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Abstract

Background: The study of microbiomes using whole-metagenome shotgun sequencing enables the analysis of

uncultivated microbial populations that may have important roles in their environments. Extracting individual draft

genomes (bins) facilitates metagenomic analysis at the single genome level. Software and pipelines for such analysis

have become diverse and sophisticated, resulting in a significant burden for biologists to access and use

them. Furthermore, while bin extraction algorithms are rapidly improving, there is still a lack of tools for their

evaluation and visualization.

Results: To address these challenges, we present metaWRAP, a modular pipeline software for shotgun metagenomic

data analysis. MetaWRAP deploys state-of-the-art software to handle metagenomic data processing starting from raw

sequencing reads and ending in metagenomic bins and their analysis. MetaWRAP is flexible enough to give

investigators control over the analysis, while still being easy-to-install and easy-to-use. It includes hybrid

algorithms that leverage the strengths of a variety of software to extract and refine high-quality bins from

metagenomic data through bin consolidation and reassembly. MetaWRAP’s hybrid bin extraction algorithm

outperforms individual binning approaches and other bin consolidation programs in both synthetic and real

data sets. Finally, metaWRAP comes with numerous modules for the analysis of metagenomic bins, including

taxonomy assignment, abundance estimation, functional annotation, and visualization.

Conclusions: MetaWRAP is an easy-to-use modular pipeline that automates the core tasks in metagenomic

analysis, while contributing significant improvements to the extraction and interpretation of high-quality

metagenomic bins. The bin refinement and reassembly modules of metaWRAP consistently outperform

other binning approaches. Each module of metaWRAP is also a standalone component, making it a flexible

and versatile tool for tackling metagenomic shotgun sequencing data. MetaWRAP is open-source software

available at https://github.com/bxlab/metaWRAP.
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Background
The study of microbial communities through whole-

metagenome (WMG) shotgun sequencing opens new ave-

nues for the investigation of the metabolic potentials of

microbiomes, in addition to their taxonomic composition

[1–3]. This greatly improves the ability to interpret and

predict functional interactions, antibiotic resistance, and

population dynamics of microbiomes, with applications in

human health, waste treatment, agriculture, and environ-

mental stewardship [4–6]. WMG shotgun sequencing

reads from hundreds to thousands of community mem-

bers generate unique challenges for data analysis and in-

terpretation [3, 7]. Software for WMG data analysis have

grown in number and complexity, improving our ability to

process, analyze, and interpret such data [8–12]. However,

these tools are burdensome for biologists to work with. As

the field of WMG expands, comprehensive and accessible

software for unified analysis of metagenomic data is

needed [7, 11].
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Running a WMG analysis requires investigators to find

the best currently available tools, install and configure

them, address conflicting libraries and environment vari-

ables, and write scripts to convert outputs from one tool

into the correct format to input into the next tool [13,

14]. These challenges present a major burden to anyone

attempting metagenomic analysis, especially for investi-

gators without computational experience, hindering pro-

gress of microbial genomics as a field [15]. Existing

automated pipelines and cloud services lack modularity,

do not give users control over the analysis, and often

lack functions for genome-resolved metagenomics, the

extraction of putative genomes (bins) through the bin-

ning of metagenomic assemblies [14, 16–19].

Genome-resolved metagenomics allows for recon-

struction of the functional potential of individual taxa

and microbiome comparison at a finer scale. While a

number of sophisticated tools such as CONCOCT, Max-

Bin, and metaBAT have been developed to address bin-

ning, it is still an actively improving field [9, 19–21].

Qualities of a metagenomic bin are (1) completion, the

level of coverage of a population genome, and (2) con-

tamination, the amount of sequence that does not be-

long to this population from another genome. These

metrics can be estimated by counting universal

single-copy genes within each bin [22, 23]. CheckM im-

proves on this by checking for single-copy genes that a

genome of the bin’s taxonomy is expected to have [24].

The percentage of expected single-copy genes that is

found in a bin is interpreted as its completion, while the

contamination is estimated from the percentage of

single-copy genes that are found in duplicate.

Most metagenomic binning tools extract bins by clus-

tering together scaffolds that have similar sequence

properties, such as K-mer composition and codon usage,

and similar read coverages across multiple samples [25,

26]. Because no single binning approach is superior in

every case, bin consolidation tools attempt to combine

the strengths and minimize the weaknesses of different

approaches. DAS_Tool predicts single-copy genes in all

the provided bin sets, aggregates bins from different bin-

ning predictions, and extracts a more complete consen-

sus bin from each aggregate such that the resulting bin

has the most single-copy genes while having a reason-

ably low number of duplicate genes [27]. This collapsing

approach significantly improves the completion of the

bins. Binning_refiner, on the other hand, splits the con-

tigs into more bins such that no two contigs are in the

same bin if they were in different bins in any of the ori-

ginal bin sets. This breaks the contigs into many more

bins, reducing contamination [28]. Both of these ap-

proaches consolidate sets of bins from different methods

and result in a superior bin set, but they have limita-

tions—DAS_Tool increases completion at the expense of

introducing contamination, while Binning_refiner priori-

tizes purity but loses completeness. Another way to im-

prove draft genome quality that is relatively unexplored

is bin reassembly—extracting reads that belong to a

given bin and assembling them separately from the rest

of the metagenome. With proper benchmarking, this ap-

proach could significantly improve the quality and

downstream functional annotation of at least some bins

in a microbial community.

Because the field of shotgun metagenomics is relatively

new, there is a lack of software to inspect, analyze,

and visualize metagenomic bins. While there are tools

that can accurately predict the taxonomy of metage-

nomic scaffolds (such as Taxator-tk), there is no tool

to classify entire metagenomic bins [29, 30]. Similarly,

there are many ways to estimate the coverage of

scaffolds based on read alignment depth but no way

to find the coverages of entire bins across many sam-

ples [31, 32]. Finally, there is no tool to visualize draft

genomes in context of whole metagenomic communi-

ties. The need for an easy-to-use integrated tool for

WMG data analysis, as well as the lack of available

tools for metagenomic bin analysis, motivated the con-

struction of MetaWRAP.

Implementation
Main wrapper function

MetaWRAP is command line software for Unix-based

systems that calls on a collection of modules, each being

a standalone program addressing one aspect of WMG

data processing or analysis (Fig. 1). Each module is a

shell script pipeline that takes in a variety of input file

parameters through command line flags. For detailed

outlines of the algorithms behind each module, see

supplementary material (Additional file 1). The modules

call upon numerous installed software as well as custom

Python 2.7 scripts (Additional file 2: Figure S1). Meta-

WRAP relies on the module folder (metawrap-modules),

the script folder (metaWRAP-scripts), and a file con-

taining paths to databases (config-metawrap) to be avail-

able in the PATH. MetaWRAP is hosted on github

(https://github.com/bxlab/metaWRAP), distributed through

Anaconda [33], and can be easily installed locally and on

remote clusters. The metawrap-mg conda package (https://

anaconda.org/ursky/metawrap-mg) includes metaWRAP

and the necessary software for running any metaWRAP

modules. The databases required by some modules need to

be downloaded and unpackaged as described in the meta-

WRAP database download guide (https://github.com/

bxlab/metaWRAP/blob/master/installation/database_in

stallation.md) and their paths indicated in the config-

metawrap file. MetaWRAP v0.7 was used in all bench-

marking runs.
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Bin_refinement module

The metaWRAP-Bin_refinement module produces a su-

perior bin set from multiple original binning predictions.

First, hybrid bin sets are produced with Binning_refiner

[28], which splits the contigs such that no two contigs

are together if they were in different bins in any of the

original sets. Then, the module goes over the different

variants of each bin found in the original and hybrid-

ized bin sets and choses its best version based on com-

pletion and contamination metrics estimated with

CheckM [24]. The decision of the “best bin” is based

on the user-provided minimum completion and max-

imum contamination parameters. The contigs in the

final bin set are then de-replicated, and a report of

their completion, contamination, and other metrics is

produced (Additional file 3: Figure S2). See supplemen-

tary methods (Additional file 1) for more details on the

Bin_refinement module.

Reassemble_bins module

The metaWRAP-Reassemble_bins module improves a

set of bins by individually re-assembling each bin

(Additional file 4: Figure S3). Reads are mapped to the

bins with BWA v0.7.15 [32] strictly (no mismatches) and

permissively (< 5 mismatches) and stored into their

respective FastQ files. Importantly, read pairs will be

pulled out even if only one read is aligned to the bin.

Each read set is then reassembled with SPAdes [34],

which produces more contiguous sequences compared

to metagenomic assemblers such as MegaHit [35] and

metaSPAdes [36] used in the Assembly modules.

CheckM [24] is used to evaluate the completion and

contamination of each of the three versions of each

bin—the original bin, the “strict” re-assembled bin, and

“permissive” re-assembled bin—and the best version of

each bin is chosen for the final bin set based on the

user-defined desired bin quality. See supplementary

methods (Additional file 1) for more details on the

Reassemble_bins module.

Results and discussion
MetaWRAP is a flexible, modular pipeline

The metaWRAP installation produces a bioinformatics

environment with over 150 commonly used bioinformat-

ics software and libraries (Additional file 2: Figure S1).

MetaWRAP itself is a collection of modules, each of

which uses a variety of pre-existing and newly developed

software and databases to accomplish a specific step of

metagenomic analysis. Unlike existing metagenomic

wrappers and cloud services, metaWRAP retains modu-

larity and grants the user control of the analysis pipeline.

The user may follow the intuitive workflow starting from

raw metagenomic shotgun sequencing reads all the way

to high-quality draft genomes and their functional anno-

tation or use only specific functions, as each module is

also a standalone program (Fig. 1).

First, the metaWRAP-Read_qc module trims the raw

sequence reads, removes human contamination, and

produces quality reports for each of the sequenced sam-

ples. The reads from all given samples can then be as-

sembled with the metaWRAP-Assembly module using

MegaHit [35] or metaSPAdes [36], which also produces

an assembly report. Both the reads from each sample

and the assembly can be rapidly taxonomically profiled

with the Kraken [29] module, producing interactive kro-

nagrams [37] of community taxonomy. It should be

Fig. 1 Overall workflow of metaWRAP. Modules (red), metagenomic data (green), intermediate (orange) and final bin sets (yellow), and data reports

and figures (blue)
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noted that while Kraken is fast, post-classification

standardization may be needed to obtain a more accur-

ate community composition estimate [38]. The assembly

is then binned with the metaWRAP-Binning module by

three metagenomic binning software—MaxBin2, meta-

BAT2, and CONCOCT [19–21].

The other modules of metaWRAP focus on refining,

analyzing, and visualizing metagenomic bins from either

the Binning module or other sources. The metaWRAP-

Bin_refinement module consolidates multiple binning

predictions into a new, improved bin set, while also prov-

ing metrics of their completion and contamination. Meta-

WRAP-Reassemble_bins can then be used to reassemble

the reads belonging to each bin, improving their N50,

completion, and contamination. The resulting bins can be

visualized by using the metaWRAP-Blobology module

[39], which plots the contigs of the joint assembly on a

blob plot, annotating them with their taxonomy and bin

membership. The metaWRAP-Quant_bins module can be

used to quickly estimate the abundance of each bin in

each of the metagenomic samples. MetaWRAP-Classify_-

bins can be used to conservatively but accurately estimate

their taxonomy. Finally, the bins can be functionally anno-

tated with the metaWRAP-Annotate_bins module.

Compute time of metaWRAP modules

The runtime of each metaWRAP’s modules was evaluated

on a subset of the Human Intestinal Tract (MetaHIT) sur-

vey [40]. The same subset is used in the metaWRAP

tutorial page https://github.com/bxlab/metaWRAP/blob/

master/Usage_tutorial.md. The data contained three

WMG samples, totaling 145.8 million 75 bp paired-end

reads, or 21.9 Gbp of sequencing data. MetaWRAP was

used to analyze this data set on a Linux server with 24

cores and 100 GB of RAM. All modules were run on de-

fault settings, and the total runtime of each module was

recorded (Additional file 5: Module runtime). The entire

pipeline was completed in 5 h and 36 min, with the major-

ity of compute time dedicated to the Read_qc, Binning,

Bin_refinement, and Reassemble_bins modules. With the

exception of CONCOCT [19], the programs wrapped into

metaWRAP can take advantage of multi-core systems and

scale well with larger data sets. MetaWRAP itself also par-

allelizes processes when possible.

MetaWRAP-Bin_refinement improved bin predictions in

synthetic data

To test the efficacy of the metaWRAP-Bin_refinement

module at consolidating and improving bin sets, we used

synthetic metagenomic data sets of varying complexity

from the Critical Assessment of Metagenomic Interpret-

ation (CAMI) study [9]. The “gold standard” assemblies

from the “high,” “medium,” and “low” diversity chal-

lenges were first binned with metaBAT2, Maxbin2, and

CONCOCT [19–21] using the metaWRAP-Binning

module, and the resulting three bin sets were then con-

solidated with DAS_Tool [27], Binning_refiner [28], and

metaWRAP-Bin_refinement. The completion and con-

tamination of the bins in the original and refined bin

sets were evaluated with CheckM [24] (Additional file 6:

Figure S4) and Amber [41] (Additional file 7: Figure S5).

True recall and precision for each bin calculated with

Amber were converted to completion and contamination

percentages to be comparable to the CheckM results

(Fig. 2). We found that metaBAT2 consistently outper-

formed MaxBin2 and CONCOCT, producing a total of

385 high-quality bins between all the challenges (com-

pletion greater than 90% and contamination less than

5%) and 271 near-perfect bins (completion greater than

95% and contamination less than 1%). MaxBin2 came in

second with 275 high-quality bins and 164 near-perfect

bins. CONCOCT performed rather poorly in all but the

smallest CAMI challenge data sets, producing 58

high-quality bins and 40 near-perfect bins.

In the consolidated bin sets, DAS_Tool produced 426

high-quality bins and 263 near-perfect bins across all

CAMI challenges, while Binning_refiner produced 289

and 210 bins, respectively. DAS_Tool consistently pro-

duced high-completion bins; however, these bins had

relatively high contamination, which is a result of the ag-

gregation approach that DAS_Tool takes. Binning_refi-

ner on the other hand produced very pure bins with its

splitting approach; however, it did so at the expense of

significantly reduced completion. MetaWRAP-Bin_re-

finement produced bins that had both high completion

and low contamination. In total, it produced 457 high-

quality bins and 339 near-perfect bins (Fig. 2) due to

both splitting and aggregation steps. These results con-

firmed that metaWRAP not only consistently improved

bin sets through its consolidation approach, but it also

outperformed other consolidation algorithms in data sets

of varying complexity.

The CAMI challenge consisted of genomes of varying

degrees of similarity and categorized the genomes into

two broad categories depending on their average nucleo-

tide identity (ANI) to other genomes in the mix.

“Unique strains” are defined as genomes with < 95%

ANI to any other genome and “common strains” as ge-

nomes with ≥ 95% ANI to another genome in the data

set. [9] This gave us an opportunity to benchmark meta-

WRAP at recovering genomes from contig clusters of

varying complexity. We found that metaWRAP outper-

formed all other binning methods in reconstituting both

closely and distantly related genomes (Additional file 8:

CAMI binning summary table). Interestingly, we found

that Binning_refiner performed almost as well as meta-

WRAP in distantly related genomes but performed

poorly in closely related genomes. On the other hand,
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DAS_Tool recovered almost as many closely related ge-

nomes as metaWRAP but performed relatively poorly in

more discrete genomes.

The use of CheckM (Additional file 6: Figure S4) and

Amber (Fig. 2) to evaluate the binning sets produced

similar results, although overall CheckM slightly overes-

timated both completion and contamination of the pro-

duced bins. More importantly, the relative performance

of the six binning approaches was the same when evalu-

ating with CheckM or Amber. This validated the use of

CheckM for benchmarking binning results in data sets

where the true genomes remain unknown.

Benchmarking metaWRAP on real metagenomes

MetaWRAP’s performance was also assessed with real

WMG Illumina paired read sequencing data, using rep-

resentative metagenomic data sets from water, gut, and

soil microbiomes. The water data set was from a brack-

ish water survey, which investigated the seasonal dynam-

ics and biogeography of the surface bacterioplankton in

the Baltic Sea [42]. This data set included 36 samples for

a total of 196 Gbp of sequencing data. The gut data set

came from the Metagenomic of the Human Intestinal

Tract (MetaHIT) survey, which sequenced the gut

microbiota from volunteers across Europe to explore the

diversity and drivers in individual gut microbiome com-

position. [40]. The benchmarking data set consisted of

50 samples for a total of 144 Gbp of sequencing data.

The soil data came from sequencing the highly diverse

grassland soil microbial communities from Angelo

Coastal Reserve, CA [27]. This data set consisted of six

samples for a total of 481 Gbp of sequencing data.

Samples from each microbiome type were pre-proc-

essed through the metaWRAP-Read_qc module to trim

reads and remove human contamination, and the Kra-

ken and Blobology modules were used to evaluate the

taxonomic profile of the communities. The water sam-

ples were dominated by Proteobacteria, the gut samples

were dominated by Bacteroidetes and Firmicutes, and

the soil samples comprised of a wide variety of Proteo-

bacteria and Actinobacteria (Additional file 9). Notably,

contigs from the soil microbiomes had much higher GC

content compared to those of the gut and water. Also,

soil contigs did not form as many defined clusters on

the GC vs. abundance plot, suggesting that the commu-

nities were comprised of multiple closely related taxa

(Fig. 3). Due to the high GC content and high taxonomic

similarity of soil microbiota, this data set posed signifi-

cant binning challenges compared to the water and gut

microbiomes.

Bin_refinement improved bin predictions in real data

The quality-controlled reads from the representative

metagenomic data sets were then co-assembled with the

metaWRAP-Assembly module and the assemblies

binned with metaBAT2 Maxbin2 and CONCOCT using

the metaWRAP-Binning module. The resulting three bin

sets for each microbiome type were consolidated with

Fig. 2 True completion and contamination of bins recovered from the CAMI’s high, medium, and low complexity synthetic data sets using

original binning software (metaBAT2, MaxBin2, and CONCOCT) and software consolidating the original sets (DAS_Tool, Binning_refiner, and

metaWRAP’s Bin_refinement module). Only bins with ≥ 50% completion and ≤ 10% contamination are shown
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DAS_Tool, Binning_refiner, and metaWRAP-Bin_refine-

ment, and the completion and contamination of the

resulting bins were evaluated with CheckM (Fig. 4).

Across the original binning software, metaBAT2 consist-

ently produced the best sets of bins when compared to

MaxBin2 and CONCOCT, with 202, 146, and 88 accept-

able quality bins (comp ≥ 50%, cont ≤ 10%) in the water,

gut, and soil samples, respectively. MaxBin2 had 151, 98,

and 40 bins, and CONCOCT 65, 121, and 39 bins.

Despite incorporating all the binning methods, DAS_-

Tool was unable to improve the original bin sets, produ-

cing 198, 130, and 63 acceptable quality bins in the

water, gut, and soil samples, respectively. DAS_Tool per-

formed relatively well at higher bin completion ranges

(≥ 80%), although at the expense of increased contamin-

ation. Binning_refiner performed similarly, with 206,

138, and 83 bins in the water, gut, and soil data sets, re-

spectively. The bins from Binning_refiner were less

complete but also had significantly lower contamination

than bins in the original bin sets. MetaWRAP’s Bin_re-

finement module produced 235, 175, and 134 acceptable

quality bins in the water, gut, and soil samples, respect-

ively, significantly outperforming all other tested ap-

proaches. The module uses Binning_refiner in its

pipeline to hybridize the input bin sets and then chooses

the best version of each bin from the original and hy-

bridized sets. Because the Bin_refinement module lever-

ages the strength of Binning_refiner but still has a

collapsing step similar to DAS_Tool, it is able to match

DAS_Tool’s high-completion rankings, while retaining

the low-contamination rankings of Binning_refiner.

Overall, MetaWRAP consistently produced the highest

quality bin sets in all the tested metagenomic data sets,

which ranged greatly in diversity, taxonomic compos-

ition, and sequencing depths.

It is important to note that the use of metaWRAP’s

Bin_refinement module to improve binning predictions

is not limited to the bin sets produced from the

metaWRAP-Binning module (metaBAT2, MaxBin2, and

CONCOCT). Bin sets from any two or three binning

software may be used as input for the module. Further-

more, because the algorithm leverages the differences

between the input bin predictions, it is also possible to

use bin sets produced from different parameters of the

same software as input.

Bin_refinement adjusts to the desired bin quality

To consolidate the original and hybridized bin sets,

metaWRAP-Bin_refinement chooses the best version of

each bin based on their completion and contamination

values. However, this selection is subjective and depends

on what the user believes to be the “best bin.” The mini-

mum completion (-c) and maximum contamination (-x)

options are key parameters that greatly alter the quality

of the bins produced, as the module will dynamically ad-

just its algorithms to produce the maximum number of

bins in this range.

To demonstrate the effects of changing the -c and -x

parameters of metaWRAP’s Bin_refinement module, we

ran the original bin sets from the water, gut, and soil

Fig. 3 GC vs. abundance plots of contigs from the water, gut, and soil metagenomes, produced with the Blobology module. Abundance

of contigs was calculated from standardized read coverage in each sample. Contigs were annotated with their phylum taxonomy, as

determined by BLAST
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data sets with varying minimum completion (but fixed

maximum contamination) (Additional file 10: Figure

S6) and varying maximum contamination (but fixed

minimum completion) (Additional file 11: Figure S7)

parameters. When compared to the original Bin_refine-

ment run (-c 50 -x 10), the module produced a greater

number of bins at any given threshold when it was

given custom -c and -x parameters. The improvements

were especially noticeable at higher completion and

lower contamination ranges. For example, MetaWRAP-

Bin_refinement -c 90 -x 10 recovered 19, 18, and 1

(water, gut, and soil, respectively) extra bins with a

minimum completion of 90%, when compared to the

baseline -c 50 -x 10 run. Similarly, MetaWRAP-Bin_re-

finement with -c 50 -x 1 parameters extracted 8, 21,

and 4 (water, gut, and soil, respectively) more bins at a

maximum contamination of 1%, when compared to the

baseline run. Unlike arbitrary and sometime confusing

thresholding parameters in many other software, the

minimum completion and maximum contamination

options offer the user an intuitive way to parameterize

metaWRAP’s Bin_refinement module to their needs.

This leads to significant increases in the number of

quality bins they are able to extract from their data.

It is important to note that while refinement of bin-

ning predictions results in high-quality bins when evalu-

ated with single-copy gene numbers, they do not

represent the genomes of single individuals in a commu-

nity or even individual strains. In this context, a bin is

simply the optimized taxonomic clustering of contigs,

which themselves are representative consensus resulting

from the clustering of reads belonging to closely related

taxa. In the context of phylogeny, bins may represent in-

dividual strains, species, or even higher-order averaged

taxa, depending on the level of heterogeneity of the

community in question. In the literature, bins are some-

times referred to as population genomes [43], underlying

the complex nature of bins. As described in the context

of the CAMI challenge, the analysis of a community

with mostly “unique strains,” i.e., distantly related organ-

isms, will result in bins potentially representing species

or even strains, whereas the analysis of a community

with mostly “common strains,” i.e., closely related organ-

isms, will result in more hybrid bins. In reality, most

communities are an assemblage of both closely and dis-

tantly related taxa resulting in a range of bin qualities.

Because of this, contamination resulting from strain

heterogeneity is expected [44], and the desired bin

quality can be tailored to the requirements of the down-

stream applications. For accurate taxonomic assignment

of bins, a low contamination is important (1–5%) but a

high completion may not be (20–50% may be sufficient).

For accurate reconstruction of metabolic potential on

the other hand, it is more important to reconstruct the

genome with a higher completion (90–98%), even at the

expense of introducing contamination (5–10%), as long

as the user understands that the resulting bins represent

the averaging of closely related taxa. The parameterization

Fig. 4 Completion and contamination of bins recovered from the water, gut, and soil metagenomes using original binning software (metaBAT2,

MaxBin2, and CONCOCT) and software consolidating the original sets (DAS_Tool, Binning_refiner, and metaWRAP’s Bin_refinement module). Only

bins with ≥ 50% completion and ≤ 10% contamination are shown (estimated by CheckM)
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will also be constrained by the characteristics of the

microbiome in question. Communities with relatively low

diversity, low strain heterogeneity, and low GC content

(such as gut microbiomes) will yield bins with lower con-

tamination and higher completion than those extracted

from a community with high diversity, heterogeneity, and

average GC content (such as soil microbiomes).

Reassemble_bins significantly improved bin quality

MetaWRAP’s Reassemble_bins module improves a given

set of bins through individual reassembly with SPAdes

[34]. The module only replaces the original bins if the

reassembled ones are better in terms of completion and

contamination. Like the Bin_refinement module, the

Reassemble_bins module takes in minimum completion

(-c) and maximum contamination (-x) parameters to

allow the user to define what they consider a “good” bin.

The bins produced from the water, gut, and soil data

with metaWRAP-Bin_refinement module runs (-c 50 -x

10) were run through the metaWRAP-Reassemble_bins

module (-c 50 -x 10), and the resulting bins were

re-evaluated with CheckM [24].

The Reassemble_bins module improved upon 78%,

98%, and 2% of the bins in the water, gut, and soil bin

sets, respectively. The module significantly improved

the water and gut bins’ overall metrics, increasing their

N50 and completion scores. Even more strikingly, the

reassembly process significantly reduced contamination

in these bin sets (Fig. 5). The success of the bin re-

assembly algorithm relies heavily on accurate and spe-

cific recruitment of the correct reads to each bin. In

very diverse and heterogeneous communities such as

those found in soil, the read recruitment may not be

specific enough. This confused the assembler during

the re-assembly stage and resulted in an improvement

for only a small fraction of the bins. However, draft ge-

nomes from the gut and water samples were still sig-

nificantly improved with the Reassemble_bins module

despite their complexity (Fig. 3). Just as with the bin-

ning process, it is important to note that the bins

resulting from the reassembly do not represent the true

genomes of individual organisms found in the commu-

nity but are rather consensus backbones for reads com-

ing from closely related organisms.

Fig. 5 N50, completion, and contamination metrics of original bins extracted from the water, gut, and soil metagenomes with the metaWRAP’s

Bin_refinement module and the same bins reassembled with metaWRAP’s Reassemble_bins module. Only bins with ≥ 50% completion and

≤ 10% contamination are shown (estimated with CheckM)
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MetaWRAP produced high-quality draft genomes

We investigated the performance of different binning

approaches (both original binners and bin consolidation

software) when extracting high-quality draft genomes,

with a contamination less than 5% and completion

greater than 70%, 80%, 90%, and 95% (Fig. 6). The de-

fault run of metaWRAP-Bin_refinement consistently

produced the highest number of high-quality draft ge-

nomes in the water, gut, and soil data sets. These num-

bers further improved when re-running the module with

appropriate minimum completion (-c) settings (i.e., run-

ning Bin_refinement -c 90 when benchmarking for bins

with a minimum completion of 90%). This approach sig-

nificantly outperformed every other tested binning and

bin refinement method at every quality threshold.

The reassembly of the metaWRAP-derived bins with

the Reassemble_bins module made a further improve-

ment on the number of high-quality draft genomes

extracted from the gut and water data sets. Even the

default run of Reassemble_bins produced a signifi-

cantly better bin set compared to non-reassembled bin

sets produced by all tested software, including meta-

WRAP’s Bin_refinement. However, just like in the

Bin_refinement runs, the results were further enhanced

when Reassemble_bins was provided with an appropri-

ate -c option.

When comparing to the original binning software

(MaxBin2, metaBAT2, and CONCOCT) and bin consoli-

dation tools (DAS_Tool and Binning_refiner), metaWRAP

produced the largest number of high-quality draft ge-

nomes in all the tested WMG data sets. Additionally, it

should also be considered that metaWRAP is capable of

improving bin sets from any binning software. Therefore,

when new metagenomic binning software are developed,

their outputs can still be used with metaWRAP refine-

ment and reassembly algorithms.

MetaWRAP enables analysis and visualization of

metagenomic bins

The rest of metaWRAP modules address examining and

processing a set of bins in preparation for downstream

analysis. The user may visualize the bins in the context

of the entire community with the Blobology module,

quantify their abundances across samples with the

Quant_bins module, estimate their taxonomy with the

Classify_bins module, and functionally annotate them

with the Annotate_bins module.

The metaWRAP-Quant_bins module was used to esti-

mate bin abundances across samples from their respect-

ive microbiome survey, and the results were shown in a

clustered heatmap (Additional file 12: Figure S8). Clus-

tered heatmaps may be used to infer bin co-abundance

and to identify similarities and differences between

samples. Because this approach considers the abun-

dances of every extracted bin individually, it offers

higher resolution information than when using higher

taxonomic ranks.

Fig. 6 Number of high-purity bins (less than 5% contamination) extracted from the water, gut, and soil metagenomes with 70%, 80%, 90%, and

95% completion (estimated with CheckM) using original binning software (metaBAT2, MaxBin2, and CONCOCT) and bin-refining algorithms

(Binning_refiner, DAS_Tool, metaWRAP-Bin_refinement, and metaWRAP-Reassemble_bins). MetaWRAP modules were run with varying

-c (minimum completion) parameters. MetaWRAP’s Reassemble_bins module was run on the output of the Bin_refinement module
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Bins were also visualized with the metaWRAP-Blobol-

ogy module. The module produces GC vs. abundance

plots of contigs, annotated with their taxonomy [45]

(Fig. 3), bin membership (Fig. 7), or both (Add-

itional file 13: Figure S9). These plots allow for inspec-

tion of the extracted bins in the context of the entire

community that they belong to, as well as visualize the

relative success of the binning process.

The final reassembled bins were taxonomy profiled with

the metaWRAP-Classify_bins module (Additional file 14:

Bin taxonomy) and functionally annotated with the Anno-

tate_bins module. Together, this information may be used

in downstream analysis to investigate complex questions

about functional interactions and metabolic potential of

individual community members.

Conclusions
Genome-level analysis of WMG sequencing data is

essential in understanding the composition and func-

tion of microbiomes. Until now, this rapidly growing

field lacked a unifying platform to utilize the wealth

of currently available software and make them easily

accessible to researchers. MetaWRAP is a flexible

pipeline that can handle common tasks in metage-

nomic data analysis starting from raw read quality

control and ending in bin extraction and analysis.

MetaWRAP is easy to install through Bioconda and

simple to use, and its modularity gives the investiga-

tor flexibility in their analysis approach.

MetaWRAP contributed significant improvements to the

recovery of draft genomes from shotgun metagenomic data

through bin refinement and reassembly. The bin refine-

ment module uses a novel hybrid approach to consolidate

bin predictions from different binning software, producing

a single stronger set. This approach significantly outper-

formed individual binning software, as well as other

consolidation algorithms. The algorithm can adjust to

accommodate specific draft genome quality targets, making

it suitable for many research applications. MetaWRAP’s bin

reassembly module further improved the draft genomes in

both completeness and purity. Finally, metaWRAP contains

multiple modules for analysis and evaluation of metage-

nomic bins—bin taxonomy assignment, abundance estima-

tion, functional annotation, and visualization.

Availability and requirements
Project name: metaWRAP

Project home page: https://github.com/bxlab/metaWRAP

Operating system: Linux64

Programming languages: Shell; Python 2.7

Other requirements: Conda; other packages automatic-

ally installed with metaWRAP: CONCOCT [19], MaxBin2

[20], metaBAT [21], CheckM [24], Binning_refiner [28],

Kraken [29], Taxator-tk [30], BWA [32], SPAdes [34, 36],

MegaHIT [35], KronaTools [37], Blobology [39], Mega-

BLAST [45], TrimGalore [46], BMTagger [47], FastQC

[48], Bowtie2 [49], Salmon [50, 51], and PROKKA [52].

License: MIT

Fig. 7 GC vs. abundance plots of contigs from the water, gut, and soil metagenomes, produced with the Blobology module. Abundance of

contigs was calculated from standardized read coverage in each sample. The contigs were annotated with the bins that they belong to (bin

colors are chosen at random), allowing for quick inspection of binning success. Bins were produced with metaWRAP’s Bin_Refinement module.

Only bins with ≥ 70% completion and ≤ 10% contamination are shown (estimated with CheckM)
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Additional files

Additional file 1: Supplementary methods. Descriptions of analysis

pipelines to process the benchmarking data, and detailed outlines of the

algorithms in each metaWRAP module. (DOCX 170 kb)

Additional file 2: Figure S1. Detailed walkthrough of the data files,

software, databases, and custom scripts that metaWRAP uses. The

components of each metaWRAP module grouped and denoted with

dotted lines. (PNG 2140 kb)

Additional file 3: Figure S2. Logical workflow of the Bin_refinement

modules of metaWRAP. The module takes in three bin sets produced from

the same assembly by different software or different parameters of the

same software. Binning_refiner is used to create hybridized intermediates

(four possible combinations), and the completion and contamination of the

original and hybridized bins are estimated with CheckM. The best version of

each bin is then found in the resulting seven bin sets. (PNG 123 kb)

Additional file 4: Figure S3. Logical workflow of the Reassemble_bins

module, which extracts reads belonging to bins in a given bin set and

individually reassembles them. This process is done for perfectly mapping

reads (strict) and reads mapping with less than three mismatches

(permissive). For each bin, CheckM is used to choose the best bin

between the original and the two reassembled versions. (PNG 164 kb)

Additional file 5: Module runtime. The total real runtime of each module

of metaWRAP when analyzing three samples from the metaHIT gut

metagenomic survey. The modules were tested with default parameters on

a Linux x64 server with 24 cores and 100 GB of RAM. (XLSX 23 kb)

Additional file 6: Figure S4. Completion and contamination (determined

with CheckM) of bins recovered from the CAMI’s high, medium, and low

complexity synthetic data sets using original binning software (metaBAT2,

MaxBin2, CONCOCT) and software consolidating the original sets (DAS_Tool,

Binning_refiner, metaWRAP). Only bins with ≥ 50% completion and ≤ 10%

contamination are shown. (EPS 474 kb)

Additional file 7: Figure S5. True recall and precision (determined with

AMBER) of bins recovered from the CAMI’s high, medium, and low complexity

synthetic data sets using original binning software (metaBAT2, MaxBin2,

CONCOCT) and software consolidating the original sets (DAS_Tool,

Binning_refiner, metaWRAP). Only bins with ≥ 0.5% recall and ≥ 0.9%

precision are shown. (EPS 474 kb)

Additional file 8: CAMI binning summary table. The number of bins

recovered at different quality thresholds (determined with AMBER) from the

CAMI challenge with original binning software (metaBAT2, MaxBin2,

CONCOCT) and software consolidating the original sets (DAS_Tool,

Binning_refiner, metaWRAP). MetaWRAP was run with default parameters.

Performance is shown for “unique strain” (ANI < 95% to any other genome)

and “common strain” (ANI > 95% to another genome) genomes. (XLSX 39 kb)

Additional file 9: Taxonomic distribution of reads from water, gut, and

soil metagenomes, estimated with the metaWRAP-Kraken module.

(HTML 972 kb)

Additional file 10: Figure S6. Completion of bins recovered from water,

gut, and soil metagenomes with the metaWRAP-Bin_refinement module

with a varying minimum completion parameter (-c) but constant maximum

contamination parameter (-x 10). The numbers in the brackets indicate

the number of extra bins gained at that threshold compared to the

baseline run (-c 50 -x 10). Only bins with ≥ 50% completion and ≤ 10%

contamination are shown. (EPS 394 kb)

Additional file 11: Figure S7. Contamination of bins recovered from

water, gut, and soil metagenomes with the metaWRAP-Bin_refinement

module with a varying maximum contamination parameter (-x) but

constant minimum completion parameter (-c 50). The numbers in the

brackets indicate the number of extra bins gained at that threshold

compared to the baseline run (-c 50 -x 10). Only bins with ≥ 50%

completion and ≤ 10% contamination are shown. (EPS 99 kb)

Additional file 12: Figure S8. Clustered heatmaps showing the log of

bin abundance of bins extracted with metaWRAP-Bin_refinement (-c 50

-x 10) across samples in water, gut, and soil metagenomes, calculated

and plotted with metaWRAP’s Quant_bins module. (PNG 974 kb)

Additional file 13: Figure S9. MetaWRAP-Blobology visualization of

water, gut, and soil metagenomes, showing the GC and average coverage

of each successfully binned contig (metaWRAP-Bin_refinement -c 70 -x 10)

in the assemblies and annotated with the taxonomy at the phylum

level and the bins that they belong to (bin colors are chosen at

random). (PNG 2629 kb)

Additional file 14: Bin taxonomy. Distribution of the taxonomy among

bacterial bins extracted from water, gut, and soil metagenomes using

metaWRAP’s Bin_refinement module (-c 50 - x 10). Taxonomy estimated

with metaWRAP’s Classify_bins module. (HTML 167 kb)

Abbreviations

ANI: Average nucleotide identity; -c: Minimum completion parameter;

comp: Completion; cont: Contamination; WMG: Whole metagenome;

-x: Maximum contamination parameter
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