

METEOR-S Web Service Annotation Framework

Abhijit Patil, Swapna Oundhakar, Amit Sheth, Kunal Verma
LSDIS Lab, Department of CS, University of Georgia, 415 GSRC, Athens, GA 30602

{patil, swapna, amit, verma}@cs.uga.edu

ABSTRACT

The World Wide Web is emerging not only as an infrastructure

for data, but also for a broader variety of resources that are

increasingly being made available as Web services. Relevant

current standards like UDDI, WSDL, and SOAP are in their

fledgling years and form the basis of making Web services a

workable and broadly adopted technology. However, realizing the

fuller scope of the promise of Web services and associated service

oriented architecture will requite further technological advances in

the areas of service interoperation, service discovery, service

composition, and process orchestration. Semantics, especially as

supported by the use of ontologies, and related Semantic Web

technologies, are likely to provide better qualitative and scalable

solutions to these requirements. Just as semantic annotation of

data in the Semantic Web is the first critical step to better search,

integration and analytics over heterogeneous data, semantic

annotation of Web services is an equally critical first step to

achieving the above promise. Our approach is to work with

existing Web services technologies and combine them with ideas

from the Semantic Web to create a better framework for Web

service discovery and composition. In this paper we

present MWSAF (METEOR-S Web Service Annotation

Framework), a framework for semi-automatically marking up Web

service descriptions with ontologies. We have developed

algorithms to match and annotate WSDL files with relevant

ontologies. We use domain ontologies to categorize Web services

into domains. An empirical study of our approach is presented to

help evaluate its performance.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability – data mapping,

interface definition languages, D.3.1 [Programming

Languages]: Formal definitions and Theory – semantics, H.3.5

[Information Storage and Retrieval]: Online Information

Services – data sharing, web-based services

General Terms: Algorithms, Experimentation.

Keywords: Semantic Web services, WSDL, Ontology,

semantic annotation of Web services, Web services discovery

1. INTRODUCTION
Web services are the latest attempt to revolutionize large scale

distributed computing. With XML based standards like UDDI,

WSDL, and SOAP, they are touted as the tools for universal

connectivity and interoperability of applications and services.

With the growing popularity of Web services, there arise issues of

finding relevant services, especially with the possibility of the

existence of thousands of Web services. We envision Web

services as being initially applied more to address B2B/EAI

challenges, rather than B2C services. In this context, Web services

will be used as part of larger Web processes that result from Web

services composition. Current standards have focused on

operational and syntactic details for implementation and execution

of Web services. This limits the search mechanism for Web

services to keyword-based searches. Consider a scenario, where a

user may want a Web service that takes “weather station code” as

input and gives “Atmospheric conditions” as output. The current

search mechanism at a popular Web service repository like

Salcentral.com allows only keyword searches. Searching for the

keyword “weather” gives about 3% of the total Web services in

that repository. It returns all Web services, which have weather,

mentioned in their description. The user has to manually analyze

WSDL files to find the appropriate service. Five years from now

when we are expected to have thousands of services, current

syntactic search along with manual intervention would be

untenable. Research in the Semantic Web area has shown that

annotation with metadata can help us solve the problem of

inefficient keyword based searches in the current web (which is

based on HTML, HTTP, and URI’s). This concept of annotation

can be extended to Web services to envision Semantic Web

services. Semantically described services will enable better

service discovery and allow easier interoperation and composition

of Web services.

Several approaches have already been suggested for adding

semantics to Web services. Semantics can either be added to

currently existing syntactic Web service standards like UDDI or

WSDL [1] or services can be described using some ontology

based description language like DAML-S [2]. The common factor

in most of these approaches is relating concepts in Web services

to domain specific ontologies. This relating and tagging of

descriptions with concepts in ontologies is referred to as

annotation. While significant research has been done on what to

annotate, there has been little work on how to annotate. Current

research of Web service annotation largely focuses on manual

annotation [3] that poses several problems. The first problem is

that of finding the relevant ontology or ontologies. In manual

annotation, the burden of choosing the relevant ontology or

ontologies lies with the user. This significantly increases the pre-

match effort as the user has to browse through the available

ontologies to find a suitable domain ontology or ontologies (since

a Web service may span more than one domain and may have to

be mapped to a number of ontologies). The second problem arises

because of the size of the Web service description and the size of

the ontology or vocabulary. As Web service descriptions grow

Copyright is held by the author/owner(s).

WWW 2004, May 17–22, 2004, New York, New York, USA.

ACM 1-58113-844-X/04/0005.

553

larger (e.g., even a modest Web service “GlobalWeather” by

CapeScience has 53 different elements and 55 different values of

the parameters adding up to 108 concepts), the potential number

of concepts in the Web service increase manifold. Furthermore the

vocabularies, taxonomies, or ontologies used for annotation could

also be very large with correspondingly large number of concepts

(e.g. the world-fact-book ontology contains more than 1100

concepts). Notice that average real world ontologies have been

reported to exceed over 1 million instances [4]. Hence finding the

appropriate ontological concepts to match to WSDL concepts can

be a very tedious task. As we progress towards a Web of services,

the number of services are likely to be in thousands or even more

[5]. Given these factors, it is necessary to have a scalable and

semi-automated way of annotating Web services with real world

ontologies.

A key enabling capability that can address the above scalability

challenge is annotation with as much automation as possible

without losing quality. We present a framework, METEOR-S

Web service Annotation Framework (MWSAF), to semi-

automatically annotate WSDL descriptions of the services with

relevant ontologies. MWSAF is a part of an ongoing project,

METEOR-S, an effort to create Semantic Web processes, at the

LSDIS lab, University of Georgia. We have implemented a

number of algorithms to match concepts in WSDL files to

ontologies.

We describe the architecture, implementation, and working of the

MWSAF in this paper. The main contributions of our work are

• Addressing the need for semantics in the Web services

framework, and providing a detailed approach that identifies

four types of semantics for describing Semantic Web services

• Identifying the technical challenges in (semantic) annotation

of Web services.

• Implementing algorithms for Semantic Annotation and

categorization of Web services

• Empirical testing of semantic annotation of Web services

The rest of the paper is organized as follows: Section 2 describes

the four types of semantics involved in the Web services

framework. Section 3 describes the implementation and matching

issues. The architecture is discussed in Section 4. Section 5

discusses the empirical study. Section 6 lists the related works.

We conclude in Section 7 and give an outline for future work.

2. METEOR-S - ADDING SEMANTICS TO
WEB SERVICE INDUSTRIAL STANDARDS
There have been several attempts to add semantics to Web

services [6][1]. The METEOR-S project at the LSDIS Lab, UGA

attempts to add semantics to the complete Web process lifecycle

by providing constructs for adding semantics to current industry

standards. We believe our approach is more pragmatic than other

top down approaches [2], which require developing new standards

with no tangible benefits over our approach. We identify the four

categories of semantics in the complete Web process lifecycle [7].

• Data Semantics (semantics of inputs/outputs of Web services)

• Functional Semantics (what does a service do)

• Execution Semantics (correctness & verification of execution

)

• QoS Semantics (performance and cost parameters associated

with service)

Covering the complete lifecycle of Web services involves adding

the four categories of semantics to different layers of the Web

service stack [8]. The service description layer of the stack

provides the information necessary for invoking Web services.

WSDL is the de facto standard for this layer. However, WSDL

descriptions are syntactic and do not explicate the semantics of

the service providers. METEOR-S provides a mechanism to add

data, functional and QoS semantics to WSDL files. MWSDI

provides an infrastructure to leverage data, functional and QoS

semantics by enhancing UDDI [9]. The top layer i.e. the flow

layer deals mainly with service composition. A comprehensive

framework for Semantic Web service composition is provided in

MWSCF [10]. This paper concentrates on a semi-automated

approach for adding data semantics to WSDL files.

Figure 1 gives an overview of these four types of semantics and

different stages of Web process lifecycle development.

Figure 1. Four types of Semantics in Web services

3. IMPLEMENTATION AND MATCHING

ISSUES
Expressiveness of ontologies and the XML schema used by

WSDL are significantly different because of the different reasons

behind their development [11]. The XML schema is used in

WSDL descriptions to provide a basic structure to the data

exchanged by the Web service. It therefore provides a minimal

containment relationship using the complexType, simpleType and

element constructs. On the other hand ontologies are developed to

capture real world knowledge and domain theory [12]. Therefore

the languages used to describe the ontologies, model the real

world entities as classes (concepts) and their properties. They also

provide the named relationships between different concepts and

properties, making it easier to model entities in the real world

more expressively. For example, consider the real world

phenomenon “Snowfall which is caused by extreme low

temperatures”. An ontology can very well describe this

phenomenon because it can have concepts “extreme low

temperatures” and “Snowfall” and relate the two with the named

relationship “causes”. A WSDL schema can have the elements

“extreme low temperatures” and “Snowfall” but since there is no

554

support for named relationships, it cannot represent this

phenomenon.

3.1 SchemaGraphs
The difference in expressiveness of XML schema and ontology

makes it very difficult to match these two models directly. A

possible solution to this problem is to convert both the models to

a common representation format to facilitate better matching. We

have used this approach and devised a representation format

called SchemaGraph. SchemaGraph thus provides a generic

solution wherein ontologies in any language like DAML, RDF-S,

or OWL etc can be used. A SchemaGraph is a set of nodes

connected by edges. We use conversion functions to convert both

XML schema and ontology1 to SchemaGraphs.

The conversion function used for converting XML schema to

SchemaGraph is WSDL2Schema and uses the conversion rules

specified in Table 1.

Table 1. XML Schema to SchemaGraph conversion rules

XML schema Construct SchemaGraph representation

ComplexType Node

Elementary XML Data Type

Element defined under

complexType

Node and an Edge between

complexType node and this node

with name “hasElement”

ComplexType XML Data

Type Element defined under

complexType

Edge

SimpleType Node

Values defined for simple

types

Node and edge between

simpleType and this node with

name “hasValue”

Elements Nodes

Example

1
 Currently we use ontologies represented using RDF-S and subset

of DAML+OIL.

Ontology2Schema is the conversion function used for creating

SchemaGraph representation of the ontology. The set of

conversion rules used for this are listed in Table 2.

Table 2. Ontology to SchemaGraph conversion rules

Ontology representation SchemaGraph representation

Class Node

Property with basic

datatypes as range

(Attribute)

Node with edge joining it to the

class with name “hasProperty”

Property with other class as

range (Attribute)

Edge between the two class nodes

Instance Node with edge joining it to the

class with name “hasInstance”

Class – subclass

relationship

Edge between class node to

subclass node with name

“hasSubClass”

Example

Once both the ontology and the XML schema are represented in a

common SchemaGraph representation, we apply our matching

algorithm to find the mappings between them. Once a concept is

matched against all the concepts in an ontology, the best mapping

needs to be picked out for annotation. In the next few sections we

present our algorithm to calculate the match between two

SchemaGraphs.

3.2 Mapping Two Concepts
Every concept from the WSDL SchemaGraph is compared against

concepts from the ontology SchemaGraph. The function

findMapping listed in Table 3 returns the mapping between a

WSDL and ontology concept pair which consists of wci, oci

(WSDL concept and ontology concept) and MS (Match Score).

<daml:Class rdf:ID="WindEvent">

 <rdfs:comment>Superclass for all events

 dealing with wind</rdfs:comment>

 <rdfs:label>Wind event</rdfs:label>

 <rdfs:subClassOf rdf:resource="#WeatherEvent" />

</daml:Class>

<daml:Property rdf:ID="windDirection">

 <rdfs:label>Wind direction</rdfs:label>

 <rdfs:domain rdf:resource="#WindEvent" />

 <rdfs:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#string" />

</daml:Property>

<daml:Property rdf:ID="windSpeed">

 <rdfs:label>Wind speed</rdfs:label>

 <rdfs:domain rdf:resource="#WindEvent" />

 <rdfs:range rdf:resource="#Speed" />

</daml:Property>

WindEvent

windDirection Speed

hasProperty windSpeed

SchemaGraph representation of the part of ontology*

<xsd:complexType name="Direction">

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="1"

 nillable="true" name="compass"

 type="xsd1:DirectionCompass" />

 <xsd:element maxOccurs="1" minOccurs="1"

 name="degrees" type="xsd:int" />

 </xsd:sequence>

</xsd:complexType>

SchemaGraph representation of the part of WSDL

Direction

degrees Direction

Compass

hasElement compass

555

Table 3. Overview of function findMapping

FUNCTION findMapping

INPUTS

wci Є W, oci Є O

where, W is the set of all elements in a WSDL

file, W = {wc1, wc2, wc3, …., wcn} in

SchemaGraph representation

and O is the set of ontological concepts of an

Ontology denoted by O = {oc1, oc2, oc3, …,

ocm} in SchemaGraph representation

OUTPUT

mi = (wci, ocj, MS)

where, mi is the mapping between wci and ocj

and MS is the Match Score calculated for the

mapping wci and ocj (MS Є [0,1])

The MS is composed of two different measures : Element Level

Match (ElemMatch) and Schema level match (SchemaMatch).

ElemMatch provides the linguistic similarity of two concepts

whereas SchemaMatch takes care of structural similarity. The MS

is calculated as the weighted average of ElemMatch and

SchemaMatch as shown in Equation 1.

() ()12w011w0,where

2w1w

hSchemaMatc*2wElemMatch*1w
 SM

≤≤≤≤
+

+=

Equation 1. Formula for Calculating Match Score (MS)

Weights w1 and w2 indicate the contribution of Element level

match and Schema level match, respectively, in the total match

score. If two concepts have a matching structure then more

weightage should be given to the SchemaMatch. If a WSDL

concept does not have any structure then the SchemaMatch should

not be considered. Based on these conditions the values of w1 and

w2 are changed as shown in Table 4.

Table 4. Weight values for calculating MS

Condition w1 w2

Default 0.4 0.6

WSDL concept is leaf node 1 0

SchemaMatch > 0.9, ElemMatch < 0.9 0.1 0.9

SchemaMatch > 0.75, ElemMatch < 0.75 0.2 0.8

SchemaMatch > 0.65, ElemMatch < 0.65 0.3 0.7

SchemaMatch < 0.5, ElemMatch > 0.5 and

WSDL Concept is of SimpleType

1 0

SchemaMatch < 0.5, ElemMatch < 0.5 and

WSDL Concept is of SimpleType

0.5 0.5

3.2.1. Element level Match (ElemMatch)
The Element level match (ElemMatch) is the measure of the

linguistic similarity between two concepts based on their names.

Here we assume that the concepts from WSDL and ontologies

have meaningful names. The ElemMatch function uses various

name and string matching algorithms like NGram, synonym

matching, abbreviation expansion, stemming, tokenization, etc.

The NGram algorithm calculates the similarity by considering the

number of qgrams [13][14][15] that the names of two concepts

have in common. The CheckSynonym algorithm uses WordNet

[16] to find synonyms whereas; the CheckAbbreviations

algorithm uses a custom abbreviation dictionary. The

TokenMatcher uses the Porter Stemmer [17] algorithm,

tokenization, stop-words removal, and substring matching

techniques to find the similarity. It first tokenizes the string based

on punctuation and capitalization. Then it removes unnecessary

words from the list of tokens, using a stop-word list. If it cannot

match these individual token then it stems them using porter

stemmer algorithm and tries to match them using NGram

technique. If any of these algorithms return a full match, i.e., 1 on

scale of 0 to 1, then a match score of 1 for linguistic similarity is

returned. If all the match algorithms give a match value of zero,

then the linguistic similarity of those concepts is 0. If on the other

hand, none of the match algorithms give a match score of 1, i.e.,

an exact match, then the average of all non-zero match scores is

taken. Equation 2 and Table 5 explain all these cases with

examples.

()
() ()()

()
()

()
()ExpansiononAbbreviatiMatchScorems

MatchingSynonymMatchScorems

NGramMatchScorems

,where

0msmsmsif

0msms1ms0if

1msmsmsif

0

ms

1

ElemMatch

3

2

1

321

312

321

2

=
=

=

===
==∧<<

=

=

∨∨

Equation 2. Formaula for Calculating ElemMatch

Table 5. Examples of ElemMatch

WSDL

Concept

Ontological

Concept

Elem

Match

Algorithm

wind WindEvent 0.639 NGram

wind WindChill 0.478 NGram

snow Snowfall 1 Synonyms

slp Sea Level Pressure 1 Abbreviation

relative_humidi

ty

Relative

Humidity

1 NGram

3.2.2. Schema level Match (SchemaMatch)
The Schema level Match is the measure of structural similarity

between two concepts. Many times concepts from both XML

schema and ontologies are expressed in terms of other concepts.

Hence while matching such concepts, it is important to match the

sub-concepts tree under that concept also. SchemaMatch accounts

for this by calculating the geometric mean of Sub-concept

Similarity (subConceptSim) and the Sub-concept Match

(subConceptMatch). Equation 3 gives the formula for

SchemaMatch.

[] []1,0MatchsubConcept1,0SimsubConcept,where

MatchsubConcept*SimsubConcepthSchemaMatc

∈∈
=

Equation 3. Formula for Calculating SchemaMatch

3.2.1.1 Sub-concept Similarity (subConceptSim)

The Sub-concept Similarity (subConceptSim) (Equation 4) is the

average match score of each individual property of the concept.

556

()

Conceptmaintheofssubconceptofnon,where

n

subconceptMS

SimsubConcept

n

1i

i

=

==
∑

Equation 4. Formula for Calculating subConceptSim

3.2.1.2 Sub-concept Match (subConceptMatch):

subConceptMatch (Equation 5) can be defined as the fraction of

the total number of properties of a concept that are matched.

()
()ssubConcepttotaln

ssubConceptmatchedn
MatchsubConcept =

Equation 5. Formula for Calculating subConceptMatch

Table 6 below shows how subConceptSim and subConceptMatch

are calculated. Pressure is the WSDL concept with sub-concepts

delta, slp and relative_humidity and PressureEvent is the

ontological sub-concept with properties Sea Level Pressure,

RelativeHumidity etc.

Table 6. Calculations of SchemaMatch

WSDL Concept

Pressure

Ontological Concept

PressureEvent

MS

Delta ---- 0

Slp Sea Level Pressure 1

relative_humidity RelativeHumidity 1

subConceptSim (Pressure, PressureEvent) = (1+1+0)/3 = 0.667

subConceptMatch (Pressure, PressureEvent) = 2/3 = 0.667

3.3 Finding the Best Mapping
As each WSDL concept is compared against all the concepts from

ontologies, it is necessary to find the best matching concept. We

have implemented a function getBestMapping listed in Table 7 for

the same.

Table 7. Overview of function getBestMapping

FUNCTION getBestMapping

INPUTS wci Є W, O = {oc1, oc2, oc3, …, ocm}

OUTPUT Best(mi = (wci, ocj, MS))

This algorithm maintains a variable for best mapping, whose MS

is checked against the newly generated mapping. If the new

mapping has a better MS, it is assigned as the best mapping. Since

we are trying to find a match for a WSDL concept, while

comparing with the ontological concept we only consider the

number of children of the WSDL concept. This gives the same

schema level match for the best matching ontological concept and

its super-concepts. Therefore, it is necessary to implement some

technique to rank the best matching ontological concept higher

than its super-concepts. The getBestMapping function achieves

this by considering the total number of sub-concepts of the two

concepts being mapped.

Table 8. Mappings for WSDL concept PhenomenonType

Ontology

Concept

Elem

Match

Schema

Match

sub

concep

ts

MS Ra

nk

Weather

Phenomena

0.614 0.854 106 0.81 2

OtherWeather

Phenomena

0.442 0.396 13 0.42 3

CurrentWeather

Phenomena

0.564 0.854 35 0.79 1

For example, consider a WSDL concept PhenomenonType which

best matches to ontological concept CurrentWeatherPhenomena

and WeatherPhenomena is the super-concept of

CurrentWeatherPhenomena. From Table 8 we can see that both

have the same SchemaMatch but WeatherPhenomena has a better

ElementMatch making MS for it slightly better than the MS of

CurrentWeatherPhenomena. Thus if we do ranking based on MS,

WeatherPhenomena will get ranked higher. This can be avoided

by considering the number of sub-concepts of both of them. From

Table 4 we know that ElemMatch has very little weightage (0.2) if

SchemaMatch is above 0.75. Also if we have two candidate

concepts with same SchemaMatch value, then the concept with

less number of sub-concepts is a better match. Thus ranking

algorithm gives more weight to number of concepts than

ElemMatch when SchemaMatch is same. Hence we are able to

rank CurrentWeatherPhenomena higher than WeatherPhenomena.

3.4 Categorizing and Annotating WSDL
Each Web service description, i.e., the WSDL file, is compared

against all the ontologies in the Ontology-store (Explained in

Section 4). For every ontology, a set of mapping is created. Two

measures are derived from these set of mappings; the first is the

Average Concept Match (avgConceptMatch) and the second is the

Average Service Match (avgServiceMatch).

3.4.1. Average Concept Match (avgConceptMatch)

The Average concept match tells the user about the degree of

similarity between matched concepts of the WSDL schema and

ontology. This measure is used to decide if the computed

mappings should be accepted for annotation. It is normalized on

the scale of 0 to 1 where 0 denotes no similarity and 1 denotes

complete similarity. Equation 6 gives the formula for

avgConceptMatch.

()

conceptsmappedofnok,where

k

mMS

MatchavgConcept

k

1i

i

=

=
∑

=

Equation 6. Formula for Calculating avgConceptMatch

3.4.2. Average Service Match (avgServiceMatch)
The Average service match helps us to categorize the service into

categories. It is calculated as the average match of all the concepts

of a WSDL schema and a domain ontology. The domain of the

ontology corresponding to the best average service match also

represents the domain of the Web service. The Average service

557

match as shown in Equation 7 is also normalized on the scale of 0

to 1.

()

conceptstotalof.non

conceptsmappedof.nok,where

n

mMS

MatchavgService

k

1i

i

=
=

=
∑

=

Equation 7. Formula for Calculating avgServiceMatch

We explain both these measures further with the example given in

Table 9. From the table we can see that AirportWeather service

matches better with Weather-ont ontology (5 ot of 8 concepts

mapped) than Geo ontology (2 out of 8 concepts mapped).

Therefore, the domain of AirportWeather service is Weather.

Similarly, IMapQuest service is from Geographical domain.

Table 9. avgServiceMatch and avgConceptMatch

Num concepts Web

service

Ontolo

-gy total mappe

d

avg

concept

Match

avg

service

Match

Airport

Weather

Weathe

r-ont

8 5 0.756 0.47

Airport

Weather

Geo 8 2 0.655 0.16

IMapQuest Geo 9 6 0.9 0.6

IMapQuest Weathe

r-ont

9 2 0.388 0.075

4. ARCHITECTURE
In this section we explain the architecture of the system. The three

main components of the system are an ontology-store, the matcher

library, and a translator library.

4.1 Ontology-Store
Ontology-store as the name suggests stores the ontologies. These

ontologies will be used by the system to annotate the Web service

descriptions in WSDL. The ontologies are categorized into

domains. The system allows the user to add new ontologies to the

ontology store. Currently the system supports DAML, and RDF-S

ontologies. These ontologies are stored as “.daml” or “.rdfs” files

in different folders. Names of these folders correspond to domain

names. This component of our architecture will be replaced by a

high quality search mechanism of ontologies from ontology

registries or a P2P mechanism supporting semantic search of

ontologies [8].

4.2 Translator Library
The translator library consists of the programs that are used to

generate the SchemaGraph representations (explained in Section

3.1). Currently, the translator library provides two translators,

WSDL2graph and Ontology2graph. WSDL2graph takes as input

the WSDL file to be annotated and generates the SchemaGraph

representation, which is fed to the matching algorithm. In a

similar manner the Ontology2Graph generates the SchemaGraph

for the ontology.

4.3 Matcher Library
The matcher library provides two types of matching algorithms,

element level matching algorithms and schema matching

algorithms.

Currently only one schema matching algorithm, findGraphMatch,

is implemented. Element level matching algorithms provided by

the library include NGram, TokenMatcher, CheckSysnonyms and

CheckAbbreviations which are detailed in Section 3.2.1. The

Matcher library also provides user with option to add new

matching algorithms using an API. Figure 2 shows the interface

for selecting existing element level algorithms and for adding new

ones.

Figure 2. Matcher Library – Algorithm Selector

Once the getBestMapping function returns a set of best mappings

for the WSDL schema the mappings can be displayed using the

user interface. The user is provided with the ability to accept or

reject the suggested mappings. Concepts can also be matched

manually. The user can also visualize the WSDL descriptions and

ontologies in a tree format. Once the mappings are accepted, they

are written back to the WSDL file (Section 9 – Figure 5). Figure 3

gives an overview of MWSAF architecture.

Figure 3. MWSAF – Architecture

558

5. RESULTS AND EMPIRICAL TESTING
To test our algorithm we first obtained a corpus2 of 424 Web

services from SALCentral.org and XMethods.com. Although our

initial intention was to test our algorithm on the whole corpus, we

have limited our testing to two domains, due to lack of relevant

domain specific ontologies. We are in the process of creating new

domain ontologies and plan to extend our testing for remaining

Web services in the future.

The two domains we have selected for testing are Weather and

Geographical domains. Although the ontologies used are not

comprehensive enough to cover all the concepts in these domains,

they are sufficient enough to serve the purpose of categorization.

We have taken a set of 24 services out of which 15 are from

geographical domain and 9 from weather domain. The services are

categorized based on the categorization threshold (CT), which

decides if the service belongs to a domain. If the best average

service match (Section 3.4.2) calculated for a particular Web

service is above the CT then the service belongs to the

corresponding domain. Graph 1 depicts the categorization

obtained by applying our algorithm on this set of 24 Web services

for different CT values.

5

7

9 9

17

15

0

5

10

15

2 0

N
u

m
b

e
r

o
f

S
e
rv

ic
e
s

We a t he r Ge o

Service Category

C atego rizat io n T hresho ld = 0 .5

C atego rizat io n T hresho ld = 0 .4

A ctual N umber o f Serv ices

Graph 1. Categorization statistics of Web services

It is very important to choose the CT value correctly. We can see

from Graph 1 that for CT = 0.5, very few services have been

categorized. Whereas for CT = 0.4, although all Web services are

categorized, two services from the weather domain have been

wrongly categorized in the geographical domain. These two

services are WorldWeather and ForecastByICAO. Both these

services take “ICAO code” as input and return the “weather as an

array of string”. As the output is not described in terms of

concepts from weather domain and the categorization is based

only on the input concept “ICAO code” (which is mapped to

concept from Geo ontology), these services are wrongly

categorized.

2 Acknowledgement: Andreas Hess and N. Kushmeric [18] for

lending us the corpus

Weather-ont

Weather-ont

Weather-ont

Geo

Geo

Weather-ont

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Glo balweather A irpo rtWeather F astWeather G eo cash Geo WeatherF etcher

Weather-ont Geo Univ Gentology Atlas-Publication

Graph 2. Selecting domain for a Web service

Graph 2 summarizes the categorization process of 6 different Web

services. These services are compared to 5 different ontologies

and the average service match scores are obtained. A service

belongs to the category of the domain ontology for which it gives

the best match score. For example, the second service in the

graph, i.e., the AirportWeather service best matches to the

“Weather-ont” ontology and hence belongs to the weather

domain. The match scores for other domain ontologies suggest

that this service may contain a few concepts from these other

domains.

Graph 3 shows two plots of match scores of 17 Web services

(categorized in geographical domain) compared with two versions

of domain specific Geo ontology. The lower plot shows Match

Scores with the original Geo ontology. We can see that the Match

Scores are quite low because the Geo ontology (number of

concepts = 94) is not comprehensive enough to contain all the

concepts from the geographical domain. This observation is

proved by the upper plot, which shows a significant increase in

Match Scores of these Web services, when compared with the

new Geo ontology with a few added concepts.

0

0.2

0.4

0.6

0.8

1

G
eo

ca
sh

G
eo

C
al

cD
is
ta

n
ce

D
ir
e
ct

io
n
S
er

vi
ce

Fo
re

ca
st

B
yI

C
A
O

G
eo

P
h
on

e

Lo
ca

ti
o
n
In

fo

Im
ap

qu
e
st

P
o
st

A
dd

rC
o
rr

ec
t

P
o
in

tW
SP

S
er

vi
ce

4
0

S
er

vi
ce

O
bj

ec
ts

U
S
Zi

p
C
od

e

W
o
rl
d
W

e
at

h
er

zi
p
4

Z
ip

co
d
eR

es
ol

ve
r

zi
p
C
o
de

s

Services

Mapings with Original Geo ontology

Mappings with New Geo ontology

Graph 3. Mappings with Geo ontology – Match Scores

Graph 4 gives a comparison between total number of concepts and

the number of mapped concepts for all the 17 Web services. The

topmost plot shows total number of concepts in web services, the

plot at bottom shows number of mapped concepts before adding

new concepts to Geo ontology and the middle plot shows the

number of concepts mapped after adding new concepts to the

559

ontology. This plot also supports the fact that matches are low due

to the incomplete domain ontology.

0

8

16

24

32

40

48

56

G
eo

ca
sh

G
eo

C
al

cD
is
ta

n
ce

D
ir
e
ct

io
n
S
er

vi
ce

Fo
re

ca
st

B
yI

C
A
O

G
eo

P
h
on

e

Lo
ca

ti
o
n
In

fo

Im
ap

qu
e
st

P
o
st

A
dd

rC
o
rr

ec
t

P
o
in

tW
SP

S
er

vi
ce

4
0

S
er

vi
ce

O
bj

ec
ts

U
S
Zi

p
C
od

e

W
o
rl
d
W

e
at

h
er

zi
p
4

Z
ip

co
d
eR

es
ol

ve
r

zi
p
C
o
de

s

Services

Total Number of Concepts

Mapped to original Geo ontology

Mapped to modified Geo ontology

Graph 4. Mappings with Geo ontology – Number of concepts

Although Graph 3 and Graph 4 show that low match scores can be

improved with better ontologies, still we can see that some of the

Web services do not show much increase in the Match Scores.

The reason behind this is many Web services span more than one

domain and hence contain concepts from domains other than the

geographical domain. Also as WSDL files are generated

automatically by web servers, the input and output parameters do

not always have meaningful names.

6. RELATED WORK
Our work presents an approach for adding semantics to Web

services. In this section, we discuss some other efforts that

describe adding semantics to Web services. We also look into

some schema matching efforts, as it is the basis of our approach to

semantically describe Web services.

DAML-S (soon to be OWL-S) uses an upper ontology to

semantically describe Web services. We share the vision of adding

semantics to Web services by using annotated WSDL descriptions

in our previous work [8]. The common factor in the

aforementioned two efforts is in mapping the message parts in

WSDL to ontologies. With the potential growth in Web services,

finding relevant ontologies for a particular service will be a

significant problem. An even more difficult task will be to map

the concepts in the ontologies to elements in WSDL. Even though

DAML-S assumes manual annotation of Web services, we believe

that annotation in the real world will be a non-trivial task, without

some degree of automation. This work primarily aims on

providing a semi-automatic approach to matching elements in

WSDL to ontologies. [18] talks about using semantic metadata to

semi-automatically categorize Web services into predefined

categories making the service discovery simpler. It uses machine

learning techniques for categorization. There are two significant

differences in our approach and that suggested in [18]. First, we

believe our approach is richer as we consider the structure of

WSDL concepts, rather than just the names. Secondly, we use

ontologies for classification as compared to vocabularies used by

[18]. Ontologies are more descriptive and capture domains more

accurately than vocabularies, leading to better classification.

Since we are matching XML schema used by the WSDL files to

ontologies, it is worthwhile to explore the Ontology matching and

Schema matching areas. Mapping ontologies is a hard problem

[19]. The research in this area varies from ontology merging [20]

to mapping ontologies for service discovery [21]. The techniques

used are also varied, ranging from machine learning [22][23],

graph analysis [20][24], to heuristic based matching [24]. Schema

matching is an old research area and there has been a lot of

research in this area from different perspectives [24], which is

also related to earlier schema integration work [26][27][28].

There are different approaches to schema matching like matching

the whole schema structure versus matching the individual

elements of the schema. There are many machine learning

techniques [29][30][31] where some matching rules are fed to the

match algorithm and then it guesses the new matches. Some

match algorithms use more than one technique and are called

hybrid matchers. Due to space limitation, we are not able to

discuss all of them in this paper. Rather, we focus on two of the

more relevant schema matching techniques and their relationship

to our work, namely, COMA [32] and Cupid [33].

Cupid is a hybrid matcher which combines name matching with

structure matching. It uses predefined synonym dictionary to find

element level matches. Every schema node has two dimensions of

similarity; the element level match calculated using name matches

and predefined synonym dictionary and structure match. COMA

implements a matcher library which has different matchers

varying from simple matchers like name, soundex, and synonym

matchers to hybrid matchers using name and path information.

Although these matching techniques are different and find the

matches using different algorithms, some of the basic steps like

name matching, tokenization, word expansion, finding words with

similar meaning, etc., are common. In fact, even though the

implementations are different, these steps are the basis of the most

of the schema matching techniques.

In this paper, we have discussed annotation of input and output

concepts of Web services. Relating Web services to process

ontologies has been discussed in [34]. We are currently working

on algorithms to map operations in WSDL files to concepts in

process ontologies.

7. CONCLUSION AND FUTURE WORK
In this paper we have described MWSAF, a framework for semi-

automatic annotation of Web services. We have discussed the

issues in matching XML schemas to ontologies, which forms the

crux of our approach.. This work was undertaken as a part of the

METEOR-S system. While many other efforts have talked about

adding semantics to Web services, practical implications of

actually annotating Web services with real world ontologies have

not been discussed in great detail. We further carried out

experiments involving Web services and ontologies independently

created by others, and coped with the practical difficulty in our

effort due to lack of domain ontologies and well structured WSDL

files. This prototyping and early experimentation leads us to

believe that our approach will scale well when the users will have

560

to deal with thousands of Web services, but also have the benefit

of higher quality and more comprehensive ontologies. We plan to

release our tool for public use through sourceforge. We are

currently working on completing the documentation and user

guide for this public release.

8. REFERENCES
[1] METEOR-S: Semantic Web Services and Processes,

http://swp.semanticweb.org

[2] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,

D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T.

Payne, and K. Sycara, “DAML-S: Web service Description

for the Semantic Web”, Proceedings of the 1st International

Semantic Web Conference (ISWC 2002).

[3] S. Agarwal, S. Handschuh, and S. Staab, “Surfing the

Service Web”, Proceedings of the 2nd International

Semantic Web Conference (ISWC 2003).

[4] A. Sheth, C. Ramakrishnan, “Semantic (Web) Technology In

Action Ontology Driven Information Systems for Search,

Integration and Analysis”, To appear in Data Engineering

special issue on the Semantic Web. December 2003.

[5] P. Holland, “Building Web Services From Existing

Application”, eAI Journal, September 2002, 45-47.

[6] D. Fensel, C. Bussler, “The Web service Modeling

Framework”, Vrije Universiteit Amsterdam (VU) and Oracle

Corporation

[7] A. Sheth, “Semantic Web Process Lifecycle: Role of

Semantics in Annotation, Discovery, Composition and

Orchestration”, Invited Talk, WWW 2003 Workshop on E-

Services and the Semantic Web, Budapest, Hungary, May 20,

2003.

[8] Web Service Conceptual Architecture (WSCA 1.0), IBM

Technical White Paper, May 2001.

[9] K. Verma, K. Sivashanmugam., A. Sheth, A. Patil, S.

Oundhakar, and J. Miller, “METEOR–S WSDI: A Scalable

Infrastructure of Registries for Semantic Publication and

Discovery of Web Services”, Journal of Information

Technology and Management (to appear, 2004).

[10] K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma,

“Framework for Semantic Web Process Composition”,

Technical Report 03-008, LSDIS Lab, Computer Science

Dept., UGA.

[11] M. Klein, D. Fensel, F. Harmelen, and I. Horrocks, “The

Relation between Ontologies and XML Schemata”,

Proceedings of the {ECAI}'00 Workshop on Applications of

Ontologies and Problem-Solving Methods, Berlin, Aug

2000.

[12] D. Fensel, “Ontologies: Silver Bullet for Knowledge

Management and Electronic Commerce”, Springer Verlag,

2001.

[13] R. C. Angell, G. E. Freund, et al., “Automatic Spelling

Correction using a Trigram Similarity Measure”, Information

Processing and Management, 1983.

[14] G. Salton, “Automatic Text Processing: The Transformation,

Analysis and Retrieval of Information by Computer”,

Massachusetts, Addison-Wesley, 1988.

[15] E. Zamora, J. Pollock, et al., “The Use of Trigram Analysis

for Spelling Error Detection”, Information Processing and

Management, 1981.

[16] G. Miller, “Special Issue, WordNet: An on-line lexical

database”, International Journal of Lexicography, Vol. 3,

Num. 4, 1990.

[17] M. Porter, “An Algorithm for Suffix Stripping”, Program –

Automated Library and Information Systems, 1980.

[18] A. Hess and N. Kushmerick, “Automatically attaching

semantic metadata to Web services”, Proceedings of the 2nd

International Semantic Web Conference (ISWC 2003).

[19] M. Klein, “Combining and relating ontologies: an analysis of

problems and solutions”, in (IJCAI 2001).

[20] N. Noy and M. Musen, “PROMPT: Algorithm and Tool for

Automated Ontology Merging and Alignment”, Proceedings

of the National Conference on Artificial Intelligence (AAAI

2000).

[21] J. Cardoso and A. Sheth, “Semantic e-Workflow

Composition”.

[22] A. Doan, J. Madhavan, P. Domingos, and A. Halevy,

“Learning to Map between Ontologies on the Semantic

Web”, Describes the GLUE system, (WWW 2002).

[23] G. Stumme and A. Mädche, “FCA-Merge: Bottom-up

merging of ontologies”, Seventh Intl. Conf. on Artificial

Intelligence (IJCAI ’01), pages 225–230, Seattle, WA, 2001.

[24] P. Mitra, G. Wiederhold, and M. Kersten, “A graph-oriented

model for articulation of ontology interdependencies”,

Proceedings Conference on Extending Database Technology

2000 (EDBT’2000), Konstanz, Germany, 2000.

[25] H. Do, S. Melnik, and E. Rahm, “Comparison of schema

matching evaluations”, Proceedings of the 2nd Int.

Workshop on Web Databases (German Informatics Society),

2002.

[26] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian, “On the

logical foundations of schema integration and evolution in

heterogeneous database systems”, Proceedings of DOOD’93,

pages 81-100, Phoenix, AZ, December 1993.

[27] I. Schmitt and C. Türker, “An incremental approach to

schema integration by refining extensional relationships”,

Proceedings of the Seventh International Conference on

Information and Knowledge Management, 1998.

[28] F. Hakimpour and A. Geppert, “Resolving semantic

heterogeneity in schema integration: An ontology based

approach”, Proceedings of International conference on

Formal Ontologies in Information Systems FOIS'01. ACM

Press, October 2001.

[29] J. Berlin, and A. Motro, “Autoplex, Automated Discovery of

Content for Virtual Databases”, CoopIS 2001, 108–122.

[30] A. H. Doan, P. Domingos, and A. Halevy, “Reconciling

Schemas of Disparate Data Sources: A Machine-Learning

Approach”, SIGMOD 2001.

[31] A. H. Doan, J. Madhavan, P. Domingos, and A. Halevy,

“Learning to Map between Ontologies on the Semantic

Web”, WWW 2002.

[32] Hong-Hai Do and E. Rahm, “COMA - A System for Flexible

Combination of Schema Matching Approaches”,

561

Proceedings of the 28th International Conference on Very

Large Databases (VLDB), 2002.

[33] J. Madhavan, P. Bernstein, and E. Rahm, “Generic Schema

Matching with Cupid”, Proceedings of the International

Conference on Very Large Databases (VLDB), 2001.

[34] M. Klein and A. Bernstein, “Searching for Services on the

Semantic Web using Process Ontologies”, The First

Semantic Web Working Symposium (SWWS-1), 2001,

Stanford, CA, USA.

9. APPENDIX A

Figure 4. Screenshot of the MWSAF tool

Figure 4 above gives a screenshot of the MWSAF tool. The user first loads the WSDL file (1) to be mapped. This WSDL file is compared

with all the ontologies from the ontology-store to find the most suitable domain ontology using the “findDomain” option from the “Tools”

menu. This option returns the match scores with each ontology (2). The best-matched ontology can then be selected for annotation.

Mappings for this ontology can be viewed and the user can accept or reject suggested mappings (3). The tool also allows viewing of

mappings with other ontologies, in case if the WSDL file contains concepts from other domains. There is also a facility to add extra

mappings manually. The WSDL file and ontology can be viewed in a tree format (1) and (5) respectively to facilitate manual mapping. (4)

shows accepted mappings, which are then written to the WSDL file as shown in Figure 5.

11

22

11

33

44

55

+<xsd:complexType Ont-Concept="weather:windDirection" name="Direction">

- <xsd:complexType name="Station">

- <xsd:sequence>

 <xsd:element Ont-Concept="geo:icao" maxOccurs="1" minOccurs="1" name="icao" nillable="true" type="xsd:string" />

 <xsd:element Ont-Concept="geo:wmo" maxOccurs="1" minOccurs="1" name="wmo" nillable="true" type="xsd:string" />

 <xsd:element Ont-Concept="geo:iata" maxOccurs="1" minOccurs="1" name="iata" nillable="true" type="xsd:string" />

 <xsd:element Ont-Concept="geo:elevation" maxOccurs="1" minOccurs="1" name="elevation" type="xsd:double" />

 <xsd:element Ont-Concept="geo:latitude" maxOccurs="1" minOccurs="1" name="latitude" type="xsd:double" />

 <xsd:element Ont-Concept="geo:longitude" maxOccurs="1" minOccurs="1" name="longitude" type="xsd:double" />

 </xsd:sequence>

 </xsd:complexType>

Figure 5. Part of Annotated WSDL file

562

