria, namely the QF-

and the RF-equilibrium.

Inequity aversion (unaware proposers). In our next experiment,

we determine the effect of introducing social considerations (in-

equity aversion) in the responder’s decision-making, without the

proposers being aware of this. We provide the empirical payoff ma-

trices for two reasonable values of αR, restricting ourselves to the

two-strategy game.

αR = 0.5 αR = 1.0

PF RF

PF 9.6, 9.9 1.2, 12.0
RF 12.0, 1.2 6.4, 6.3

PF RF

PF 5.3, 5.3 0.7, 11.9
RF 12.0, 0.7 6.5, 6.1

The second equilibrium (PF, PF) disappears, because proposers

expect their PF proposal to be accepted more than it actually is.

The game thus turns into a Prisoners’ Dilemma with one Pareto-

dominated equilibrium at (RF, RF). The higher the value of αR,

the stronger this effect.

Inequity aversion (aware proposers). We also investigate what

happens if the proposers do know that the responder is inequity-

averse. The payoff matrices for the same values of αR are:

αR = 0.5 αR = 1.0

PF RF

PF 17.0, 17.2 3.4, 11.3
RF 11.3, 3.2 6.5, 6.1

PF RF

PF 15.3, 15.1 4.6, 10.4
RF 10.5, 4.4 6.4, 6.1

The second equilibrium is back again; proposers appropriately ad-

just their PF proposals to the expectations of the responder. The

payoff for PF is (sensibly) lower against itself than in the original

game with a rational responder. PF does increasingly well against

RF, simply because PF is (slightly) more similar to RF when pro-

posers take into account the responder’s expectation.

6. DISCUSSION
The previous sections have shown how CT games can be decom-

posed into a set of multiple normal-form games that are character-

ized by social dilemmas (i.e., Prisoners’ Dilemma, Stag Hunt and

Ultimatum games), as visualized in Figure 5, using a number of

metastrategies defined on th chip exchange proposals in the game.

 
 

Responder 

 
 

Proposer 1 

 
 

Proposer 2 

Coordination Game 
(Prisoners’ Dilemma / Stag Hunt) 

Ultimatum Game Ultimatum Game 

Figure 5: Decomposing the three-player negotiation variant of

the Colored Trails Game.

We show that the metastrategy that favors the responder (RF) is

always an equilibrium in the reduced normal form game, regard-

less of the number of metastrategies. This is because the responder

has an advantage in the CT setting we consider, in that no player

receives a gain if it does not accept an offer. An empirical analy-

sis of a large set of game instances illustrates that, in expectation,

two metastrategies yield two equilibria, reducing it to a Stag Hunt

game. We may also find game instances that are Prisoners’ Dilem-

mas, i.e., with only the equilibrium that favors the responder. Using

three metastrategies in the same set of game instances also yields

two equilibria in expectation, namely those two metastrategies that

are most favorable for the responder (QF and RF).

Adding social factors to the responder allows this player to en-

force a higher payoff—essentially, the proposers are driven to de-

fection in the Stag Hunt or Prisoners’ Dilemma game they play, be-

cause the responder is better at exploiting the proposer competition

in the Ultimatum game component. This increased power for the

responder may be countered by introducing multiple responders,

as in an Ultimatum game with responder competition [6].

As noted, our analysis of a single game instance assumes that re-

sponders are indifferent between the gains from the two proposals

resulting from any pair of metastrategies, i.e., for the metastrate-

gies PFP1 and PFP2, we have that GR(PFP1) = GR(PFP2)
(and similar for QF and RF). If this condition does not hold, the

responder will favor one of the metastrategy proposals over the

other, which means the actual game instance does not reduce to

a Stag Hunt or Prisoners’ Dilemma. We observed that approxi-

mately 25% of the 10K games we generated (and that met our
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three criteria) were actually games in which the responder is in-

different between metastrategy pairs. Of these 25%, approximately

one-fifth are Prisoners’ Dilemmas, and four-fifth are Stag Hunts.

The remaining games (i.e., 75%) were not symmetrical, meaning

that one proposer has a strategic advantage over the other proposer.

Even though our symmetry assumption thus does not hold for a

majority of generated game instances, our empirical results show

that, even for games in which the assumption does not hold, the

expected gains to proposers from playing metastrategies do in fact

correspond to Stag Hunt and Prisoners’ Dilemma games.

In case a certain experiment requires all games to be Stag Hunts

or Prisoners’ Dilemmas (i.e., not only in expectation), the assump-

tion of responder indifference can be enforced during game gener-

ation. We note that, for the case in which responders are assumed

to be rational, we do not need to make assumptions about the gains

to proposers from pairs of metastrategies (a rational responder does

not consider those gains), while for inequity-averse responders, the

gains to proposers for every metastrategy pair must also be equal,

i.e., GP1(PFP1) = GP2(PFP2) (and similar for QF and RF).

7. CONCLUSION AND FUTURE WORK
In this paper, we show how to reduce a large multi-agent task-

setting, i.e., a game in the often-used Colored Trails (CT) frame-

work, to a set of smaller, bilateral normal-form games, while still

preserving most of the strategic charachteristics of the original set-

ting. We show how to define representative heuristic metastrategies

in the CT setting that make minimal assumptions about the other

players. The games taking place between metastrategies are shown

to correspond to Prisoners’ Dilemma, Stag Hunt and Ultimatum

games. We demonstrate that the metastrategies’ analytical payoff

tables, which we generated on the basis of assumptions that are not

always met, nonetheless correspond to empirical payoff tables by

sampling from thousands of CT game instances and showing that

the outcome to players from using the metastrategies corresponds

on average to the outcomes from the social dilemma games.

Although our analysis and examples are based on a particular CT

scenario (a three-player take-it-or-leave-it game), they demonstrate

the possibility of using metastrategies to reduce other CT games

(e.g., games with a different number of players in each role, or even

games that are further removed from the game under consideration

here), and multi-agent interactions in general, to (social dilemma)

normal-form games. More precisely, the techniques we present ap-

ply to general multi-agent interactions in which optimal actions can

be computed, given that other players are using specified strategies.

We are currently extending our approach in two ways. First, we

are developing metastrategies that consider other social factors that

affect people’s behavior in task settings, such as altruism and gen-

erosity, also from the perspective of the proposers. Second, we are

considering more complex CT scenarios that include repeated ne-

gotiation, in which metastrategies will need to account for players’

trust and reciprocity relationships.
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