METATEM: The Story so Far

Michael Fisher

Department of Computer Science, University of Liverpool, United Kingdom
http://www.csc.liv.ac.uk/~michael

1 Introduction

METATEM is a simple programming language based on the direct execution of tempo-
ral logic statements. It was introduced through a number of papers [35/2/3]] culminating
in a book collecting together work on the basic temporal language [3)]. However, since
that time, there has been a programme of research, carried out over a number of years,
extending, adapting and applying the basic approach. In particular, much of the research
has concerned the development of descendents of METATEM for describing and imple-
menting complex multi-agent systems.

Thus, while there are a number of other approaches to executing temporal state-
ments [32/18]], we will concentrate on this one particular approach and will describe the
developments over the last 15 years. The structure of this article mirrors the research
developments in that the path through these developments is not linear. The diagram
below gives a pictorial explanation of the sections that follow.

1

‘ 2. Temporal Logic ‘
!

‘ 3. Executing Temporal Logic ‘

N

4. Concurrent METATEM | ‘ 5. Beyond Temporal Logic

N

‘ 6. Groups and Organisations ‘

!
| 7. METATEM at Work |

‘ 8. Concluding Remarks ‘

Thus, we begin with a brief review of temporal logic itself.

2 Temporal Logic

We will begin with a review of basic temporal logic. Rather than providing an in-depth
account of temporal logic, we will just provide a simple description that can be used
throughout this article. For a more thorough exposition of the formal properties of this

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 3-22 2006.
(© Springer-Verlag Berlin Heidelberg 2006

4 M. Fisher

logic, see [[L1], while for examples of the use of temporal logic in program specification
in general, see [S0].

Temporal logic is an extension of classical logic, whereby time becomes an extra
parameter when considering the truth of logical statements. The variety of temporal
logic we are concerned with is based upon a discrete, linear model of time, having both
a finite past and infinite future, i.e.,

G = 50, 51,52,53, ---

Here, a model (o) for the logic is an infinite sequence of states which can be thought
of as ‘moments’ or ‘points’ in time. Since we will only consider propositional temporal
logic here, then, associated with each of these states is a valuation for all the proposi-
tions in the language.

The temporal language we use is that of classical logic extended with various modal-
ities characterising different aspects of the temporal structure above. Examples of the
key operators include ‘O¢’, which is satisfied if ¢ is satisfied at the next moment in
time, ‘<>(p’, which is satisfied if @ is satisfied at some future moment in time, and ‘[]¢’,
which is satisfied if @ is satisfied at @/l future moments in time.

More formally, a semantics of the language can be defined with respect to the model
(o) in which the statement is to be interpreted, and the moment in time (7) at which it is
to be interpreted. Thus, a semantics for the key temporal operators is given below.

(0,i) EOQA iff (o,i+1)EFA

(0,i) =E[JA iff forall j>i. (0, /) =A

(0,i)y =QA iff exists j>i. (0, j) A

(0,i) FAUB iff existsk>i.(c,k)=Bandforallk>j>i. (c,j)EFA
(0,i) EAWB iff either (G,i) EAUBor (c,i) = [JA

Note that the temporal operators ‘ U’ (“until”) and < W’ (“unless”) characterise inter-
vals within the temporal sequence during which certain properties hold. Thus, ‘y U ¢’
means that @ is satisfied at some point in the future and, at every moment between now
and that point, y must be satisfied. In addition to temporal operators referring to the
future, it is also possible to utilise temporal operators relating to the past [49], such as
‘W’ (“always in the past”), ‘@’ (“sometime in the past”), ‘@’ (“in the previous mo-
ment in time”), and ‘S’ (“since”). However, adding past-time operators here does not
extend the expressive power of the language and such operators can all be removed by
translation of arbitrary temporal formulae into a specific normal form (see Section[3.2)).
Finally, we add a nullary operator ‘start’, which is only satisfied at the “beginning of
time”:
(0,i) [=start iff i=0

2.1 Why Temporal Logic?

But, why do we use temporal logic? One reason is that it allows the concise expression
of useful dynamic properties of individual components. For example, the formula

request = reply Uacknowledgement

METATEM: The Story so Far 5

characterises a system where, once a request is received, a reply is continually sent up
until the point where an acknowledgement is received. And, importantly, an acknowl-
edgement is guaranteed to be received eventually. In addition, pre-conditions, such as

B —started = O-moving

can easily be described in this logic.

As the temporal model on which the logic is based comprises a linear sequence of
moments, then the logic can also be used to express the order in which activities occur,
for example

hungry = (buy_food N Ocookfood N O Qeat).

While the logic is clearly useful for representing the dynamic activity of individual
components, and this relates very closely to traditional applications of temporal logic
in program specification [50], the formalism is also useful for characterising properties
of the overall system. For example, the formula

broadcast(msg) = Ya € Group. {preceive(msg,a)

describes the message-passing behaviour within a group of components (characterised
by the finite set ‘Group’). Thus, temporal logic can be used to represent both the internal
behaviour of a component and the macro-level behaviour of systems.

3 Executing Temporal Logic

3.1 WhatIs Execution?

But, what does it mean to execute a formula, @, of logic, L? In general, this means
constructing a model, M, for o, i.e.

M= 0.

Typically, this construction takes place under some external constraints on ¢, and many
different models might satisfy ¢. However, we note that:

— as @ represents a declarative statement, then producing M can be seen as execution
in the declarative language L; and

— if @ is a specification, then constructing M can also be seen as prototyping an
implementation of that specification.

Languages such as Prolog effectively build a form of model by attempting to refute the
negation of a goal.

We execute arbitrary formulae from the temporal logic using an execution mecha-
nism which is complete for propositional, linear temporal logic. In order to simplify the
execution algorithm, arbitrary formulae are transformed into a specific normal form,
called SNF (see Section[3.2)). Thus, the execution algorithm works on formulae in SNF;
this algorithm will be described in more detail in Section

Although deciding propositional temporal logic formulae is complex (PSPACE-
complete), deciding first-order temporal logic (FOTL) formulae is much worse! FOTL
is incomplete (i.e. not recursively enumerable) [S6/1]] and so, if we wish to use arbitrary
FOTL in our specifications then we are left with a few options:

6 M. Fisher

1. restrict the logic and provide a ‘complete’ execution mechanism; or
2. execute the full logic, treating execution as simply an attempt to build a model for
the formula.

Fragments of FOTL with ‘good’ properties are difficult to find and, once found [53/44],
turn out to be quite restrictive. Thus, we choose (2). In addition, completeness cannot
be retained in general, especially as we wish to extend the basic execution mechanism
to include not only constrained backtracking, but also a dynamic model of concurrent
computation and communication. Thus, in summary, execution of temporal specifica-
tions is synonymous with attempting to build models for such specifications.

3.2 WhatIs SNF?

The specification of a component’s behaviour is given as a temporal formula, then trans-
formed into a simple normal form, called Separated Normal Form (SNF) [14419]]. In this
normal form, the majority of the temporal operators are removed, and formulae are rep-
resented as

n
AR
i=1
where each R;, termed a rule, is one of the following forms.
r
start = \/ Iy (an initial rule)
b=1

8 r
/\ k., = O l \/ lb] (a step rule)
a=1 b=1

g
/\ ky = <>l (a sometime rule)
a=1

Note, here, that each &, [, or [is a literal. This normal form gives a simple and intuitive
description of what is true at the beginning of execution (via initial rules), what must
be true during any execution step (via step rules), and what constraints exist on future
execution states (via sometime rules). For example, the formulae below correspond to
the three different types of SNF rules.

INITIAL: start = (sad \V optimistic)
STEP: (sad N\ —optimistic) = Osad
SOMETIME: optimistic = {y—sad

3.3 Execution Algorithm

The basic execution algorithm of METATEM [2l3] attempts to build a model for the
formula in a simple forward-chaining fashion. The basic approach, as defined in [31/3]]
is described below. Assuming we are executing a set of SNF rules, R:

METATEM: The Story so Far 7

1. By examining the initial rules in R, constraints on the possible start states for the
temporal model can be generated. Call these choices, C. Let ‘Q’, the list of out-
standing eventualities, be an empty list.

2. Make a choice from C. If there are no unexplored choices, return to a choice point
in a previous state. Note that this choice mechanism takes into account a number of
elements, including Q.

For the choice taken, generate additional eventualities, Evs, by checking applica-
bility of sometime rules. Append Evs to Q.

3. Generate a new state, s, from the choice made in (2) and define s as being a succes-
sor to the current state. Note that, by default, if propositions are not constrained we
choose to leave them unsatisfied.

Remove from Q all eventualities satisfied within s.
If s is inconsistent, or if any member of € has been continuously outstanding for
more than 25/8| states, then return to (2) and select a different alternative.

4. Generate constraints on next states by checking applicability in s of step rules in
R. Set C to be these choices. Note that C here represents all the possible choices of
valuations for the next state, while Q gives the list of eventualities that remain to be
satisfied.

5. With current state, s, the set of choices on next state, C, and the list of outstanding
eventualities, Q, go to [2)).

The key result here is that, under certain constraints on the choice mechanism within
@), this execution algorithm represents a decision procedure.

Theorem 1 (See [3]). If a set of SNF rules, R, is executed using the above algorithm,
with the proviso that the choice in (3) ensures that the oldest outstanding eventualities
are attempted first at each step, then a model for R will be generated if, and only if, R
is satisfiable.

The above proviso ensures that, if an eventuality is outstanding for an infinite number of
steps, then it will be attempted an infinite number of times. Once the choice mechanism
is extended to include arbitrary ordering functions, as in [20] (see Section [3.1)), then
a more general version of the above theorem can be given wherein we only require a
form of fairness on the choice mechanism. While the above proviso effectively means
that we can potentially explore every possibility, the incorporation in the algorithm of a
bound on the number of states that eventualities can remain outstanding, together with
the finite model property of the logic, ensures that all of the possible states in the model
can be explored if necessary.

Example. Imagine a ‘car’ component which can go, turn and stop, but can also run out
of fuel (empty) and overheat.

The internal definition might be given by a temporal logic specification in SNF, for
example,
start = —moving
go = Omoving
(moving A go) = O(overheat\ empty)

8 M. Fisher

The component’s behaviour is implemented by forward-chaining through these
formulae.

— Thus, moving is false at the beginning of time.

— Whenever go is true, a commitment to eventually make moving true is given.

— Whenever both go and moving are true, then either overheat or empty will be made
true in the next moment in time.

4 Concurrent METATEM

4.1 From One to Many

Once we have a temporal description for a component, we can extend this to give its
behaviour within an environment consisting of multiple other components. We do this
simply by providing a definition of the component’s interface with its environment [[16]].
Such an interface describes the messages that the reactive component can receive (i.e.
those that come in) and send (i.e. those that go out). For example, let us consider the
abstract specification of a ‘car’ with the behaviour given above. This car can be told
to go, turn and stop, but can also notify other components that it has run out of fuel
(empty) or has overheated (overheat). A (partial) definition is given below.

car ()
in: go, stop, turn
out: empty, overheat
rules: start = —moving
(moving A go) = O(overheat\ empty)
go = {moving

This shows that the component recognises the messages ‘go’, ‘stop’ and ‘turn’, and can
potentially send out ‘empty’ and ‘overheat’ messages. Its behaviour is then specified by
the temporal formula

start = —moving
A
[]| (moving A go) = O(overheat\ empty)
A
go = moving

Both the messages received and the messages sent are interpreted as propositions (or
predicates) that can be used as part of the reactive component’s specification. In addi-
tion, standard propositions (predicates) appear in the specification, for example ‘mov-
ing’ in the description above. These atoms are essentially internal and do not directly
correspond to communication activity by either the component or its environment.

4.2 Communication and Concurrency

Each component executes independently. However, execution may be either synchro-
nous, whereby the steps in each component occur at exactly the same time (and thus

METATEM: The Story so Far 9

the notion of next is common amongst the executing components), or asynchronous,
whereby the steps in each component are distinct. The classification of a component’s
predicates as environment or component (or, indeed, internal) implements communica-
tion in a natural (and logical) way. Environment predicates are under the control of the
component’s environment, while the other categories of predicate can be made true or
false by the component itself. Thus, when a component’s execution mechanism makes
an internal predicate true, it just records the fact in its internal memory, while when
it makes a component predicate true, it also broadcasts a message corresponding to
this predicate to all other components. Thus, in the above car example, when either
empty or overheat is made true, then the message empty or overheat, respectively, is
broadcast. If an appropriate message is received, the corresponding environment predi-
cate set to true. In the example given above, if a go message is received, the proposition
go is made true.

The use of broadcast message passing not only matches the logical view of com-
putation but, as we will see later, also fits well with applications which concern open
and dynamic systems (and where a component cannot know all the other components it
might deal with).

4.3 Towards Semantics

If we consider a single METATEM component, then its semantics is effectively its tem-
poral specification. However, once we move to a scenario with multiple components,
the semantics of our system becomes more complex. If, as in [17122], we consider ‘[]’
to represent a function providing temporal semantics, then the behaviour of a system of
multiple (in this case, two) components running in parallel (‘||*), is typically given by

lerlle]] = [erl A [lea]) -

However, we must also be careful to distinguish the information that ¢ deals with from
that which ¢, deals with. Consequently, [[c1]] is not just the temporal rules contained
within the ¢1’s specification and so we must enhance these rules in some way in order
to capture the different components.

An obvious way to ensure that, for example, proposition p in c; is distinguished
from p in ¢y, is to rename the propositions in the component’s rules ensuring that each
one is ‘tagged’ by the name of the component in which it occurs. Thus, we would have
propositions such as p., and p.,; this is exactly the approach used in [17]]. A further im-
portant aspect of the semantics given in [[17] is that it allows for either synchronous or
asynchronous models of concurrency within the framework. In the case of synchronous
execution, the semantics of each component is given as a (tagged) temporal formula in
a discrete, linear temporal, as described above. However, once we consider asynchro-
nous execution, the semantics is given as a formula in the Temporal Logic of the Reals
(TLR) [6], which is a temporal logic based upon the Real, rather than Natural, Num-
bers. The density of this Real Number model is useful in representing the asynchronous
nature of each component’s execution.

A further complication is that, once communication is added to the synchronous
case, we use

lerllea]] = Ter]l A lleall A comms(er;c2).

10 M. Fisher

where comms(cy,c2) is a temporal specification of the communication properties, such
as broadcast message-passing. However, since once a message is broadcast from a com-
ponent, then the execution of that component can no longer backtrack past such a broad-
cast, the semantics of communicating components becomes much more complex [60].

5 Beyond Temporal Logics

So far, we have seen how specifications given in temporal logic can be directly executed
in order to animate the component’s behaviour. Thus, this approach provides a high-
level programming notation, while maintaining a close link between the program and
its specification. However, when moving towards the representation and execution of
agents [61]], particularly rational agents [62158]], we naturally want to represent more
than an agent’s basic temporal behaviour. Basic agents are just autonomous components
and these can be modelled, at a simple level, by Concurrent METATEM as described
above [16J15/33]].

Although the central aspect of an agent is autonomy, rational agents are agents that
have reasonable and explainable courses of action that they undertake. The key concept
that rational agents have brought to the forefront of software design is that, as well as
describing what an agent does, it is vital to describe why it does it. Hence the need to
represent the reasons for certain autonomous behaviour within agents.

In line with the BDI framework [54], and with other rational agent theories [57]], it
is important to represent not only an agent’s temporal behaviour, but also

— its informational aspects, such as what it believes or knows,
— its motivational aspects, such as its goals or intentions, and
— its deliberative aspects, such as why it makes the choices it does.

Thus, inspired by the success of the BDI framework [54] in representing deliberation,
the basic METATEM system was extended, in [20]], with information representation, in
terms of beliefs and explicit mechanisms for ordering goals. The representation of belief
was given by extending the temporal basis with a standard modal logic having Kripke
semantics [40]. Thus, during execution, modal formulae related to belief were decided
again by a forward chaining process. This allowed more complex (and mixed) formulae

such as
happy = Bx

x = Orich.

Goals, corresponding to both desires and intentions in the BDI model were, in turn,
represented by temporal eventualities. This then allowed deliberation to be represented
via user defined functions providing an ordering on the satisfaction of eventualities.
This is best explained with an example.

5.1 Deliberation Via Goal Re-ordering

Recall that, in the basic METATEM execution above, outstanding eventualities are stored
in an age-ordered (i.e. oldest-first) list that is passed on to the next execution state. For
example, consider an agent that has the following eventualities it needs to satisfy

[Obe_famous, sleep, {eat Iunch, pmake lunch] .

METATEM: The Story so Far 11

Now, if these were passed on to the next execution state, the standard approach would
be to execute these oldest-first, i.e attempt to make be_famous true, then attempt to make
sleep true, and so on. In [20], the ability to re-order this list before it is passed on to
the next execution state was provided. Now, in the example above, imagine the agent
actually re-ordered the list in terms of what it considered to be most important, e.g.

[Obe_famous, eat_lunch, sleep, >make_lunch] .

Indeed, the agent could re-order the list further if it had an idea about what it could
actually achieve, e.g. what it knew how to make true. Thus, if the agent had no way (i.e.
no plan) to make be_famous true, it might move it to the end of the list. If the agent knew
how to make eat_lunch true, it might move it towards the front of the list. However, it
might also be able to infer that a pre-condition of making eat_lunch true is to make
make_lunch lunch true and so it might well move this to the front of the list. Thus, the
list passed on to the next execution state is then

[make Iunch, {eat_lunch, sleep, ybe_famous] .

5.2 Resource-Bounded Reasoning

While the above provides a simple and concise mechanism for representing and imple-
menting deliberative agents, it does not deal with a further important aspect of ‘real’
agents, namely their resource-bounded nature [9]]. In particular, the representation of
belief was given by extending the temporal basis with a standard modal logic having
Kripke semantics [40]. As is well known, this does not match the resource-bounded na-
ture of ‘real” reasoners [39]. Indeed modal logics generally model logically omniscient
agents which are forced to believe (and compute) all the logical consequences of their
own beliefs.

Thus, in [23], we modified the METATEM execution framework so that it was based
on multi-context logics of belief [10137/36]] rather than traditional modal logics. Multi-
context logics [38/7]] allow much finer control of the reasoning processes. In using this
basis for belief in METATEM, we then have much finer control over how beliefs are ex-
plored, executed and reasoned about. In particular, we can control how much reasoning
an agent carried out during its execution, and this allows us to capture an element of
resource-boundedness.

This work was applied, for example to parts of the RoboCup scenario [24125], and
was extended to incorporate bounds on the temporal resourced consumed, i.e. the agent
can reason about what it might do in the future, but the distance it can reason into the
future about is limited [34]].

A final modification brought in the concepts of ability and confidence [20], giving
us the ABC framework which incorporates:

— Ability — captured in a very simple modal extension, where A;@ intuitively means
“i is able to do @”, for example,

Apebuy_ticket = Obuy _ticket

12 M. Fisher

— Belief — captured by multi-context belief with potential resource-bounds, where
B; represents the beliefs of agent i, for example

buy _ticket = Bclottery_winner

— Confidence — captured by the combination of B; and <>, where “agent i is confident
of @ is given by B; 9.

The idea of confidence replaces the use of just ‘<>’ to represent goals. Expressing con-
fidence in terms of belief about the future not only keeps the logic simple, it allows
us to express weaker motivational attitudes. This confidence can be used as an agent’s
reason for doing something. Importantly, confidence can come not only from the agent
itself, but also from the agent’s confidence in other agents in this system. This allows us
to use the notion of confidence in a number of ways within both individual agents and
multi-agent systems [26].
This also leads us on to considering more complex multi-agent systems.

6 Groups and Organisations

In Concurrent METATEM we introduced the idea of multiple, asynchronously execut-
ing, agents (let us call them this, rather than ‘components’ from now on) communicat-
ing through broadcast message-passing. Although this is a good model from a logical
point of view it has two disadvantages: (1) in practice, broadcasting to large numbers of
agents is costly, and (2) the multi-agent system is essentially flat and unstructured, and
so it is difficult to represent more complex systems using this approach.

Thus, as Concurrent METATEM has developed, a range of structuring mechanisms
for the agent space have been developed. All are based on the notion of groups, derived
from both social constructs and ideas in distributed operating systems [§]]. Thus all
agents can occur in multiple groups [15]], while groups themselves are dynamic and
open, and may contain sub-groups and each agent may be a member of several groups.
When an agent broadcasts a message it is restricted to being sent to members of (some
of) the groups the agent occurs within. Hence, groups are useful both for restricting the
extent of broadcast and structuring the agent space, effectively replacing full broadcast
by a form of multicast message-passing.

However, a basic grouping mechanism is not enough. We often want to define dif-
ferent computational properties for the different groups the agent might be a member
of. Thus, from initial ideas concerning additional logical properties that groups might
have [21], we developed the view that agents and groups are exactly the same enti-
ties [30/28]]. Thus, the notion of a group as essentially being a container, where agents
have behaviour and groups contain agents, i.e.,

Agent ::= Behaviour: Spec
Group ::= Contents : P(Agent)

became the notion that all agents have the potential to contain others, just as all have
the potential to have behaviour, i.e.

METATEM: The Story so Far 13

Agent ::= Behaviour : Spec
Contents: P(Agent)
Context : P(Agent)

Thus, we can think of several varieties of agent:

— A simple agent: Contents = 0.
— A simple group: Behaviour = 0.
— A more complex group: Contents # 0 and Behaviour # 0.

Thus groups, rather than being mere containers, can now have behaviours, captured
by their internal policies and rules. In particular, agents can control the communica-
tion policies, organisation policies, etc., within their Contents. Once agents and groups
are the same entities, a number of aspects become clear. For example, since agents
are opaque (i.e., their internal structure is hidden from other agents) it is not obvious
whether agents have certain abilities natively, or merely make use of other (internal)
agents. In addition, any agent has the potential to dynamically become a group! In
particular, all agents respond to ‘addToContent’ and ‘addToContext’ messages
(two primitive operations accessing the Content and Context aspects of an agent), and
all agents can clone themselves (and perform a shallow copy of their contents), as well
as terminate themselves or merge with another agent.

6.1 Building Organisations

With the structures in place to support more complex multi-agent systems, the ques-
tion remains: how can we use the logical apparatus, such as the Ability, Belief and
Confidence framework, in order to program agents to dynamically form complex struc-
tures. In a number of papers, mechanisms for describing and constructing such complex
groups, teams and organisations have been described [27/28/29].

Let us give an outline using an example. Suppose that agent i wishes for ¢ to occur
(B;{>), but does not have the corresponding ability (—A;@). Within the agent’s behav-
iour we might have a rule such as

Bi{o A A9 = Osend;(Ar¢)

In this case the agent sends out a message asking for help from any agent that is able to
achieve @. Various agents, depending on their own goals, might choose to reply that they
have the required ability (namely, the ability to achieve @, i.e. A@). Then the original
(sending) agent has a choice about how to deal with these replies and, consequently,
how to deal with the agents who might be of help. For example [27], the sender might

— invite relevant agents to join its Content,

— create a new “dedicated” agent to serve as a container for agents that share the
relevant ability, or

— join a group that can help it solve its problem,

All of these can be supported through the flexible group structure and can be imple-
mented using logical rules. Each gives a very different organisation structure.

14 M. Fisher

7 METATEM at Work

Here we outline a number of examples showing how METATEM can be used. Note that
we only provide an overview of each example — full details can usually be found in
the cited papers.

7.1 Train Signalling

In [13]], METATEM was used to model a simple railway signalling scenario. Here, the
system was modelled as one large set of SNF rules. Thus there was not the separation
one might expect with Concurrent METATEM. The SNF specification is then executed
to animate the rail simulation. The specification consists of predicates relating to sta-
tions, trains and lines, and the key specifications concern each station’s control of the
trains that come into it and each trains request for entry to a station. Each of the stations
‘knows’ which lines it has connecting itself to other stations, what trains the station has,
and which lines each train runs on. Consequently, there are rules such adll:

[station(S) A moved(T, S)] = QOhas(S, T)

i.e., the station (§) now has the train (7)) if 7 moved to S in the last step;

— [station(S) A request(T, S)] = permit(T, S)
i.e., if station S receives a request from train 7" to enter S, then the station guarantees
to permit this move at some point in the future;

— [station(S) A has(S, T) N —moved(T, New)] = QOhas(S, T)
i.e., if station S has train 7" and T does not move, then S will still have T in the next
step;

— [station(S) N\ permi(T1, S) A permi(T12,S)] = (T1==T2)

i.e., if a station permits two trains, 71 and 72, to enter, then 71 and T2 must

actually be the same train.

7.2 Patient Monitoring

In [55]], Reynolds applies METATEM to the modelling and animation of a patient mon-
itoring system (PMS). Temporal formulae are used to specify, for example, under what
conditions (i.e. what patient vital signs) an alarm should be sounded. Here, the specifi-
cation is split into separate components, e.g.

nurse(alarm, display) [act, seen, req]

Here, for example, the message req is sent out by the nurse requesting information.
SNF rules then characterise the internal behaviour of such components:

— [wtr(P) A —req(P)] = Owtr(Q)
i.e., if the nurse is “waiting to request information” (wtr) about a patient, but does
not request such information (req) then the nurse will continue to wait to request
information in the next step;

' Assume, here, that all variables beginning with upper-case letters and all variables are univer-
sally quantified.

METATEM: The Story so Far 15

— [wir(P) A req(P) A next(P,Q)] = Owir(P)
i.e., if the nurse is “waiting to request information” about a patient, and does also
request this information, then the nurse moves on to “waiting to request informa-
tion” from the next patient;

- alarm(P) = Qact
i.e., if an alarm sounds for a patient, the nurse will act.

7.3 Economic Games

We next outline a simple economic game, a simplified variation of the Nash [51] de-
mand game. Here, two synchronous agents make bids to an arbiter who gives out
rewards (in line with a specific matrix). Agents usually bid based on the best previ-
ous strategy, but sometimes (quite rarely) can choose a random value. In our case, the
arbiter agent implements the reward matrix:

agent1 bid: 1 2 3 1 2 3 1 2 3
agent2 bid: 1 1 1 2 2 2 3 3 3
agent1 reward : 1 2 3 1 2 0 1 0 0
agent2 reward : 1 1 1 2 2 0 3 0 0

Thus, sample arbiter code includes (for brevity we replace agent 1 by al, and agent?2
by a2, respectively)

[bid(al,V1) A bid(a2,V2) A (4
[bid(al,V1) A bid(a2,V2) A (4
[bid(al,V1) A bid(a2,V2) A (4
[bid(al,V1) A bid(a2,V2) A (4

< (V1+4V2))] = Oreward(al,V1,0)

< (V1+4V2))] = Oreward(a2,V2,0)

> (V14V2))] = Oreward(al,V1,V1)

> (V14V2))] = Oreward(a2,V2,V2)

The arbiter agent receives bid messages from each of the agents and then sends
out reward messages. Note that the reward sent from the arbiter back to bidding
agents contains the bid made in its second argument.

As we can see from the above, these rules make use of much more arithmetical
operators. The rules within the bidding agents use even more. Bidding agents send out
bids and receive rewards. Internally, they keep track of which bids (1, 2, or 3) have
generated the most rewards. In addition, a small random element is introduced so that
the bidding agent can choose a different bid, rather than just the most successful so far.
Some sample rules for the bidding agents are:

rand(V) = Oseed(V)
[seed(V) A (V <3072) A (V1 == (V%3 +1))] = Obid(agent1,V1)
[seed(V) A (3072 < V) A bestsofar(V1)] = Obid(agent1,V1)

Once executing, even though small perturbations (i.e. random bids outside the optimal)
are introduced, the bidding stabilises so that the agent’s bid is based on the accumulated
history and this isn’t significantly distorted by small numbers of random bids. In the
case of our reward matrix above, both bidding agent settle down to bidding ‘2’.

Z Note that rand(V) binds V to a random number between 0 and 2'® and V%3 + 1 is V modulo
3, with 1 then added (thus giving a result of either 1, 2 or 3).

16 M. Fisher

7.4 Resource-Bounded Deliberation

In this example, taken from [24]], we have a simple football scenario. Pictorially, we
have the following situation.

J3 M *
Ji

)

The °J’ team are attacking the goal, while the ‘M’ team are defending it. Agent J; has
the ball but has two abilities: to shoot towards goal, or to pass to a team-mate. Motivated
by the aim of scoring, J; has to decide what to do.

Now, rather than giving the program rules (which are quite complex), we outline the
reasoning process that J; goes through.

— We again note that J; has two things it can do: pass or shoot. Initially, before any
reasoning is carried out, Ji has a slight (in-built) preference for shooting.

— However, J; begins to reason about its options, about its beliefs about its team-
mates, about its beliefs about its team-mates beliefs, etc. Given sufficient reasoning
time, J; can work out that the best approach is to pass to J, who, J; believes, will
then pass on to J3. This is based on the belief that J3 has the best chance of scoring,
and that J; believes this also.

Thus, given sufficient reasoning time, J; will choose to pass rather than shoot.

— However, in time-constrained situations, such as near the end of the game, we can
put a bound on the amount of reasoning concerning belief that J; is able to carry
out. We do this by fixing a maximum depth of nested beliefs that J; is able to deal
with.

In such a scenario, J; does not have enough (reasoning) time to work out that pass-
ing is the best option.
Consequently, in time-constrained situations, such as this, J; chooses to shoot.

It is important to note here that the program rules are exactly the same for both options.
All that has happened is that a belief bound is changed, yet this has the significant effect
of leading the agent to prefer one action over another.

7.5 Active Museum

In [42] a particular scenario from pervasive/ubiquitous computing was examined. This
is the idea of an Active Museum [52]. Here, a museum provides visitors with electronic
guides (such as PDAs) and these guides can be programmed with the visitor’s prefer-
ences. As the visitor moves through the museum, the rooms, exhibits, etc., can all inter-
act with the PDA and, in this way, the PDA can advise the visitor what to look at next.

METATEM: The Story so Far 17

We model this via three aspects:

— the organisational structure of rooms, exhibits, visitors, etc.;
— the organisational structure of the agent’s interests; and
— the rule(s) within the visitor agent concerning deliberation.

Thus, the group structure, combining physical aspects and museum interests can be
(R2)

represented as
B v

Ju)
EEE) @)
For example, visitor V1 is within the group representing room R1 but is also within
the groups representing the two interest groups relating to a particular artist (AG) and
to time (TG). Now, those groups provide the context for the visitor agent and broadcast
important information to it.
Each visitor agent effectively only has one rule:

[canSee(Exhibit) A —exclude(Exhibit)] = <{>lookAt(Exhibit)

Thus, if the visitor agent can see an exhibit and is not excluded (by one of its interest
groups) from looking at it, it will eventually look at it. Note that canSee messages are
broadcast by the agent’s context, and so moving context changes what the agent does.

While visitor agents have one main rule, the important aspect concerns the delib-
eration of the visitor agent about what order to visit the exhibits in. In this, the agent
utilises preferences to implement the deliberative re-ordering of eventualities seen ear-
lier. Preferences are very simple, e.g. prefer (E3, E1) . Pictorially, we have:

. Time
Prefs Interest
I Group

Artist ——
Interest Prefs
Group

Some preferences are internal to the agent; most are obtained by the agent from its Con-
text. Thus, the preferences help the visitor agent decide between eventualities. Moving
between rooms changes what the agent can see, but it is moving between interest groups
that changes what the agent prefers to look at first.

18 M. Fisher

8 Concluding Remarks

This article has provided an overview of the work that has been carried out on exe-
cutable temporal and modal logics based on the METATEM approach. This has led to
several practical systems developed over the years. Initially, Owens developed a basic
METATEM system in Prolog, while Fisher developed a Concurrent METATEM harness
in C++; early implementation techniques were described in [31]. The developments
on agent representation and execution were implemented in Prolog [20] and, in paral-
lel, more efficient mechanisms for the implementation of Concurrent METATEM were
examined [47/46]. Most recently, the ABC framework has be implemented in Java [43].

But, what of the future? There are several areas actively being investigated at present,
ranging from theoretical to practical and from single agent to multi-agent. These themes
are outlined below.

The broader application, particularly of the ABC approach, to the modelling and

simulating of various forms of organisations. In particular, the development of vir-

tual organisations (along the lines of the Active Museum example) and applications
in pervasive and ubiquitous computing.

This mainly involves practical application, but also involves more work on ad-hoc

team formation and on probabilistic ABC, some of which is already under way [12]].

— The development of a lightweight implementation, based on J2MHE] and use of
the above approaches in resource constrained environments, e.g. mobile, wearable,
devices.

— Extending the theoretical work on high-level semantics of the group approach,
which was recently investigated in [43]] where groups were shown to match Milner’s
bigraphs [45] in many ways, while adapting earlier work on the use of Concurrent
METATEM as a high-level coordination language [48]] for use in multi-agent and
pervasive applications.

— Developing a more practical (and flexible) approach to meta-level programming in

METATEM. Based on [4], but extended for the ABC framework, and allowing the

use of both complex meta-level adaption and simpler, preference-based, delibera-

tion (as in [42]).

Through previous and future work our intention is to continue to develop a framework
that utilises formal logic in the specification, verification and implementation of reac-
tive [41] and multi-agent [S9] systems. This framework comprises

— alogic (typically based on a combination of simpler logics) in which the high-level
behaviours (of both agent and organisation) can be concisely specified, and

— aprogramming language providing flexible and practical concepts close to the spec-
ification notation used.

Acknowledgements

Most of the work outlined in this article was carried out in collaboration with others, and
so thanks go to Howard Barringer, Nivea de Carvalho Ferreira, Marcello Finger, Dov

3http://java.sun.com/32me

http://java.sun.com/j2me

METATEM: The Story so Far 19

Gabbay, Chiara Ghidini, Graham Gough, Benjamin Hirsch, Wiebe van der Hoek, Tony
Kakoudakis, Adam Kellett, Richard Owens, Mark Reynolds, and Mike Wooldridge.

References

1.
2.

10.

11.

12.

13.

14.

15.

M. Abadi. The Power of Temporal Proofs. Theoretical Computer Science, 64:35-84, 1989.
H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A Framework for
Programming in Temporal Logic. In Proceedings of REX Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness, Mook, Netherlands, June 1989.
(Published in Lecture Notes in Computer Science, volume 430, Springer Verlag).

. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An Introduction.

Formal Aspects of Computing, 7(5):533-549, 1995.

. H. Barringer, M. Fisher, D. Gabbay, and A. Hunter. Meta-Reasoning in Executable Temporal

Logic. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning (KR), Cambridge,
Massachusetts, April 1991. Morgan Kaufmann.

. H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds, editors. The Imperative Fu-

ture: Principles of Executable Temporal Logics. Research Studies Press, Chichester, United
Kingdom, 1996.

. H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Concurrent Model and its Tempo-

ral Logic. In Proceedings of the Thirteenth ACM Symposium on the Principles of Program-
ming Languages, St. Petersberg Beach, Florida, January 1986.

. M. Benerecetti, A. Cimatti, E. Giunchiglia, F. Giunchiglia, and L. Serafini. Formal Specifica-

tion of Beliefs in Multi-Agent Systems. In J. P. Miiller, M. J. Wooldridge, and N. R. Jennings,
editors, Intelligent Agents 11l — Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages (ATAL-96), Lecture Notes in Artificial Intelligence.
Springer-Verlag, Heidelberg, 1996.

. K. P. Birman. The Process Group Approach to Reliable Distributed Computing. Techanical

Report TR91-1216, Department of Computer Science, Cornell University, July 1991.

. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and Resource-Bounded Practical

Reasoning. Computational Intelligence, 4:349-355, 1988.

A. Cimatti and L. Serafini. Multi-Agent Reasoning with Belief Contexts: the Approach and a
Case Study. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Ar-
chitectures, and Languages (LNAI Volume 890), pages 71-85. Springer-Verlag: Heidelberg,
Germany, January 1995.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, pages 996—1072. Elsevier, 1990.

N. de C. Ferreira, M. Fisher, and W. van der Hoek. A Logical Implementation of Uncertain
Agents. In Workshop on Multi-Agent Systems: Theory and Applications (MASTA), Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2005.

M. Finger, M. Fisher, and R. Owens. METATEM at Work: Modelling Reactive Systems
Using Executable Temporal Logic. In Sixth International Conference on Industrial and En-
gineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE), Edinburgh,
U.K., June 1993. Gordon and Breach Publishers.

M. Fisher. A Normal Form for First-Order Temporal Formulae. In Proceedings of Eleventh
International Conference on Automated Deduction (CADE), Saratoga Springs, New York,
June 1992. (Published in Lecture Notes in Computer Science, volume 607, Springer-Verlag).
M. Fisher. A Survey of Concurrent METATEM — The Language and its Applications. In
First International Conference on Temporal Logic (ICTL), Bonn, Germany, July 1994. (Pub-
lished in Lecture Notes in Computer Science, volume 827, Springer-Verlag).

20

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Fisher

M. Fisher. Representing and Executing Agent-Based Systems. In M. Wooldridge and N. R.
Jennings, editors, Intelligent Agents. Springer-Verlag, 1995.

M. Fisher. A Temporal Semantics for Concurrent METATEM. Journal of Symbolic Compu-
tation, 22(5/6), November/December 1996.

M. Fisher. An Introduction to Executable Temporal Logics. Knowledge Engineering Review,
11(1):43-56, March 1996.

M. Fisher. A Normal Form for Temporal Logic and its Application in Theorem-Proving and
Execution. Journal of Logic and Computation, 7(4), August 1997.

M. Fisher. Implementing BDI-like Systems by Direct Execution. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Morgan-Kaufmann, 1997.

M. Fisher. Representing Abstract Agent Architectures. In J. P. Miiller, M. P. Singh, and
A. S. Rao, editors, Intelligent Agents V — Proceedings of the Fifth International Workshop
on Agent Theories, Architectures, and Languages (ATAL-98), Lecture Notes in Artificial In-
telligence. Springer-Verlag, Heidelberg, 1999.

M. Fisher. Temporal Development Methods for Agent-Based Systems. Journal of Au-
tonomous Agents and Multi-Agent Systems, 10(1):41-66, January 2005.

M. Fisher and C. Ghidini. Programming Resource-Bounded Deliberative Agents. In Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kauf-
mann, 1999.

M. Fisher and C. Ghidini. Agents Playing with Dynamic Resource Bounds. In ECAI Work-
shop on Balancing Reactivity and Social Deliberation in Multi-Agent Systems, Berlin, Ger-
many, 2000.

M. Fisher and C. Ghidini. Specifying and Implementing Agents with Dynamic Resource
Bounds. In Proceedings of Second International Cognitive Robotics Workshop, Berlin, Ger-
many, 2000.

M. Fisher and C. Ghidini. The ABC of Rational Agent Programming. In Proc. First In-
ternational Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
849-856. ACM Press, July 2002.

M. Fisher, C. Ghidini, and B. Hirsch. Organising Logic-Based Agents. In M. Hinchey,
J. Rash, W. Truszkowski, C. Rouff, and D. Gordon-Spears, editors, Formal Approaches to
Agent-Based Systems, Second International Workshop, FAABS 2002, Greenbelt, MD, USA,
October 29-31, 2002, Revised Papers, volume 2699 of Lecture Notes in Computer Science,
pages 15-27. Springer, 2003.

M. Fisher, C. Ghidini, and B. Hirsch. Organising Computation through Dynamic Grouping.
In Objects, Agents and Features, volume 2975 of Lecture Notes in Computer Science, pages
117-136. Springer-Verlag, 2004.

M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Rational Agents. In Computa-
tional Logic in Multi-Agent Systems (CLIMA-1V), volume 3259 of 849-856. Springer-Verlag,
November 2004.

M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Executable Temporal Logic.
In Gergatsoulis and Rondogiannis, editors, Intensional Programming II. World Scientific
Publishing Co., March 2000.

M. Fisher and R. Owens. From the Past to the Future: Executing Temporal Logic Programs.
In Proceedings of Logic Programming and Automated Reasoning (LPAR), St. Petersberg,
Russia, July 1992. (Published in Lecture Notes in Computer Science, volume 624, Springer-
Verlag).

M. Fisher and R. Owens, editors. Executable Modal and Temporal Logics, volume 897 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg, Germany, February
1995.

M. Fisher and M. Wooldridge. A Logical Approach to the Representation of Societies of
Agents. In N. Gilbert and R. Conte, editors, Artificial Societies. UCL Press, 1995.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

METATEM: The Story so Far 21

. M. Fisher and C. Ghidini. Agents with Bounded Temporal Resources. Lecture Notes in
Computer Science, 2403:169-7?, 2002.

D. Gabbay. Declarative Past and Imperative Future: Executable Temporal Logic for In-
teractive Systems. In B. Baniegbal, H. Barringer, and A. Pnueli, editors, Proceedings of
Colloquium on Temporal Logic in Specification, pages 402-450, Altrincham, U.K., 1987.
(Published in Lecture Notes in Computer Science, volume 398, Springer-Verlag).

C. Ghidini. Modelling (Un)Bounded Beliefs. In Proc. Second International and Interdisci-
plinary Conf. on Modeling and Using Context (CONTEXT), Trento, Italy, 1999.

F. Giunchiglia and C. Ghidini. Local Models Semantics, or Contextual Reasoning = Local-
ity + Compatibility. In Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), pages 282-289, Trento, 1998. Morgan
Kaufmann. Long version forthcoming in “Artificial Intelligence”.

F. Giunchiglia and L. Serafini. Multilanguage Hierarchical Logics (or: how we can do with-
out modal logics). Artificial Intelligence, 65:29-70, 1994. Also IRST-Technical Report
9110-07, IRST, Trento, Italy.

F. Giunchiglia, L. Serafini, E. Giunchiglia, and M. Frixione. Non-Omniscient Belief as
Context-Based Reasoning. In Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence (IJCAI), pages 548-554, Chambery, France, 1993. Also IRST-
Technical Report 9206-03, IRST, Trento, Italy.

J.'Y. Halpern and Y. Moses. A Guide to Completeness and Complexity for Modal Logics of
Knowledge and Belief. Artificial Intelligence, 54:319-379, 1992.

D. Harel and A. Pnueli. On the Development of Reactive Systems. Technical Report CS85-
02, Department of Applied Mathematics, The Weizmann Institute of Science, Revohot, Is-
rael, January 1985.

B. Hirsch, M. Fisher, C. Ghidini, and P. Busetta. Organising Software in Active Environ-
ments. In Computational Logic in Multi-Agent Systems (CLIMA-V), volume 3487 of Lecture
Notes in Computer Science. Springer-Verlag, 2005.

B. Hirsch. Programming Rational Agents. PhD thesis, Department of Computer Science,
University of Liverpool, United Kingdom, May 2005.

1. Hodkinson, F. Wolter, and M. Zakharyashev. Decidable Fragments of First-Order Temporal
Logics. Annals of Pure and Applied Logic, 2000.

O. H. Jensen and R. Milner. Bigraphs and Mobile Processes (revised). Technical Report
UCAM-CL-TR-580, Computer Lab, Cambridge University, U.K., 2004.

A. Kellett. Implementation Techniques for Concurrent METATEM. PhD thesis, Department
of Computing and Mathematics, Manchester Metropolitan University, 2000.

A. Kellett and M. Fisher. Automata Representations for Concurrent METATEM. In Pro-
ceedings of the Fourth International Workshop on Temporal Representation and Reasoning
(TIME). IEEE Press, May 1997.

A. Kellett and M. Fisher. Coordinating Heterogeneous Components using Executable Tem-
poral Logic. In Meyer and Treur, editors, Agents, Reasoning and Dynamics, Vol. 6 in Series
of Handbooks in Defeasible Reasoning and Uncertainty Management Systems. Kluwer Aca-
demic publishers, 2001.

O. Lichtenstein, A. Pnueli, and L. Zuck. The Glory of the Past. Lecture Notes in Computer
Science, 193:196-218, June 1985.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1992.

J. F. Nash. Two-person Cooperative Games. Econometrica, 21:128-140, 1953.

O. Stock and M. Zancanaro. Intelligent Interactive Information Presentation for Cultural
Tourism. In Proceedings of the International CLASS Workshop on Natural Intell igent and
Effective Interaction in Multimodal Dialogue Systems, Copenhagen, Denmark, 28-29 June
2002.

22

53

54.

55.

56.

57.

58.

59.

60.

61.

62.

M. Fisher

R. Pliuskevicius. On the Completeness and Decidability of a Restricted First Order Linear
Temporal Logic. In LNCS 1289, pages 241-254. Springer-Verlag, 1997.

A. S.Rao and M. P. Georgeff. Modeling Agents within a BDI-Architecture. In R. Fikes and
E. Sandewall, editors, International Conference on Principles of Knowledge Representation
and Reasoning (KR), Cambridge, Massachusetts, April 1991. Morgan Kaufmann.

M. Reynolds. METATEM in Intensive Care. Technical Report tr-97-01, Kings College,
London, 1997.

A. Szalas and L. Holenderski. Incompleteness of First-Order Temporal Logic with Until.
Theoretical Computer Science, 57:317-325, 1988.

B. van Linder, W. van der Hoek, and J. J. Ch. Meyer. How to Motivate your Agents. In
M. Wooldridge, J. P. Miiller, and M. Tambe, editors, Intelligent Agents 1I (LNAI 1037), pages
17-32. Springer-Verlag: Heidelberg, Germany, 1996.

M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.

M. Wooldridge, J. Bradfield, M. Fisher, and M. Pauly. Game-Theoretic Interpretations of
Executable Logic. (Unpublished paper.).

M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review, 10(2):115-152, 1995.

M. Wooldridge and A. Rao, editors. Foundations of Rational Agency. Applied Logic Series.
Kluwer Academic Publishers, March 1999.

	Introduction
	Temporal Logic
	Why Temporal Logic?

	Executing Temporal Logic
	What Is Execution?
	What Is SNF?
	Execution Algorithm

	Concurrent MetateM
	From One to Many
	Communication and Concurrency
	Towards Semantics

	Beyond Temporal Logics
	Deliberation Via Goal Re-ordering
	Resource-Bounded Reasoning

	Groups and Organisations
	Building Organisations

	MetateM at Work
	Train Signalling
	Patient Monitoring
	Economic Games
	Resource-Bounded Deliberation
	Active Museum

	Concluding Remarks

