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Abstract

Background: Non-targeted metabolomics based on mass spectrometry enables high-throughput profiling of the

metabolites in a biological sample. The large amount of data generated from mass spectrometry requires intensive

computational processing for annotation of mass spectra and identification of metabolites. Computational analysis

tools that are fully integrated with multiple functions and are easily operated by users who lack extensive

knowledge in programing are needed in this research field.

Results: We herein developed an R package, metaX, that is capable of end-to-end metabolomics data analysis

through a set of interchangeable modules. Specifically, metaX provides several functions, such as peak picking and

annotation, data quality assessment, missing value imputation, data normalization, univariate and multivariate

statistics, power analysis and sample size estimation, receiver operating characteristic analysis, biomarker selection,

pathway annotation, correlation network analysis, and metabolite identification. In addition, metaX offers a web-

based interface (http://metax.genomics.cn) for data quality assessment and normalization method evaluation, and it

generates an HTML-based report with a visualized interface. The metaX utilities were demonstrated with a

published metabolomics dataset on a large scale. The software is available for operation as either a web-based

graphical user interface (GUI) or in the form of command line functions. The package and the example reports are

available at http://metax.genomics.cn/.

Conclusions: The pipeline of metaX is platform-independent and is easy to use for analysis of metabolomics data

generated from mass spectrometry.
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Background

Biochemicals (metabolites) with low molecular masses

are the ultimate products of biological metabolism,

while a metabolome represents the total composite in

a given biological system and reflects the interactions

among an organism’s genome, gene expression status

and the relevant micro-environment [1]. The most

prevalent technology used in analysis of metabolomics

is non-targeted mass spectrometry (MS) coupled with

either liquid chromatography (LC-MS) or gas chroma-

tography (GC-MS) [2, 3]. Generally, these techniques

generate a set data of mass spectra with chromatog-

raphy that includes retention time, peak intensity and

chemical masses. Data analysis involves stepwise

procedures including peak picking, quality control,

data cleaning, preprocessing, univariate and multivari-

ate statistical analysis and data visualization. A num-

ber of software packages are available for MS-based

metabolomics data analysis as listed in Table 1, in-

cluding propriety commercial, open-source, and on-

line workflows. The MS manufacturers generally

provide propriety software, like SIEVE (Thermo Sci-

entific), MassHunter (Agilent Technologies) and Pro-

genesis QI (Waters), which are often limited in scope

and function. Open-source software, such as XCMS

[4], CAMERA [5], MAIT [6], MetaboAnalyst [7] and

Workflow4Metabolomics [8], usually cover limited

processing steps. There is no such comprehensive

pipeline that is used across the metabolomics com-

munity [9, 10]. Referring to the capabilities of the

tools mainly used (as shown in Table 1), an automatic

and comprehensive open source pipeline is urgent in
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bioinformatics analysis of metabolomics. Basically, the

pipeline aims for users to easily perform end-to-end meta-

bolomics data analysis with a flexible combination of dif-

ferent methods to efficiently integrate new modules and

to build customized pipelines in multiple ways.

We herein developed a comprehensive workflow for

analysis of metabolomics data, termed metaX. At the

present time, R [11] is a popular statistical program-

ming environment and provides a convenient environ-

ment for statistical analysis of metabolomic and other

-omics data [12, 13]. We thus designed metaX as an

R package that automates analysis of untargeted

metabolomics data acquired from LC/MS or GC/MS

and offers a user-friendly web-based interface for data

quality assessment and normalization evaluation. This

workflow, which is open source and rich in functions,

encourages experienced programmers to improve the

relevant functions or to build their own pipeline

within the R framework. Overall, metaX aims to be a

tool array that utilizes an end-to-end statistical ana-

lysis of metabolomics data.

Implementation

A stepwise overview of data processing using metaX is

illustrated in Fig. 1.

Peak picking and inputs

In general, metaX can take mzXML files as input or a

peak table file as input. If taking mzXML files as input,

metaX will use the R package XCMS [4] to detect peaks,

then use the CAMERA [5] package to perform peak an-

notation. If a peaks table file is an input, metaX trans-

forms the table data from a peak detection software,

such as Progenesis QI (exported comma separated value

(csv) format file), into an R object compatible with the

subsequent workflow.

Pre-processing of raw peak data metabolite

The raw peak intensity data was pre-processed in metaX.

Firstly, if a metabolite feature is detected in < 50% of

quality control (QC) samples or detected in < 20% of ex-

perimental samples, it is removed from data analysis

[14]. Secondly, a missing value after the first filtering is

retained and imputed. In metaX, four methods are im-

plemented to perform missing value imputation: k-

nearest neighbor (KNN), Bayesian principal component

analysis replacement (BPCA), svdImpute and random

forest imputation (missForest) [15].

Data scaling and transformation

Five different scaling approaches are offered in metaX:

Pareto scaling, vast scaling, range scaling, autoscaling

Fig. 1 Overview of metaX. This figure summarizes the main modules, functions and features of metaX. The input data and the functions are included

in the figure

Wen et al. BMC Bioinformatics  (2017) 18:183 Page 4 of 14



and level scaling [16]. The formulas of these scaling ap-

proaches are described in detail elsewhere [16]. In

addition, three transformation approaches are offered in

metaX: log, generalized logarithm (glog) and cube root

transformation.

Removal of outliers

metaX provides the ability to automatically remove the

outlier samples in the pre-processed data based on ex-

pansion of the Hotelling’s T2 distribution ellipse [17]. A

sample within the first and second component principal

component analysis (PCA) score plot beyond the ex-

panded ellipse is removed, and then the PCA model is

recalculated. In default mode, three rounds of outlier re-

moval are performed.

Normalization

A metabolomics dataset usually contains unwanted varia-

tions introduced by signal drift/attenuation and multiplica-

tive noise across the dynamic range. These effects can

detrimentally impact the significant signal discovery and

MS features that are required for rigorous quality assurance

[14, 18]. In metaX, two types of normalization methods are

provided: 1) Sample-based normalization is used to correct

different concentrations of samples, such as normalization

to total sum, probabilistic quotient normalization (PQN),

variance stabilizing normalization (VSN) and quantile-

based methods. 2) Peak-based normalization is imple-

mented to correct data within batch experiment analytical

variation and batch-to-batch variation in large-scale studies

[19]. In this normalization, if a study contains QC samples,

the QC-robust spline batch correction (QC-RSC) can be

used to alleviate the effects of peak area attenuation [19].

During normalization, the degree of smoothening is con-

trolled by a parameter that sets the proportion of points for

smoothening at each point, while in metaX, this parameter

is automatically assigned by using leave-one-out cross valid-

ation. On the basis of QC samples, a metabolite feature

with a coefficient of variation (CV) over the predetermined

value is excluded after normalization. The CV threshold

could be set by users; generally, CV values ≤ 30% are rec-

ommended. Support vector regression (SVR) [20] and

ComBat [21] normalization methods are also implemented

in metaX. A user-friendly web-based interface (http://

metax.genomics.cn) was offered for rapid evaluation of the

data normalization methods for a specified dataset.

Assessment of data quality

Pre- and post-normalization, the data quality is visually

assessed in several aspects, 1) the peak number distribu-

tion, 2) the number of missing value distribution, 3) the

boxplot of peak intensity, 4) the total peak intensity dis-

tribution, 5) the correlation heatmap of QC samples if

available, 6) the metabolite m/z (or mass) distribution, 7)

the plot of m/z versus retention time, and 8) the PCA

score or loading plot of all samples. There are two ways

to perform data quality assessment in metaX, the com-

mand line mode and the user-friendly web-based inter-

face at http://metax.genomics.cn/.

Univariate and multivariate statistical analysis

metaX offers both univariate and multivariate statistical

analysis. For univariate statistical analysis, the parametric

statistical test (Students t-test), non-parametric statistical

test (Mann-Whitney U test), and classical univariate re-

ceiver operating characteristic (ROC) curve analysis are im-

plemented. For multivariate statistical analysis, metaX

offers functionalities for cluster analysis, multivariate mod-

elling, including PCA, partial least squares-discriminant

analysis (PLS-DA) and orthogonal partial least squares-

discriminant analysis (OPLS-DA), with numerical and

graphical results and diagnostics (optimal number of com-

ponents estimated by cross-validation, R2, Q2, variable im-

portance in projection (VIP), statistical significance of the

model by permutation testing) [22]. In terms of the univari-

ate test analysis, metaX also offers the false discovery rate

(FDR)-corrected p-value by using the Benjamini-Hochberg

FDR algorithm [23]. The PLS-DA was implemented based

on the functions from the pls package [24], and the OPLS-

DA was performed using the functions from the ropls pack-

age [25].

Power and sample size analysis

metaX offers an easy-to-use function to perform the

power and sample size analysis. This function is based

on the Bioconductor package SSPA [26] and outputs a

figure to show the distribution curve of sample size ver-

sus the estimated power.

Metabolite correlation network analysis

metaX offers two types of network analysis. One is the cor-

relation network analysis without regard for experimental

groups information, and the other is differential correlation

network analysis, which aims to identify metabolite correl-

ation differences in a physiological state. The former was

implemented using the cor function from the stats package

to calculate the correlation coefficient, and the latter was

implemented using the function comp.2.cc.fdr from the

DiffCorr package [27] to calculate the significantly differen-

tial correlations. The igraph package [28] was used for net-

work analysis and visualization. In addition, the network

can be exported as a file in formats such as gml and pajek,

which can be imported into Cytoscape [29] and Gephi [30]

for network analysis and visualization. Both of the correl-

ation network analyses aim to describe the correlation pat-

terns among metabolites across samples, in which nodes

represent metabolites and edges represent the correlation

between different metabolites. The network analysis offers

Wen et al. BMC Bioinformatics  (2017) 18:183 Page 5 of 14
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Fig. 2 User interface of metaX for quality assessment and normalization evaluation
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a complementary method to univariate and multivariate

statistical analysis methods.

Metabolite identification

Currently, metaX provides a function for metabolite

identification based on the Human Metabolome Data-

base (HMDB) [31], KEGG [32, 33], MassBank [34], Pub-

Chem [35], LIPID MAPS [36], MetaCyc [37] and

PlantCyc (www.plantcyc.org). Moreover, metaX can eas-

ily be extended to support the other databases. The me-

tabolites having molecular weights within a specified

tolerance to the query m/z or molecular weight value

are retrieved from the databases as putative identifica-

tions. The information of adducts and isotopes is utilized

to assist in metabolite identification if it is present. The

default tolerance is 10 ppm.

Functional analysis

At present, metaX provides a function for metabolite

pathway analysis based on IMPaLA [38].

Biomarker analysis

metaX uses functions from the R package “caret” to per-

form the biomarker selection, model creation and perform-

ance evaluation [39]. Currently, two methods, random

forest [40] and support vector machine (SVM), are imple-

mented to automatically select the metabolites which show

the best performance. After the best set features are

a

b

e

c

d

f

Fig. 3 QC charts generated by metaX. a The intensity of feature distribution before normalization. b The intensity of feature distribution after

normalization. c The correlation plot of QC samples before normalization. d The correlation plot of QC samples after normalization. e The missing

value distribution in experimental and QC samples. f The CV distribution of all features before and after normalization for each group

Wen et al. BMC Bioinformatics  (2017) 18:183 Page 7 of 14
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selected, a randomForest model can be created and the

ROC curve can be plotted.

HTML-based report generation

metaX outputs an HTML-based report by using the

Nozzle package [41], which contains quality assessment

plots and other analysis results.

Results and discussion

To illustrate the applications of metaX, a published non-

targeted LC-MS metabolomics dataset from a coronary

heart disease (CHD) study was used [42, 43]. The dataset

consisted of two batches of 138 plasma samples (59 CHD

patients, 43 healthy controls and 36 QC samples) acquired

in positive ion mode on an LTQ Orbitrap Velos instrument

(Thermo Fisher Scientific, MA, USA). LC-MS raw data files

were converted to mzXML format using ProteoWizard

(version 3.0.5941) [44] and then were processed by XCMS

[4] and CAMERA [5] for peak picking and peak annota-

tion, respectively. In total, 1438 features were retained for

downstream analysis. The mzXML files can be downloaded

from the Dryad Digital Repository [43]. It merits to note

that the study focus is mainly on the software application

and its capabilities, not on the biological interpretation of

the generated results.

Quality assessment of metabolomics data using metaX

In metabolomics studies, data quality checks are crucial

prerequisites to achieve reliable results. metaX offers a

quick and easy data quality check of metabolomics data.

This can be done using the R function in metaX or a user-

friendly web interface at the website http://metax.geno-

mics.cn/ as shown in Fig. 2. The mainly QC charts

generated by metaX for the CHD dataset are illustrated in

Figs. 3 and 4. The number of features detected per sample

over the analysis time (injection order) is illustrated in

Fig. 4c, revealing that the peaks acquired from any group,

disease, healthy and QC, are randomly distributed. The in-

tensities of all features per samples before and after

normalization over the analysis time (injection order) are il-

lustrated in Fig. 3a and b, respectively. The missing value

distribution is shown in Fig. 3e, which gives an overview of

the percent of missing values of all features in both the QC

and experiment samples. According to Chawade’s view, the

total missing value plot and the total intensity plot derived

from raw data and treated with/without normalization

Fig. 4 QC charts generated by metaX. a The sum intensity of all features per sample before normalization over the analysis time (injection order).

b The sum intensity of all features per sample after normalization over the analysis time (injection order). c The number of features per sample

over the analysis time (injection order). d The score plot of PCA for the raw feature intensity data. e The score plot of PCA for the

normalized data
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could be used to identify sample outliers [45]. Our analysis

supported this. The correlation plots of QC samples before

and after normalization by SVR are illustrated in Fig. 3c

and d and indicate that the lowest correlation efficiency is

enhanced from approximately 0.7 to 0.9. The CV distribu-

tion of all features before and after normalization for each

group is displayed in Fig. 3f, implying that after

normalization, the signal quality is obviously improved. The

sum intensity of all features per sample before and after

normalization over the analysis time (injection order) is il-

lustrated in Fig. 4a and b, suggesting that normalization

could narrow the signal variation. The score plots of PCA

for the raw feature intensity data and the normalized data

are shown in Fig. 4d and e, respectively, which give an

overview of the dataset and showing trends, groupings and

outliers before data normalization and after data

normalization. The score plot of PCA (Fig. 4d) for the non-

normalized data provided a simple and easily interpretable

visual check of the presence of batch effects. In Fig. 4d, the

two data batches appear as two separated groups upon

PCA analysis without normalization, whereas in Fig. 4e,

after normalization the batch effect was reduced and all of

the QC samples were clustered tightly, which provides an

initial evaluation of the data quality. Overall, these QC

charts demonstrate the necessity of normalization for meta-

bolomics data, while metaX enables overview of the data

quality with different charts.

Evaluation of normalization methods using metaX

A systematic bias in high-throughput metabolomics data

is often introduced by various steps of sample processing

and data generation. Data normalization can reduce sys-

tematic biases. A question related to this issue is how to

select a proper normalization method. metaX provides a

user-friendly web-based Shiny application (http://metax.

genomics.cn) for this purpose. To select the optimal

normalization approach for the CHD dataset, seven

methods are evaluated using metaX. Figure 5 shows the

score plots of PCA using different normalization

methods. They indicate that after normalization using

QC-RSC, ComBat or SVR, all of the QC samples are

clustered more tightly, and the batch effect is effectively

reduced compared with other methods. Table 2 presents

the quantitative comparison metrics acquired by the dif-

ferent methods. From the results it is clear that all

normalization methods performed better than non-

normalization used in most of the metrics. Specifically,

SVR detects the largest number of features (1293) with

CV ≤ 30% in QC samples, followed by QC-RSC (1191).

For the average CV of features in QC samples, SVR

achieved the best performance, followed by QC-RSC.

This is similar to the findings in a previous study [20].

However, QC-RSC could detect the largest number of

differentially expressed features (178), followed by SVR

(170). Taken together, for this data set, SVR could be an

a b c d

e f g h

Fig. 5 Comparison of different normalization methods from PCA. a none, b QC-RSC, c ComBat, d SRV, e) PQN, f sum, g VSN and h quantiles. The

different points in the figures refer to different samples, and the samples were color-coded according to their group information and shape-

coded according to their batch information
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optimal normalization method, thus it was chosen as the

default normalization method for the downstream

analysis.

Univariate and multivariate statistical analysis

Data for the QC samples are removed from the dataset

prior to univariate and multivariate analysis in metaX.

For univariate analysis, Mann-Whitney U test and Stu-

dents t-test are performed to compare disease and health

groups, followed by false discovery correction using the

Benjamini-Hochberg method using metaX. The results,

along with the fold change of the disease group versus

health group, are presented in Additional file 1: Table

S1. In total, 171 features (13.22% of total features) are

detected under the criteria of the corrected p-value

(Mann-Whitney U test) ≤ 0.05, fold change ≥ 1.5 or ≤

0.667 and VIP > =1, and 170 features (13.15% of total

features) are detected under the criterion of the

corrected p-value (Students t-test) ≤ 0.05, fold change ≥

1.5 or ≤ 0.667 and VIP > = 1. The result is comparable

with that of the previous study [42].

For multivariate analysis, PCA, PLS-DA and OPLS-

DA are performed by metaX. In PCA analysis, the nor-

malized peak intensity matrix is glog transformed,

followed by Pareto scaling and centering, and then two

components are selected. The PCA score and loading

plots are shown in Fig. 6a and b, respectively. The score

plot indicates that there is an apparent difference be-

tween the disease and health groups. For PLS-DA and

OPLS-DA, the normalized peak intensity matrix is also

glog transformed, followed by Pareto scaling and center-

ing. Two components are selected for PLS-DA and two

components (one orthogonal and one predictive) for

OPLS-DA. The score and loading plots for PLS-DA and

OPLS-DA are shown in Fig. 7a and c, respectively. The

R2Y and Q2Y values of the PLS-DA model, which are

ba

Fig. 6 The score and loading plots of PCA. a Score plot of PCA and (b) Loading plot of PCA. The different points in the figures refer to different

samples, and the samples are color-coded according to their group information. The QC samples were removed before performing the PCA analysis

Table 2 The comparison of different normalization methods

Methods NO. of peaks NO. of peaks (CV≤ 30%)a DEFb Mean (CV) CHD d Mean (CV) Health d Mean (CV) QC e

ComBat 1438 930 127 0.4261 0.3816 0.1636

none 1438 527 65 0.4865 0.4739 0.2114

QC_RSC 1438 1191 178 0.5108 0.4664 0.1098

SVR 1438 1293 170 0.4853 0.4583 0.1081

PQN 1438 793 125 0.4945 0.4681 0.1777

Quantiles 1438 740 118 0.4911 0.4646 0.1895

sum 1438 761 119 0.5044 0.4733 0.1979

VSN 1438 772 120 0.5014 0.4761 0.1912

Note:
aAfter normalization, the number of peaks with CV ≤ 30% in QC samples
bDEF: differentially expressed features with q-value < = 0.05, fold change > = 1.5 or fold change < = 0.667 and VIP > = 1
cMean (CV) CHD: The average CV of peaks in CHD disease group
dMean (CV) Health: The average CV of peaks in health group
eMean (CV) QC: The average CV of peaks in QC group
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0.908 and 0.854, respectively, indicate that the model

has good goodness of fit and predictive ability. The R2Y

and Q2Y values of the OPLS-DA model, which are 0.905

and 0.847, respectively, indicate that the model also has

good goodness of fit and predictive ability. Overall, the

two multivariate data analysis methods, PLS-DA and

OPLS-DA, give similar results. To test the validity of the

models of PLS-DA and OPLS-DA, a permutation test (n

= 200) is performed. As shown in Fig. 7b and d, the test

indicated that the two models are valid, and the good pre-

dictive ability of the model is not because of over-fitting

with a p-value less than 0.05. Taken together, the results of

PCA and PLS-DA (or OPLS-DA) show a distinct separ-

ation between the disease and health groups.

Table 3 The biomarkers selected by metaX

MZ RT (min) Mass HMDB Name Delta (ppm) Chemical formula

308.0498 10.46 285.0629 HMDB14387 Cladribine −8.18 C10H12ClN5O3

424.3412 11.94 423.3349 HMDB06469 Linoleyl carnitine −2.31 C25H45NO4

155.0281 2.81 116.066 HMDB32411 2-Methyl-1-methylthio-2-butene −8.77 C6H12S

130.0499 3.43 129.0426 HMDB00267 Pyroglutamic acid 0.15 C5H7NO3

174.9913 2.30 NULL NULL NULL NULL NULL

309.0533 10.47 270.0892 HMDB33940 Vignafuran 3.44 C16H14O4

425.3446 11.94 424.3341 HMDB06327 Alpha-Tocotrienol 7.62 C29H44O2

324.0443 9.33 301.0563 HMDB01062 N-Acetyl-D-Glucosamine 6-Phosphate −3.86 C8H16NO9P

ba

dc

Fig. 7 The score and permutation test plots of PLS-DA and OPLS-DA. a Score plot of PLS-DA. R2Y: 0.908, Q2Y: 0.854. b Permutation test plot of

PLS-DA, p-value < = 0.05. c Score plot of OPLS-DA. R2Y: 0.905, Q2Y: 0.847. d Permutation test plot of OPLS-DA, p-value < = 0.05. The different points

in the score plots (A and C) refer to different samples, and the samples are color-coded according to their group information. The number of

permutations for the permutation test is 200
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Biomarker analysis, metabolite identification and pathway

analysis

To create the classification model between the disease and

health groups, the functions implemented in metaX are

used to conduct the biomarker selection, model creation

and performance evaluation. A recursive feature elimin-

ation algorithm with the random forest model is used to se-

lect the best feature set. During the treatment, 5-fold cross-

validation is used to optimize the model and reduce over-

fitting. As shown in Table 3, 8 features were selected. To

further evaluate the performance of the 8 selected features,

the 102 samples were randomly split into two sample sets.

One sample set (Disease: 29, Health 29) was for model

building and the other (Disease: 14, Health 30) was for test-

ing. Based on the two data sets, the 8 features were used to

build a random forest model, and a receiver operating char-

acteristic (ROC) curve of this model was plotted and is

shown in Fig. 8. The result indicated that the model based

on the 8 features had a good result with an area under the

ROC (AUROC) curve of 0.999. The 8 features were then

identified based on the HMDB (version 3.6) database

Fig. 8 The ROC curve result of the six selected metabolites

Fig. 9 The differential correction network. The top six largest numbers of nodes communities were color-coded. Detailed information about the

samples and their communities are presented in Table S3
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through metaX. Seven out of the 8 features were identified

with a mass accuracy of < 10 ppm (parts per million). The

putative identified metabolites were then submitted to the

IMPaLA website (version 9) through metaX to perform the

pathway analysis, and the results are presented in

Additional file 2: Table S2.

Correlation network analysis

Network-based correlation analysis is a complementary

method to the traditional univariate and multivariate statis-

tics that is taken in metabolomics analysis to identify me-

tabolite changes in response to variable status of

physiology. All of the features with the normalized intensity

described above were used to perform the differential cor-

rection network analysis. This analysis can be used to detect

the interconnection of metabolite pairs whose relationships

are significantly altered due to the disease process. In this

study, only the metabolite pairs that had significant differ-

ential correlations (q-value < = 0.01) between the disease

and health populations were used to build the network. As

shown in Fig. 9, of the network with 266 nodes and 444

edges, a giant component (198/266, 74.44%) was found and

the community detection analysis using the fast greedy

modularity optimization algorithm against this component

resulted in seven communities, in which each one has equal

to or greater than 10 nodes detected. In addition, metaX

can estimate three centrality metrics (degree, closeness

and betweenness) for each node, and they reflect the

importance of the node in the entire network

(Additional file 3: Table S3). Differentially correlation

network analysis is expected to provide useful insights

into the underlying biological processes of the clinical

development of CHD.

Conclusions

metaX presents a complete data processing software that is

easy to operate and capable of dealing with large-scale

metabolomics datasets. A metaX user can customize the

pipeline according to the research requirements. Compared

to software for metabolomics datasets that requires high-

manual interaction, metaX requires much less manual

interaction and can be used in a command line or web-

based user-friendly interface. Based upon the fast process

and the optimized workflow, therefore, metaX would

greatly improve the interpretation of metabolomics data.

Additional files

Additional file 1: Table S1. The fold change and p-value for all of the

features. (XLSX 146 kb)

Additional file 2: Table S2. The pathway analysis results for the 8

selected biomarkers. (XLSX 14 kb)

Additional file 3: Table S3. The centrality metrics for each node in the

network. (XLSX 22 kb)
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