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Abstract. In this paper a methodology for the use of temporal logic as an 
executable imperative language is introduced. The approach, which provides a 
concrete framework, called METAa'EM, for executing temporal formulae, is moti- 
vated and illustrated through examples. In addition, this introduction provides 
references to further, more detailed, work relating to the METATEM approach to 
executable logics. 

1. Introduction 

The purpose of this paper is to introduce and motivate the methodology of 
temporal logic as an executable imperative language, originally presented by 
Moszkowski [Mos86] and Gabbay [Gab87a], and to present a framework, called 
METATEM [BFG89a], for executing temporal logics. This methodology serves as 
the natural meeting ground for the declarative and imperative approaches in 
computing, namely imperative logic. 

This article is a shortened version of a full paper, which is available by 
ftp [BFG95]. The presentation here provides a starting point for exploration of 
more detailed work on the METATEM family of languages. 

Correspondence and offprint requests to: Michael Fisher, Department of Computing, Manchester 
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2. Motivation 

We distinguish several alternative readings or views of logic: declarative, procedu- 
ral and imperative. The declarative view is the traditional one, manifesting itself 
both syntactically and semantically. Syntactically, a logical system is taken as 
being characterised by its set of theorems. It is unimportant how these theorems 
are generated, indeed, two different algorithmic systems generating the same set 
of theorems are considered as producing the same logic. Semantically, a logic 
is considered as a set of formulae which are satisfied by all models. A model, 
rid, is a static semantic object. We evaluate a formula (p in a model and, if the 
result of the evaluation is positive (notation d{ ~ (p), the formula holds. Thus 
the logic obtained is the set of all formulae characterising some particular class 
of models. 

Applications of logic in computer science have mainly concentrated on the 
exploitation of its declarative features, i.e., where logic is taken as a language for 
describing properties of models. This view of logic is, for example, most suitably 
and successfully exploited in the areas of databases, program specification and 
program verification. A database can be presented as a deductive logical theory 
which is queried using logical formulae. The process of logical evaluation corre- 
sponds to the computational querying in the database. In program verification, 
for example, the semantics of the programs being studied can be described as 
logical formulae. The description plays the role of a model rig. A specification, 
or desired property, is then given as a logical formula qo, and the query whether 
(p holds in J/g (denoted Jr q~) amounts to verifying that the program satisfies 
the specification. These methodologies rely solely on the declarative nature of 
logic. 

Logic programming as a discipline is essentially declarative; in fact, it adver- 
tises itself as such. It is most successful in areas where the declarative component 
is dominant, for example deductive databases, though its procedural features are 
computational. In the course of evaluating whether J/l F- (p, a procedural read- 
ing of Jd  and (p is used. The formula (p does not act imperatively on J~, the 
declarative logical features are used to guide a procedure, that of taking steps for 
finding whether ~o is true. What does not happen as part of this process is any 
imperative reading of q), resulting in some action. In logic programming, such 
actions (e.g. assert) are obtained as side-effects through special non-logical imper- 
ative predicates and are considered undesirable. There is certainly no conceptual 
framework within logic programming for properly identifying only those actions 
which have logical meaning. 

The declarative view of logic allows for a variety of logical systems. Given a 
set of data A and a formula ~o, we can denote by A ? q0 the query of (p from A. 
Different procedures or logics will give different answers, e.g. A ~-LI ~o or A ~/c2 (P 
depending on the logic. Temporal and modal logics allow for systems of databases 
as data, so the basic query/data situation becomes 

{t~ :At} : t : ~0 

meaning "if Ai hold at ti then we query whether (p holds at t?". 
The ti may be related somehow, for example, they may represent moments in 

time. The basic situation is still the same. We have (distributed) data and we ask 
a specific query. The different logical systems (modal, temporal) have to do with 
the representation and reasoning with the distributed data. There are various 
approaches. Some use specialised connectives to describe the relations between 
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ti : A~. Some use a metalogic to describe it, for example classical logic. Some 
reason directly on labelled data. They all share the common theme that they 
answer queries from given databases, however complex they are and whatever 

the procedure for finding the answer is. 
Implicit in the data/query approach is an external view of the system. We 

look from the outside at data, at a logic and at a query, and we can check 
from the outside whether the query follows from the data in that logic. Temporal 
data can also be viewed this way. However, in the temporal case, we may not 
necessarily be external to the system. We may be within it, moving along with the 
temporal flow. When we view the past, we can be outside, collect the data and 
query it in whatever logic we choose. This is the declarative approach. When we 
view the future, from where we are, we have an option. We can either wait for 
events to happen and query them, or we can influence events as they occur, or 
even make them occur if we can. The result of this realisation is the imperative 
view of the future. A temporal statement like "John will wait for two hours" can 
only be read declaratively as something evaluated at time t by an observer at a 
later time (more than two hours). However, an observer at time t itself has the 
further option of reading it imperatively, resulting in the action of forcing John 
to wait for two hours. In effect what we are doing is dynamic model construction. 
To summarise, we distinguish three readings of  logical formulae: the traditional 
declarative reading, finding answers from data; the logic programming procedural 
reading, supporting the declarative and giving procedures for finding the answer; 
the imperative reading which involves direct actions. 

Reading the future imperatively in this manner is the basis of our imperative 
use of temporal logic as a paradigm for a new executable logic language. It 
is the theme this paper introduces - -  the idea that a future statement can be 
read as commands. In traditional declarative uses of logic there are some aspects 
of this idea. For example, in logic programming and deductive databases the 
handling of integrity constraints borders on the use of logic imperatively. Integrity 
constraints have to be maintained. Thus one can either reject an update or carry 
out some corrections to the database. Maintaining integrity constraints is a form 
of executing logic, but it is logically ad hoc and has to do with the local problem at 
hand. Truth maintenance is another form. In fact, under a suitable interpretation, 
one may view any conflict resolution mechanism as model building, which can in 
turn be seen as a form of execution. In temporal logic, model construction can 
be interpreted as execution. Generating the model, i.e. finding the truth values of 
the atomic predicates in the various moments of time, can be taken as a sequence 

of execution. 
As the need for the imperative executable features of logic is widespread in 

computer science, it is not surprising that various researchers have touched upon 
it in the course of their work. In spite of  this, there has been no conceptual 
methodological recognition of the imperative paradigm in the community, nor 
has there been a systematic attempt to develop and bring this paradigm forward 
as a new and powerful logical approach in computing. 

The logic USF, defined by Gabbay [Gab87a], was a first attempt at promoting 
the imperative view as a methodology. In this paper, we consider a more refined 
language based on this imperative view of temporal logic. 
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3. Executing the Future - -  The METATEM Approach 

Consider a temporal sentence of the form: 

antecedent (about the past) ~ consequent (about the present and future) 

This can be interpreted as if the "antecedent (about the past)" is true then do the 
"consequent (about the present and future)". Adopting this imperative reading 
yields us an execution mechanism for temporal logics. We take this as the basis 
of our approach, called METATEM. This name, in fact, captures two key aspects 
of our developing framework: 

�9 the use of TEMporal logic as a vehicle for specification and modelling, via 
direct execution of the logic, of reactive systems; 

�9 the direct embodiment of META-level reasoning and execution, in particular, 
identifying metalanguage and language as one and the same, providing a 
highly reflective system. 

Generally, the behaviour of a reactive component is specified by describing the 
interactions that occur between that component and the context, or environment, 
in which it is placed. In particular, a distinction needs to be made between actions 
made by the component and those made by the environment. In METATEM, we 
enforce such a distinction. The behaviour of a component is described by a 
collection of temporal rules, in the form mentioned above. The occurrence, or 
otherwise, of an action is denoted by the truth, or falsity, of a proposition. The 
mechanism by which propositions are linked to actual action occurrences is not 
an issue here and is left to the reader's intuition. However, the temporal logic 
used below does distinguish between component and environment propositions. 

A METATEM program for controlling a process is presented as a collection 
of temporal rules. The rules apply universally in time and determine how the 
process progresses from one moment to the next. A temporal rule is given in the 
following clausal form 

(past time antecedent) ~ (present and future time consequent) 

This is not an unnatural rule form and occurs in some guise in many programming 
languages. For example, in imperative programming languages it corresponds to 
the conditional statement. In declarative logic programming, we have the Horn 
clause rule form of Prolog and other similar languages. In METATEM, the "past 
time antecedent" is a temporal formula referring strictly to the past; the "present 
and future time consequent" is a temporal formula referring to the present and 
future. Although we can adopt a declarative interpretation of the rules, for 
programming and execution purposes we take an imperative reading following a 
natural view of the way in which dynamic systems behave and operate, namely, 

on the basis of the past do the present and future. 

Let us first illustrate this with a simple merging problem. There are two queues, 
let us say at Heathrow Airport, queue 1 for UK nationals, and queue 2 for 
other nationalities. The merge point is the immigration desk. There is a man in 
charge, calling passengers from each queue to go through immigration. This is 
a merge problem. We take "snapshots" each time a person moves through. The 
propositions we are interested in are, "from which queue we are merging" and 
"whether the UK nationals' queue is longer than the other queue". We must not 
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upset the first queue (UK nationals); these people vote, the others don't. We of 
course generate a time model, as we proceed with the merging. 

We want to specify that if queue 1 is longer, we should next merge from 
queue 1. The desired specification is written in temporal logic. Let ml be "merge 
from queue 1", m2 be "merge from queue 2" and b be "queue 1 is longer than 
queue 2". Note that ml and m2 are controlled by the program, and b is controlled 
by the environment. The specification is the conjunction of the three formulae: 

[1 (ml V m2) 

U ~(ml A m2) 

[](b ~ Oml). 

Here ' [ ] '  denotes the "always in the future" operator and ' O '  denotes the "next 
moment in time" operator. 

We actually want to use this specification to control the merge while it is 
happening. To explain our idea look at the specification b ~ Oml.  If  we are 
communicating with the merge process and at time n we see that b is true, i.e. 
queue 1 is longer than queue 2, we know that for the specification to be true, 
Oral must be true, i.e. ml must be true at time n + 1. Since we are at time n 

and time n + 1 has not come yet, we can go ahead and make ml true at time 
n + 1. In other words, we treat Oral as the imperative statement, "execute ml 

next". 
The specification, b ~ Oral, which is a declarative statement of temporal 

logic, is thus being perceived as an executable imperative statement of the form: 

If b then next do ml. 

In practice we simply tell the merge process to merge from queue 1. Our point of  
view explains the words "the imperative future". Of course when adopting this 
point of view, we must know what it means to do or execute ml or indeed any 
other atom or formula. To execute mi we merge from queuei. How do we execute 

b? We cannot make the queue longer under the conditions of the example at 
Heathrow. In this case we just helplessly wait to see if more passengers come. 

More specifically, given a specification expressed by a formula q~ in a 
connective-based temporal logic, we can use the separation theorem for dis- 
crete temporal logics (we assume we have a fully expressive set of connectives) to 
rewrite the specification rp in the form 

i 

where ~i is a pure past formula, ~ is a boolean expression of atoms and ~i2 is a 
pure future formula [Gab87a]. 

As we have seen above, there may be various ways of separating the original 
formula 9. The exact rewrite formulation requires an understanding of the ap- 
plication area. This is where the ingenuity of the programmer is needed. Having 
put qo in separated form we read each conjunct 

as: 

If qo i is true at time n then do ( ~  V ~p~) 
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Proposition Symbols 

a, b. . .  E ~r 
x, y . . .  E d c  

N o t e : d p = d E U ~ r  a n d d e A d c = O  

Classical Propositional Connectives 

true false 

-~ A V ~ 

Temporal Connectives 

unary 

binary 

(Z) next 
�9 last 
[] always in future 
�9 always in past 
~" sometime in future 
~, sometime in past 

{ ~r unless 
zince 

q/ until 
5 p since 

Fig. 1. Basic symbols. 
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More formally 

Hold (~o i) ~ Execute OP~ V ~p~) 

We must make it clear though that there is a long way to go if want to build a 
practical system. In the following sections, we introduce our base propositional 
temporal logic, outline a general interpretation strategy and provide an example 
execution. 

4. A Propositional Linear-time Temporal Logic 

In order to give a flavour of the METATEM execution style, we present a simple 
propositional temporal logic and outline the execution mechanism for this re- 
stricted logic. Although not as powerful as it might be, such a logic does provide 
a basis for discussion of many of the novel aspects of MFXaTEM. 

We introduce a basic linear and discrete propositional temporal logic, PML 
(Propositional M~TATEM Logic). The language is obtained by augmenting classical 
propositional logic with temporal operators. The reader who is familiar with such 
standard temporal logics may prefer to skip the next two subsections and proceed 
to Section 5 where our execution approach is outlined. 

The logic is presented in the usual way: the next sub-section introduces the 
syntactic elements, while the following sub-section introduces the semantics. 

4.1. Syntax 

The basic symbols of the logic are depicted in Fig. 1. We assume an alphabet of 
proposition symbols d e  which is the union of two disjoint sets d c  and ~r of 
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propositions controlled by the component and by the environment, respectively. 
A standard collection of propositional connectives together with a collection of 
temporal connectives complete the basic symbol: Q), [] and + are unary future- 
time connectives; ~ and ~// are binary future-time connectives; � 9  �9 and 
are unary past-time connectives and ~e and 5 ~ are binary past-time connectives. 

The formulae of this propositional temporal logic are constructed inductively 
in the normal way. Thus, propositions p from d e  are formulae and, given 
formulae q0 and p, so are the propositional combinations true, false, -,q~, q) A ~p, 
~o v p, qo ~ p and rp ~ 9, and the temporal combinations, O(p, [](p, ~>q~, 
�9 <p, [] q~, ~> q~, qg~Kp, q~ q/p, q)~ p and q)6e p. The binding of the propositional 

connectives is assumed prioritised in the order given, i.e. (highest) 7, A, V, ~ ,  <:~ 
(lowest). The unary temporal connectives, i.e. O,  []  and %, have binding equal 
in priority to negation, i.e. -7. The binary temporal connectives have priority in 
between -~ and A. However, as usual, to change the effect of binding, bracketing 
of formulae is allowed; so, given a formula ~o, then (~o) is also a formula. 

We refer to the syntactic class of well-formed formulae defined informally 
above as Wff. It is also useful to define the subclasses Wff<, Wff=, Wff>_, covering, 
respectively, strict past time formulae, present time formula and non-strict future 
time formulae. 

wff= 

Wff < 

wff>_ 

is the set which includes the propositions p from d p  and is closed under 
the propositional connectives. 

is the set which includes the formulae �9 ~b, �9 ~b, ~ ~b, ~b 5 p p and q5 ~ p, 
where q5 and p are in Wff<_, and is closed under unary and binary propo- 
sitional connectives. Wff< includes the set of propositions and is closed 
under the propositional and past-time temporal connectives. 

is the set which includes Wff= and is closed under the propositional and 
future-time temporal connectives. 

4.2. Semantics 

We interpret temporal formulae over linear, discrete structures, indeed, one might 
refer to the temporal flow as "natural number time". More formally, models are 
taken as sequences a ~ (N ~ 2~P), and formulae are interpreted in structures 
(o-, i), i E N. Thus, a provides an interpretation for the atomic propositions of the 
language at different points in time. Given some moment in time, represented by 
j ~ N, a(j) is a set of propositions drawn from the alphabet d p  and denotes all 
those propositions that are to be taken as true at that moment j. a (representing 
a sequence) is total with respect to N. The i component of the pair (a, i) is an 
index which denotes the current moment, i.e. now, in the model (referred to as 
the reference point of the model). Indices greater than i represent future moments 
and indices less than i represent past moments. 

The temporal model is linear as for every moment j there is exactly one 
future given by the points j + 1, j + 2, etc. The model is discrete as it is based 
on the natural numbers. Furthermore, as the mapping is assumed total over the 
naturals, time is infinite in the future and finite, or bounded, in the past. Due 
of the linearity and discreteness properties, the a mapping can be conveniently 
thought a sequence of states, e.g. So, st, $2, $3,.... 

A relation ~ is defined inductively over the structure of formulae and provides 
an interpretation for temporal formulae in the given model structures. Figure 2 
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Propositions 

(a, i) ~ p iff 

Propositional Connectives 

(a, i) ~ true 

(~, i) ~ ~ 

(a,i) ~ (pA~p 

etc. 

Temporal Connectives 

(o, i) ~ 0~o 

(~, i) ~ ~o ~ 

H. Barringer et. al. 

p ~ o-(i) 

iff not (a, i) ~ (p 

iff (a, i) ~ ~0 and (a, i) F ~2 

iff (a , i+  1) N ~o 

iff for s o m e k ~ N .  ( a , i + k ) ~ v a n d  
for all j E 0..k - 1, (a, i + j) ~ ~0 

( a , i ) ~ � 9  iff i = 0  or (er, i - 1 ) ~ 0  

(a,i) N(pS ~ iff for s o m e k ~ l . . i  ( a , i - k ) ~ p a n d  
for all j E 1..k - 1, (a, i - j) ~ (p 

Fig. 2. Interpretation in a model structure. 

~ p  <=~ true ~f~p @ ~p <=~ true J ~p 

Fig. 3. Other temporal definitions. 

provides its definition. Of particular interest is the interpretation given to a strong 
until formula. ~0 ~'~0 is true in model (o-, i) if and only if (i) ~p is true eventually in 
that model, say with reference point i § k (k >_ 0), and (ii) the formula ~0 is true 
for all the models (a, i + j) where the reference points i + j ranges up to but not 
including the reference point for which ~ is true. Note that the formula q0 ~ p  is 
true at i in any model for which ~ is true at i and therefore ~p =~ (p ~ p  is true 
for every model. 

The past time temporal operators are defined to be strict past time versions of 
their future time counterparts, i.e. the past does not include the present moment. 
Since the model structure allows easy backwards as well as forwards reasoning the 
interpretations given should be self evident. However, it is worth discussing the 
interpretation of �9 at the beginning of time. The last-time operator, 0 ,  has been 
given a weak interpretation, i.e. for any formula (p, �9 ~o is true at the beginning of 
time. Hence the formula �9 false can be used to determine the beginning of time, 
i.e. it is true only at the beginning of time. One can define a strong (existential) 
last time operator, denoted here by O,  such that O (p is false at the beginning 
of time for any ~0. Then, of course, notice the duality between the two last time 
operators, i.e. Oqo ~* ~ 0 ~ o .  

The interpretation of formulae constructed from the other temporal operators, 
i.e. D,  (~, ~K, I ,  ~ ,  ~ ,  is given by definition in terms of ~ and ~ ,  see 
Fig. 3. 
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We now state some properties of PML. 

Definition 4.1. A formula q) is said to be satisfied by a model a at i if, and only 
if, (a, i) ~ ~o. 

Definition 4.2. A formula q~ is said to be validated by a model a it', and only if, 
(a, i) ~ q~ holds for every index i. 

The definition of validity is as in classical logic. 

Definition 4.3. A formula ~o is said to be valid, ~ q~, if, and only if, it is validated 
by all models a. 

Theorem 4.1. Validity in PML is decidable. 

Proof See [Gou84], for example. [] 

This decidability result is important. It means that algorithms can be constructed 
to determine the validity, or otherwise, of any given PML formula. Thus, for pro- 
grams whose semantics can be represented by a propositional temporal formula, 
this result provides an automatic verification method for temporal[ logic specifi- 
cations (see, for example, [LPZ85, BFG89b]). As we shall see, the decidability of 
PML is also of importance for "execution". 

The following Separation Theorem, due to Gabbay in 1980, provides an initial 
foundation for the METATEM approach. 

Theorem 4.2. For any formula (9 in Wff, we can find a separated formula, ~o', 
consisting of a boolean combination of strict past time formulae (in Wff<), present 
time formulae (in Wff=) and strict future time formulae (in Wff>_), such that q) 
and ~0 r are semantically equivalent, i.e. every model of (0 is a model for ~0', and 
vice versa. 

Proof See [Gab87a], for example. [] 

From the above result, it follows that: 

Theorem 4.3. Any formulae ~o of class Wff can be written in the form 

n 

i= !  

where ~i are strict past time formulae, i.e. in Wff<, and ~Pi are non-strict future 
time formulae, i.e. in Wff>>_, such that both the above formula and q~ satisfy the 
same set of models at index (time point) 0 (or, indeed, any particular index k). 

Proof Suppose (p is to be evaluated at time point k. First separate qo into a 
boolean combination of strict past, present and strict future formulae. By the 
Separation Result, this boolean combination will be satisfy the same set of 
models at time point n. Put the boolean combination into the form 

n 

i=1 

where qSi is in Wff< and each ~Pi is in Wff>_. To obtain the desired form 
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n 

[] A(~  ~ ~,i) 
i=1 

construct each ~i formula as @kfalse A Oi. [] 

H. Barringer et. al. 

Finally note that: 

Theorem 4.4. Given a formula ~p in Wff>_, it can be written in a logically equivalent 
form as 

n 

i=i 

where each fi is either of the form q)i/x �9  or of the form q~i where each ~oi is 
a conjunction of  literals, i.e. a present time formula from Wff=, and ~i is a future 
(non-strict) time formula, i.e. in Wff>_. 

5. METATEM Programs and Their Execution 

As outlined above, a METATEM program for controlling a reactive component is 
presented as a collection of temporal rules, which apply universally in time and 
determine how the process progresses from one moment to the next. A temporal 
rule is given in the following clausal form 

(past time antecedent) =~ (present and future time consequent). 

In METATEM, the "past time antecedent" is a temporal formula referring strictly to 
the past, i.e. it is in Wff<; the "present and future time consequent" is a temporal 
formula referring to the present and future, i.e. it is in Wff>. Although we can 
adopt a declarative interpretation of the rules, for programming and execution 
purposes we take an imperative reading following the natural way we ourselves 
tend to behave and operate, namely, 

on the basis of  the past do the present and future. 

Given a program consisting of  a set of rules Ri, this imperative reading results in 
the construction of a model for the formula 

[] A Ri 
i 

which we refer to as the program formula. The execution of a METATEM program 
proceeds, informally, in the following manner. Given some initial history of 
execution: 

1. Determine which rules currently apply, i.e. find those rules whose past time 
antecedents evaluate to true in the current history; 

2. "Jointly execute" the consequents of the applicable rules together with any 
commitments carried forward from previous times - -  this will result in the 
current state being completed and the construction of a set of commitments 
to be carried into the future; 

3. Repeat the execution process for the next moment in the context of the new 
commitments and the new history resulting from (2) above. 
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O r l  =~ ~ a l  

O r2 =~ (>a2 

( rl Y (al/  -,rl)) =*- =al  

Otrue ~ (~al v ~a2) 

Fig. 4. Temporal rules for resource manager. 

(1) 
(2) 
(3) 
(4) 
(5) 

Requests  Allocations 

rl r2 al a2 

y n n n 

n n y n 

y y n n 

n n y n 

y n n y 

n y y n 

n n n y 

Time 

Step 

0 

1 

2 

3 

4 

5 

6 

Commitments 

~ a 2  

Fig. 5. Sample execution of resource manager. 

6. Example 

To demonstrate the execution process we offer the following simple example. 
Consider a resource being shared between several (distributed) processes, for 
example a database lock. We require a "resource manager" that satisfies the 
following constraints. 

1. If the resource is requested by a process then it must eventually be allocated 

to that process. 

2. If the resource is not requested then it should not be allocated. 

3. At any one time, the resource should be allocated to at most one process. 

To simplify the exposition of the execution process, we restrict the example to 
just two processes. Let us use propositions rl and r2 to name the occurrence of 
a request for the resource from process 1 and process 2 respectively. Similarly, 
let propositions al and a2 name appropriate resource allocations. The request 
propositions, ri, are controlled by the environment of the resource manager, 
whereas the allocation propositions are under direct control of the resource 
manager and can not be modified by the environment. Writing the given informal 
specification in the desired rule form, i.e. "pure past formula implies present and 
future formula", results in the rules of  Fig. 4. 
The state provides an interpretation for the four propositions rt, r2, at and a2. 
Given particular settings for the environment propositions, i.e. rl and r2, the 
execution will determine appropriate values for the allocation propositions, al 
and a2. Figure 5 gives the first seven steps of a typical trace. 

Step 0. The environment has requested the resource for process 1. To see how the 
current state is completed, we must find which rules from Fig. 4 apply. Clearly 
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rules 1 and 2 do not apply; we are currently at the beginning of time and hence 
O ~b, for any 4), is false. The other rules do apply and require that both al and 

a2 are made false. No commitments are carried forward. Execution proceeds to 
the next time step. 
Step 1. First, there are no new requests from the environment. However, in 
examining which rules apply, we note that the hypothesis of rule 1 is true (there 
was a request in the previous moment), hence we must "execute" ~ a l .  Also, 
rule 4 and rule 5 apply. In fact, the latter rule applies at every step because 
its hypothesis is always true. To execute ~aa ,  we execute al V (-~al A � 9  
We have a choice; however, our mechanism will prioritise such disjunctions and 
attempt to execute them in a left to right order. One reason for this is that to 
satisfy an eventuality such as <}~0, we must eventually, in some future time step, 
satisfy q~; so we try to satisfy it immediately. If  we fail then we must carry forward 
the commitment to satisfy (>~o. Here we can make al true. Rule 4 requires that 
a2 is false, leaving rule 5 satisfied. 
Step 2. The environment makes a request for both process 1 and process 2. The 
hypotheses of rules 1 and 2 are false, whereas those of rules 3 and 4 are true. So 
al and a2 are made false. No commitments are carried forward. 
Step 3. There are no new requests from the environment, but there are two 
outstanding requests, i.e. both rule 1 and 2 apply. However, rule 5 requires that 
only one allocation may be made at any one time. The execution mechanism 
"chose" to postpone allocation to process 2. Thus, the eventuality from rule 1 
is satisfied, but the eventuality for rule 2 is postponed, shown in the figure by 
carrying a commitment ~(~a2. 
Step 4. A further request from the environment occurs, however, of interest here 
is the fact that +a2  must be satisfied in addition to the commitments from 
the applicable rules. Note that this time, rule 4 does not apply as there is an 
outstanding request. Fortunately, the execution mechanism has no need to further 
postpone allocation to process 2 and a2 is made true. 
Steps 5 - 6. Similar to before. 

7. Related Work 

The study of temporal and modal logics in the formal development of reactive 
systems has, in the main, been concentrated on techniques for specification and 
verification. On a related theme, there have been investigations into the synthesis 
of programs from temporal logic based specifications, for example [MAW84] and 
more recently [PnR89a, PnR89b]. 

The direct execution of temporal logic itself has been studied by a variety 
of researchers over the past decade. These systems can be categorised in many 
ways, for example by their underlying execution paradigm (logic programming 
or imperative logic) or by the type of temporal logic executed (discrete linear, 
branching or interval-based). 

7.1. Executing Discrete Temporal Logics 

The main alternative to the imperative reading of discrete temporal logics de- 
scribed in this paper, is to execute such logics using the logic programming 
paradigm. A temporal logic programming language, called TEMeLOG, was initially 
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defined by Abadi and Manna [AbM89] and has subsequently been studied in or- 
der to establish it's expressive power and completeness properties [Bau89, Bau92]. 
A related approach is based upon the temporal extension of intensional logic pro- 
gramming, and is called CHRONOLO6 [OrW92b, OrW92a]. 

Temporal Prolog [Gab91] provides an alternative (to TEMPLOG) extension of 
the logic programming paradigm to discrete temporal logics. 

Brzoska [Brz95] presents an extension to temporal logic programming of 
the TEMPLOG form, incorporating not only past-time operators, but also metric 
temporal operators. He gives the correctness of the logic programming system 
in his framework and shows how it can be translated into a constraint logic 
programming system over an appropriate algebra. 

Merz [Mer95] discusses the issues involved in the tradeoff between efficiency 
and expressiveness in the execution of temporal formulae. In particular, he defines 
a class of temporal logic formulae, which is both sufficiently abstract to support 
high-level descriptions of algorithms and, yet, whose model construction problem 
is tractable. 

Tang [Tan89], rather than providing an extension of Prolog that incorporates 
a form of temporal logic, extends the verification method for temporal logic to 
incorporate logic programming. In particular, the states of a model checker for 
CTL (a branching-time temporal logic [EmC82]) are extended with Prolog like 
statements. 

7.2. Interval Temporal Logics 

Two different varieties of interval temporal logics form the basis for programming 
languages. These are ITL, developed by Moszkowski for the purpose of modelling 
digital circuits [Mos83], and Allen's Interval Algebra, developed in order to 
provide a formal foundation for temporal representation and temporal planning, 
particularly in AI [Al184]. 

Tempura [MosS6, HAM87, Hal87] is an executable temporal logic based upon 
the forward chaining execution of ITL. In this sense it was the precursor of 
the METAT~M family of languages and provides a simpler and more tractable 
alternative to these approaches. 

Tokio [FKT86] is a logic programming language based on the extension of 
Prolog with ITL formulae. It provides a powerful system in which a range of 
applications can be implemented and verified. 

Hrycej [Hry88, Hry93] describes a completely different Temporal Prolog from 
Gabbay's (see above), which is based upon interval temporal logic. He extends 
Prolog Using a form of Allen's interval temporal logic [Al184] and applies it to tem- 
poral knowledge representation and temporal planning problems. In addition to 
the basic Prolog execution mechanism, such a system requires a constraint solver 
for temporal constraints (not unlike constraint logic programming [JaL87]), 
though this itself might be implemented in Prolog. 

Friihwirth [Frii95] outlines another method for implementing interval tempo- 
ral logics as an extension to logic programming, this time by defining a temporal 
annotated logic. This can be mapped directly on to a particular form of constraint 
logic programming. 

Introductory surveys of executable temporal logics can be found in [OrM94] 
and [FiO95a], while a more detailed account of some of the current research in 
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this area can be found in the proceedings of the the first international workshop 
on executable modal and temporal logics [FiO95b]. 

8. Further Reading 

While this paper has provided an introduction to the METATEM approach, there 
are many details and extensions that have not been covered here. In this section, 
we reference, and briefly describe, some of this, more detailed, work. 

Applications 

METATEM has been applied in a variety of areas such as reactive system sim- 
ulation, temporal databases, and the modeling of large 'real-life' deductive sys- 
tems [FFO93, FMO91, TOM90]. For example, in [FFO93], METATEM rules are 
used to simulate a simple railway network. 

Implementation 

Initial interpreters for METATEM were developed by both Michael Fisher and 
Richard Owens; this work is reported in more detail in [FIO92], and incorporates 
the execution of temporal formulae, but based upon a normal form, called 
SNF [Fis92], rather than arbitrary formulae. The use of this normal form 
both simplifies the execution mechanism and obviates the need for a separa- 
tion theorem for the logic (as renaming can be used to transform arbitrary 
formulae into SNF). 

If propositional METATEM programs contain no references to environment 
variables then the execution mechanism can be viewed as tracing out a subtree 
of a semantic tableau associated with the program rules. The tree produced 
is effectively a graph representing the basic automaton for the formula being 
executed. Thus, METATEM programs can be 'compiled' into automata in this 
way. In this case, the execution mechanism would proceed by exploring paths 
through the graph in an attempt to follow an infinite branch satisfying the 
eventualities. Although unsatisfiable branches may be followed for a finite number 
of states, the invocation of the loop-checking mechanism will force the execution 
mechanism to backtrack from such branches and explore different branches. 
Eventually, the execution mechanism will follow an infinite satisfying branch. 
Future implementations of propositional (non-concurrent) METATEM will be based 
upon this "compilation to automata" approach. 

Concurrency 

Although our work on METATI~M had shown its utility in the development of 
a variety of sequential deductive systems, the need for an extended version of 
METATEM exhibiting concurrency was apparent. Thus, Concurrent METATEM 
was developed, providing an operational model for concurrently executing, in- 
dependent M~TATEM processes [BG88, FIB91, Fis93, Fis94]. These independent 
processes execute their own METATEM specifications, and are able to communi- 
cate with each other through asynchronous broadcast message-passing. The pro- 
cesses themselves are completely autonomous, having control not only over 
their own execution, but also over their interaction with the environment. 
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Further, individual processes are able to dynamically change their internal 

behaviour and can choose to participate in group actions. Not  surprisingly, 
Concurrent METATEM has been shown to be useful in a variety of applications, 
particularly those involving reactive systems and Distributed Artificial Intelli- 
gence [FFO93, Fis93, FiW93]. 

Concurrent METATEM is not a direct extension of METATEM but, although 
it both restricts the general METATEM model and extends the potential for 
concurrency, it is still based upon the imperative reading of temporal logic. 

Meta-Programming 

A further aspect of METATEM is its potential for meta-programming. An initial 
investigation into this capability is provided in [BFG91]. 

Synthesis 

One of the main performance problems with METATEM programs is in appli- 
cations where a large amount  of backtracking occurs. Thus, just as in logic 
programming where synthesis procedures have been developed in order to re- 
duce non-determinism, semi-automatic temporal synthesis procedures have been 
investigated for METATEM programs [No~91, FIN92]. Initial results for proposi- 
tional METATEM programs are promising and further work is planned towards 
the reduction of non-determinism in full first-order METATEM. 

9. Summary 

In this paper, we have introduced the foundations of an imperative approach 
to the execution of temporal logics. We have indicated, not only how dynamic 
properties of systems can be represented within METATEM programs, but also how 
such programs may be implemented. Finally, we have also provided references to 
the wide range of work, both completed and in progress, on the METATEM family 
of languages. 
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