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Metasurface-assisted phase-matching-free second
harmonic generation in lithium niobate waveguides
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Nanfang Yu2 & Marko Lončar1

The phase-matching condition is a key aspect in nonlinear wavelength conversion processes,

which requires the momenta of the photons involved in the processes to be conserved.

Conventionally, nonlinear phase matching is achieved using either birefringent or periodically

poled nonlinear crystals, which requires careful dispersion engineering and is usually

narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical

antennas have been demonstrated to provide an effective optical momentum to bend light in

arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of

phased array antennas are able to circumvent the phase-matching requirement in on-chip

nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free

second harmonic generation over many coherent lengths in thin film lithium niobate

waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation

in the metasurface-based devices is observed over a wide range of pump wavelengths

(λ= 1580–1650 nm).
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N
onlinear optics has a wide range of important applica-
tions, including frequency conversion1–3, quantum light
sources4,5, optical frequency combs6, and ultrafast all-

optical switches and memories7,8. To achieve efficient nonlinear
optical processes, the phase-matching condition has to be strictly
satisfied9. This ensures that generated nonlinear optical signals
are added constructively, and optical power is transferred con-
tinuously from the pump(s) to the signal. In the case of bulk
nonlinear media, phase matching can be achieved by using crystal
birefringence, by controlling the angle of intersection between
optical beams, or by using periodically poled nonlinear crystals
(i.e., quasi-phase matching)9.

Nonlinear effects can be significantly enhanced inside nano-
photonic waveguides with tight light confinement10–17. Nano-
photonics also provides alternative tools to achieve phase-
matching; examples include dispersion-engineered structures10–
13, photonic crystal waveguides14,15, anisotropic micro-cavities16,
and periodically poled nonlinear waveguides17. Nevertheless, the
nonlinear phase-matching condition still needs to be satisfied
between co-propagating light waves.

Strict phase-matching is not required in resonant structures
with (sub-)wavelength-scale mode volumes, where the conversion
efficiency relies on modal overlap between fundamental modes
and higher harmonics18–32. For example, doubly resonant pho-
tonic cavities with high quality factors have been proposed to
achieve highly-efficient wavelength conversion, while their nar-
row bandwidth remains a major challenge in experiments18–21.
Plasmonic nanoantennas have also been used to achieve
enhanced optical nonlinearities22–27. Simultaneous field
enhancement at both the fundamental and harmonic wavelengths
and spatial overlap between the modes allow for even higher

conversion efficiencies28,29. More recently, dielectric antennas
have emerged as a promising alternative over plasmonic ones due
to their lower optical loss and higher damage threshold. Silicon
Mie resonators supporting magnetic dipole resonances30 and
Fano resonances31 have been utilized to enhance third harmonic
generation. However, these devices suffer from low overall con-
version efficiencies because light–matter interactions occur within
a limited volume of nonlinear media.

Here, we theoretically propose and experimentally demonstrate
a hybrid nonlinear integrated photonic device consisting of phase-
gradient metasurfaces patterned on top of a nonlinear waveguide.
Our devices leverage the high nonlinear susceptibility of lithium
niobate (LiNbO3, or LN)33, the strong capability of gradient
metasurfaces in controlling the modal indices of waveguide
modes34, and the large volume of light–matter interaction provided
by optical waveguides. We show that the unidirectional effective
wavevector provided by gradient metasurfaces enables a one-way
transfer of optical power from the pump to the second harmonic
(SH) signal, which represents a unique scheme of phase-matching-
free nonlinear generation, where the nonlinear generation effi-
ciency is not sensitive to the variation of pump frequency and
device geometry. We demonstrate efficient, broadband, and robust
second harmonic generation (SHG), where the SH signal mono-
tonically increases over many coherence lengths inside LN wave-
guides patterned with gradient metasurfaces.

Results
Theoretical principle of the phase-matching-free process. Fig-
ure 1a-c show the schematic views and scanning electron
microscope (SEM) images of our devices, where gradient meta-
surface (a phased array of dielectric antennas) is patterned on the
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Fig. 1 Device schematics and working principle. a Schematic of an integrated nonlinear photonic device, where a gradient metasurface consisting of arrays

of dielectric phased antennas is used to achieve phase-matching-free second harmonic generation (SHG) in a LiNbO3 waveguide. For clarity, only three

antenna arrays are shown, but there could be more than three arrays. Inset shows a magnified view of the antenna array. b Schematic of the device cross-

section. c Left: Scanning electron microscope (SEM) image of a fabricated device showing four phased antenna arrays consisting of silicon nano-rods of

different lengths patterned on the top surface of a LiNbO3 waveguide. Right: Zoom-in view of the device (dashed frame in the left image). Scale bar: 1 µm

for both images. d Conceptual diagram of the proposed phase-matching-free SHG. The optical power is first coupled from the pump, TE00(ω), to the

fundamental waveguide mode at the second harmonic (SH) frequency, TE00(2ω) (arrow #1 in the diagram), and then with the assistance of the gradient

metasurface, coupled to the higher-order waveguide modes at the SH frequency, TEmn(2ω) and TMmn(2ω) (arrow #2). The unidirectional wavevector

provided by the gradient metasurface ensures that coupling of optical power back from the TEmn(2ω) and TMmn(2ω) modes to the TE00(2ω) is highly

inefficient (arrow #3). The coupling of optical power from the TEmn(2ω) and TMmn(2ω) modes to the pump, TE00(ω), is also highly inefficient (arrow #4),

because the spatial overlap between TEmn(2ω) or TMmn(2ω) and TE00(ω) in the waveguide cross-section is small (i.e., coupling coefficient is small). In this

way, asymmetric optical power transfer is realized between the pump and the SH signal (i.e., process indicated by arrow #1 is more efficient than the

process indicated by arrow #5) and as a result the SHG power monotonically increases as a function of the propagation distance. This new scheme

circumvents the nonlinear phase-matching condition as long as the gradient metasurface provides an asymmetric effective wavevector to preferentially

couple optical power from lower to higher-order waveguide modes at the SH frequency and does not interact with the pump
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top surface of a nonlinear optical waveguide. We utilize the
dipolar Mie resonances in dielectric nano-rod antennas with
different lengths to introduce different phase shifts in the scat-
tered light waves34. Collectively, the phased antenna array creates
a unidirectional phase gradient dΦ/dz, which is equivalent to a
unidirectional effective wavevector Δk, along the waveguide.
Here, dΦ is the difference in phase response between adjacent
nanoantennas that are separated by a subwavelength distance of
dz. The unidirectional effective wavevector Δk enables
directional coupling of waveguide modes. That is, when an
incident waveguide mode propagates against the direction of Δk,
the modal index decreases, which corresponds to coupling into
higher-order waveguide modes; the inverse process in which
optical power is coupled from the higher-order modes to the
lower-order ones is prohibited due to the lack of a phase-
matching mechanism.

Figure 1d shows the working principle of the metasurface-based
nonlinear integrated photonic devices. In the region of the nonlinear
waveguide patterned with the metasurface structure, once optical
power couples from the fundamental mode at the pump frequency,
TE00(ω), to the fundamental mode at the SH frequency, TE00(2ω), it
immediately starts to be converted into higher-order waveguide
modes at the SH frequency, TEmn(2ω) and TMmn(2ω), by the
gradient metasurface (Supplementary Fig. 1). The unidirectional
wavevector provided by the gradient metasurface ensures that
optical power cannot be coupled from higher-order modes,
TEmn(2ω) and TMmn(2ω), back to TE00(2ω) (dotted arrow in
Fig. 1d). Furthermore, the optical power carried by TEmn(2ω) and
TMmn(2ω) cannot be coupled back to the pump, TE00(ω) (dashed
arrow in Fig. 1d), because the coupling coefficient between them is
negligible (i.e., spatial overlap between TEmn(2ω)/TMmn(2ω) and
TE00(ω) on the waveguide cross-section is very small). In this way,
optical power is retained in the SH signal and accumulates as a
function of propagation distance. The antennas are designed to
interact with guided waves at the SH frequency, and they are too
small to strongly scatter the pump. As a result, the pump propagates
as the fundamental waveguide mode through the device with
decreasing power, while the SH signal increases monotonically in the
nonlinear waveguide patterned with the gradient metasurface. The
order of waveguide modes at the SH frequency, however, keeps
increasing; as such, the SH signal will eventually leak out from the
waveguide when the cutoff condition for waveguiding is reached.
This sets the ultimate limitation on the highest nonlinear conversion
efficiency achievable in the current device scheme.

Device design and numerical simulation. We choose lithium
niobate (LN) as the nonlinear waveguide material. For decades, LN
has been the most widely used material for nonlinear generation
processes owing to its broad transparency window (λ = 400 nm−5
μm) and large second-order nonlinear susceptibility (d33 = 27 pm/
V)33. Conventionally, LN waveguides are formed by using metal
in-diffusion or ion exchange to slightly increase the refractive index
of the waveguide core (Δn ~ 0.02)1,35. Recently, the platform of LN
on insulator (LNOI) has emerged as a promising candidate for
next-generation on-chip wavelength conversion. This platform is
based on sub-micron thick LN thin films bonded to an insulator
(silica) substrate using a smart-cut technique, resulting in devices
with much increased index contrast (Δn> 0.6) and reduced modal
size36. Optical devices with excellent wavelength-scale optical
confinement and efficient nonlinear generation capability have
been realized in the LNOI platform12,17,37–39.

We choose amorphous silicon (a-Si) as the material for the
dielectric phased array antennas. A-Si has a refractive index (~ 4
in the visible) significantly higher than LN (~2.2 in the visible)
(Supplementary Fig. 2). Therefore, there is a strong interaction

between waveguide modes at the SH frequency and Mie
resonance modes in the a-Si nanoantennas. The use of dielectric
antennas instead of plasmonic antennas minimizes the absorp-
tion losses (Supplementary Fig. 3).

In our devices, the LNOI has a single crystal x-cut LN device
layer with a thickness of 400 nm. A 2-μm buried SiO2 layer is
underneath the LN device layer. The ridge LN waveguides created
by a reactive ion etching process has a trapezoidal cross-section
with a width d = 2600 nm on the top, a sidewall tilting angle θ =
40 degree, a ridge height h = 300 nm and an underetched slab
thickness s = 100 nm (Fig. 1b). A gradient metasurface consisting
of a number of identical phased antenna arrays is patterned along
the center of the top surface of the LN ridge waveguide. Each
antenna array consists of 35 a-Si nanoantennas with a thickness t
= 75 nm, a width w = 75 nm and a range of lengths l (Fig. 1a,
inset). The separation, dz, between adjacent nanoantennas is 140
nm and the phase difference, dΦ, between them is 0.5 degree at
the SH frequency (i.e., λ ~ 750 nm). Note that the actual value of
dΦ is not critical for the phase-matching-free process to take
effect. As long as the antenna array converts SH light into higher-
order waveguide mode(s) at a rate comparable to the SHG
process, the total SH signal will keep accumulating.

Figure 2a shows simulated performance of our devices in
comparison to that of a bare nonlinear waveguide. Detailed
numerical simulation methods are provided in Supplementary
Fig. 2. In a bare LN waveguide, the generated SH signal is mostly
carried by the TE00(2ω) mode because of the efficient nonlinear
overlap between the two fundamental waveguide modes, TE00(2ω)
and TE00(ω) (i.e., integration of TE00

*(2ω)×TE00
2(ω) over the

waveguide cross-section is significantly larger than other mode
combinations). However, due to the large phase mismatch between
the two modes, optical power is frequently exchanged between
them along the waveguide (with a period of twice the coherent
buildup length ~2 μm, in our case; oscillatory black curves in
Fig. 2a); thus, the SH signal can never reach a high intensity.
However, when the nonlinear waveguide is patterned with the
gradient metasurface structure, the SHG power monotonically
increases as a function of the propagation distance, and a longer
metasurface structure consisting of more sets of phased antenna
arrays produces SH signals with higher intensities. For example,
using just one set of phased antenna array (4.76 μm in length), the
SHG power is increased by seven times compared with the peak
value achievable in a bare waveguide. Using six sets of phased
antenna arrays with a total length of 28.6 μm, the SHG power can
reach a value two orders of magnitude higher than that achievable
in a bare waveguide (Fig. 2a). Increasing the number of phased
antenna arrays can further improve the nonlinear conversion
efficiency, until a point at which the generated SH signal is coupled
by the gradient metasurfaces into leaky waves. Our simulations
show that with the current device configuration, a monotonic
increase of SHG power could be sustained for at least 11 sets of
phased antenna arrays (i.e., 54 μm in length).

Figure 2b shows the mode evolution at both the pump and SH
frequencies as a function of the propagation distance in a
waveguide section patterned with three sets of phased antenna
arrays. The simulation results show that the pump power is
primarily carried by the fundamental waveguide mode, TE00(ω),
throughout the metasurface-patterned region, indicating a weak
interaction between the pump and the metasurface structure. At
the SH frequency, the x-component of the electric field has
mainly a single lobe, which indicates that optical power is
converted from the TE00(ω) mode to the TE00(2ω) mode. The
electric field polarized along the y-axis at the SH frequency shows
multiple lobes, and this is the result of coupling of optical power
from the TE00(2ω) mode to higher-order TEmn(2ω) (TMmn(2ω))
modes by the gradient metasurface. The interference between
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these higher-order modes after the metasurface-patterned section
will cause intensity variations of the generated SHG signal, but
the overall SHG power would stay on the same level as that right
after the antenna arrays (Supplementary Fig. 4).

The asymmetric coupling between the pump and the SH signal
as a result of the unidirectional wavevector provided by the
gradient metasurface makes the SHG process tolerant to the
variation of the pump frequency and the geometry of the device.
Figure 2c shows the simulated SHG power as a function of the
pump wavelength ranging from 1500 to 1650 nm, for different
sets of phased antenna arrays. In the case of one set of antenna
array, the generated SHG power is almost a constant for different
pump wavelengths. The SHG enhancement bandwidth decreases,
however, as the number of antenna arrays increases, since a
longer interaction distance corresponds to less tolerance on the
phase gradient of the antenna arrays. Nonetheless, for a device
with six antenna arrays, the wavelength range within which the
SHG power is above 80% of the peak value is still larger than 115
nm. In addition, our numerical simulation shows that the SHG
process is robust against the variation of the device geometry. The
change to the SHG power in a device with three sets of phased

antenna arrays is small when the lengths of the nano-rod
antennas deviate from their designed values by ±10%, when the
antenna arrays are offset from the center of the waveguide up to
100 nm, and when the width of the LN waveguide deviates from
its designed values by ±100 nm (Supplementary Fig. 5). In
comparison, in conventional schemes of nonlinear phase
matching, the nonlinear wavelength conversion process is
typically sensitively dependent on the optical alignment, pump
wavelength and operating temperatures9.

Experimental characterization. The devices were fabricated
using a combination of electron-beam lithography, reactive ion
etching and plasma-enhanced chemical vapor deposition (Fig. 3).
The fabricated devices were characterized using a butt-coupling
setup, where the telecom pump light with tunable wavelengths,
λpump, was coupled into the devices using a tapered lensed fiber,
and the generated SH signal was coupled out from the polished
facets of the LN waveguides and collected using another tapered
lensed fiber. Details on device fabrication and characterization
can be found in Methods section.
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Fig. 2 Numerical simulation. a Simulations showing that the second harmonic (SH) signal increases monotonically as the number of phased antenna arrays

increases. Without the antenna arrays, the SH signal oscillates periodically along the waveguide (black curves). The colored triangles in the middle panel

indicate the positions of the simulated cross-section profiles shown in b. b Simulations showing the evolution of the pump and the SH signal as they

propagate along the waveguide. It can be seen that the pump stays in the fundamental waveguide mode, TE00(ω) (first row), while the SH is gradually

coupled into higher-order waveguide modes by the gradient metasurface (second and third row). c Simulations showing that the SH power increases as the

number of the phased antenna arrays (labeled 1–6) increases and that the second harmonic generation (SHG) process is broadband (i.e., efficient SHG is

observed over a wide range of pump wavelengths). The broadband performance is achieved because the unidirectional effective wavevector provided by

the gradient metasurface breaks the symmetry of coupling between the pump and the SH signal so that optical power is transferred preferentially from the

pump to the SH signal while the inverse process is highly inefficient. The discrete symbols represent numerical simulation results, and are connected using

spline function to better illustrate the results
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Fig. 3 Device fabrication steps. a The fabrication starts with an x-cut LiNbO3 thin film (400 nm thick) bonded on top of SiO2. b Hydrogen silsesquioxane

(HSQ) resist is spin-coated and patterned with electron-beam lithography (EBL). c LiNbO3 ridge waveguides are formed using an optimized Ar+ plasma

etching technique. The residual resist is removed in buffered oxide etch (BOE). d A 75 nm thick p-doped amorphous silicon layer is deposited using

plasma-enhanced chemical vapor deposition. e A second EBL process is performed to define the antenna patterns on top of the amorphous silicon surface.

f Antenna arrays are created using reactive ion etching, before a second BOE etch is used to remove the residue HSQ
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Fig. 4 Experimental results. aMeasured SHG power at the output port of devices patterned with different number of phased antenna arrays, in comparison

with that of a bare LiNbO3 waveguide, showing broadband SHG enhancement (to the left of the dashed line). The narrow SHG peak at a pump wavelength

of 1667 nm (to the right of the dashed line), which exists in all tested devices including bare LiNbO3 waveguides, is the result of an accidental phase-

matching between the pump, TE00(ω), and the seventh-order TE waveguide mode at the SH frequency, TE06(2ω). b Top-view camera images showing the

scattered SH light from a device patterned with a gradient metasurface consisting of four phased antenna arrays (indicated by the white dashed frames). At

pump wavelengths of 1600, 1620, and 1640 nm, SH signal (red spots) is only observed at the output end of the gradient metasurface, which indicates that

the SH signal is generated within the metasurface-covered section of the device. In contrast, at the accidental phase-matching peak wavelength of 1667

nm, scattered SH light appears at both the input and output ends, which indicates that the SH signal has already been generated by the phase-matching

process before it enters the metasurface section. c Input–output power relations for the device showing quadratic power dependence between the pump

and the SH signal at three different pump wavelengths
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Figure 4a shows the measured SHG power from several devices
that have the same LN waveguide patterned with different sets of
phased antenna arrays, as well as SHG power produced by a bare
control waveguide. Over the range of λpump = 1580–1680 nm, the
SHG signal in all devices with the antenna arrays shows
significant enhancement compared with the bare LN waveguide.
The enhancement of the SHG process increases with increasing
number of antenna arrays (Fig. 4a), which is in good agreement
with the simulation results shown in Fig. 2. To further confirm
that the SHG enhancement is indeed contributed by the antenna
arrays, a visible camera is used to visualize the SH light scattered
from the top of the devices. The SH signal is most likely to be
scattered at the boundaries (labeled “input” and “output” in
Fig. 4b) between the metasurface-patterned section of the LN
waveguide and sections of the bare LN waveguide due to abrupt
modal index changes. At three arbitrarily chosen pump
wavelengths λpump = 1600, 1620, and 1640 nm, the scattered SH
light is observed only at the output end of the antenna arrays, but
not at the input end (Fig. 4b), indicating that the SH signal is
generated within the metasurface-patterned section. Figure 4c
shows the input–output power relations for a device patterned
with four phased antenna arrays. Quadratic power dependence is
observed at three pump wavelengths, indicating a broadband
second-order nonlinear optical process. The measured conversion
efficiencies for the three wavelengths are 3.2 × 10−5, 3.8 × 10−5,
and 6.0 × 10−5W−1. Considering the short metasurface-covered
device length of 19 μm, the normalized conversion efficiencies are
890 % W−1 cm−2, 1050 % W−1 cm−2, and 1660 % W−1 cm−2,
respectively, significantly higher than conventional PPLN and
recent reports on thin film LN waveguides due to the strong
nonlinear modal overlap in our devices1,12,17.

Note that there is a SHG peak at λpump = 1667 nm for all tested
devices, including bare LN waveguides (Fig. 4a). This is the result
of an accidental phase-matching12 between the TE00(ω) mode and
the TE06(2ω) mode for our LN waveguide dimensions (Supple-
mentary Fig. 6). At this peak wavelength, scattered SH light is
observed at both the input and output ends of the antenna arrays
(Fig. 4b), indicating that the SH signal has already been generated
before light interacts with the antenna arrays. The measured SHG
efficiency for this accidental phase-matching peak is ~9 × 10−5W
−1, comparable to that of the broadband enhanced SH signal from
the device with four phased antenna arrays, but is the result of
coherent SHG accumulation over a waveguide total length of 1.5
mm, resulting in a normalized conversion efficiency of 0.4%W−1

cm−2. This indicates that, within the same nonlinear interaction
length, the SHG process assisted by the gradient metasurfaces is at
least three orders of magnitude more efficient than the accidental
phase-matching process in a bare LN waveguide.

The measured SHG spectra are not as flat as those in simulations
(Fig. 4a), which is likely due to two reasons. First, after light
propagates through the metasurface-patterned region, there is a
phase-mismatched interaction between the SH signal and the
residual pump, which results in a small oscillation of the SH
intensity as a function of the propagation distance (Supplementary
Fig. 4). The spatial oscillation of the SH intensity and the
dependence of the oscillation period on the pump wavelength lead
to a variation of the SH signal measured at the output port of the
LN waveguide as a function of the pump wavelength. Second, the
SH signal is carried by a different combination of higher-order
waveguide modes at different pump wavelengths, which leads to
different overall collection efficiencies by the tapered lensed fiber.

Discussion
In conclusion, we have demonstrated a new scheme of phase-
matching-free nonlinear wavelength conversion that is based on

the integration of gradient metasurface structures and nonlinear
waveguides. The gradient metasurfaces break the symmetry of
coupling between the pump and nonlinear signals so that the
nonlinear generation process can maintain a high efficiency over
a broad range of pump wavelengths. Furthermore, in contrast to
antenna-based nonlinear nanophotonic devices reported in the
literature where light–matter interactions occur within a limited
volume of nonlinear materials22–29, the collective effect of phased
arrays of nanoantennas in the gradient metasurfaces enables us to
utilize a significantly larger volume of nonlinear materials with
dimensions many times of the pump wavelength to increase the
nonlinear generation efficiency. We fabricated such devices by
patterning phased arrays of a-Si nano-rod antennas on LN
waveguides, and characterized their SHG properties. The mea-
surement results show orders of magnitude enhancement in the
nonlinear wavelength conversion process over a broad range of
pump wavelengths. One drawback of our current approach is the
difficulty of efficient light collection from the generated higher-
order waveguide modes. This could possibly be solved by using a
single antenna array to convert the SH light into one specific
mode (e.g., TM00)

34 and extracting the remaining pump light into
an adjacent waveguide to repeat the process.

Methods
Numerical simulation. Nonlinear optical simulations were performed using
FDTD methods (Lumerical). In our design, the width (75 nm), height (75 nm)
and the center-to-center distance (140 nm) of the amorphous silicon nanoan-
tennas were chosen according to our fabrication capabilities and kept constant.
The phase response of the nanoantennas is obtained from FDTD simulations: a
nano-antenna is placed on a LN substrate, a plane wave is incident onto the
antenna from the substrate, and the phase of the scattered light from the antenna
is monitored. The scattering phase monotonically increases as a function of
antenna length. The gradient metasurface is created by assembling an array of
nanoantennas where the phase difference between adjacent elements is 0.5°.
Details on the complex optical refractive indices and LN crystal orientation used
in FDTD simulations, and calculated antenna phase response can be found in
Supplementary Fig. 2.

Device fabrication. X-cut LNOI wafers obtained from NANOLN, with a 400-nm
thick device layer bonded on top of a 2-µm thick silica buffer layer, were used for
device fabrication (Fig. 3). Hydrogen silsesquioxane (HSQ) resist (~600 nm) was
spun on the wafers and patterned with electron-beam lithography (EBL). The
patterned HSQ was subsequently used as an etching mask to define LN ridge
waveguides using an optimized Ar+ plasma etching technique12,37. The LN ridge
waveguides have a top width of 2.6 µm and a height of 300 nm, leaving a 100-nm
thick LN slab underneath. The residue HSQ was removed in buffered oxide etch
(BOE). A 75 nm thick p-doped amorphous silicon (a-Si) layer was then deposited
on top of the entire sample surface using plasma-enhanced chemical vapor
deposition (PECVD). A second HSQ resist layer (~300 nm) was then patterned on
the a-Si surface using EBL. Reactive ion etching (RIE) was performed to transfer
the second HSQ pattern into the a-Si layer, defining the antenna arrays. The
antennas have a width of 75 nm and the gap between adjacent antennas is 65 nm.
Finally, a second BOE etch was used to remove the residue HSQ resist.

Optical measurement. Devices were characterized using a butt-coupling setup.
Telecom pump light from a continuous wave tunable laser (Santec TSL-510, max
power ~ 20 mW) was coupled into the LN waveguides through a tapered lensed
fiber. A fiber polarization controller was used to ensure TE mode input. SH light
was collected from the output waveguide facet using a second tapered lensed fiber
and measured using a silicon avalanche photodiode. The scattered SH light was
monitored by placing a visible CCD camera above the device, focused on the
metasurface section. The input and output power used for conversion efficiency
calculation refer to the on-chip power into and out of the metasurface region,
taking into consideration the fiber-to-chip coupling losses. The normalized
conversion efficiency is defined as η = Pout∙Pin

−2
∙L−2, where Pin and Pout are the

input and output power, respectively, and L is the length of the metasurface region.

Data availability. The data that support the findings of this study are available
within the article and the Supplementary Information file.
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