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ABSTRACT 

The World Wide Web is emerging not only as an infrastructure 

for data, but also for a broader variety of resources that are 

increasingly being made available as Web services. Relevant 

current standards like UDDI, WSDL, and SOAP are in their 

fledgling years and form the basis of making Web services a 

workable and broadly adopted technology. However, realizing the 

fuller scope of the promise of Web services and associated service 

oriented architecture will requite further technological advances in 

the areas of service interoperation, service discovery, service 

composition, and process orchestration. Semantics, especially as 

supported by the use of ontologies, and related Semantic Web 

technologies, are likely to provide better qualitative and scalable 

solutions to these requirements. Just as semantic annotation of 

data in the Semantic Web is the first critical step to better search, 

integration and analytics over heterogeneous data, semantic 

annotation of Web services is an equally critical first step to 

achieving the above promise. Our approach is to work with 

existing Web services technologies and combine them with ideas 

from the Semantic Web to create a better framework for Web 

service discovery and composition. In this paper we 

present MWSAF (METEOR-S Web Service Annotation 

Framework), a framework for semi-automatically marking up Web 

service descriptions with ontologies. We have developed 

algorithms to match and annotate WSDL files with relevant 

ontologies. We use domain ontologies to categorize Web services 

into domains. An empirical study of our approach is presented to 

help evaluate its performance. 

Categories and Subject Descriptors 
D.2.12 [Software Engineering]: Interoperability – data mapping, 

interface definition languages, D.3.1 [Programming 

Languages]: Formal definitions and Theory – semantics, H.3.5 

[Information Storage and Retrieval]: Online Information 

Services – data sharing, web-based services 

General Terms: Algorithms, Experimentation. 

Keywords: Semantic Web services, WSDL, Ontology, 

semantic annotation of Web services, Web services discovery 

1. INTRODUCTION 
Web services are the latest attempt to revolutionize large scale 

distributed computing. With XML based standards like UDDI, 

WSDL, and SOAP, they are touted as the tools for universal 

connectivity and interoperability of applications and services. 

With the growing popularity of Web services, there arise issues of 

finding relevant services, especially with the possibility of the 

existence of thousands of Web services. We envision Web 

services as being initially applied more to address B2B/EAI 

challenges, rather than B2C services. In this context, Web services 

will be used as part of larger Web processes that result from Web 

services composition. Current standards have focused on 

operational and syntactic details for implementation and execution 

of Web services. This limits the search mechanism for Web 

services to keyword-based searches. Consider a scenario, where a 

user may want a Web service that takes “weather station code” as 

input and gives “Atmospheric conditions” as output. The current 

search mechanism at a popular Web service repository like 

Salcentral.com allows only keyword searches. Searching for the 

keyword “weather” gives about 3% of the total Web services in 

that repository. It returns all Web services, which have weather, 

mentioned in their description. The user has to manually analyze 

WSDL files to find the appropriate service. Five years from now 

when we are expected to have thousands of services, current 

syntactic search along with manual intervention would be 

untenable. Research in the Semantic Web area has shown that 

annotation with metadata can help us solve the problem of 

inefficient keyword based searches in the current web (which is 

based on HTML, HTTP, and URI’s). This concept of annotation 

can be extended to Web services to envision Semantic Web 

services. Semantically described services will enable better 

service discovery and allow easier interoperation and composition 

of Web services.  

Several approaches have already been suggested for adding 

semantics to Web services. Semantics can either be added to 

currently existing syntactic Web service standards like UDDI or 

WSDL [1] or services can be described using some ontology 

based description language like DAML-S [2]. The common factor 

in most of these approaches is relating concepts in Web services 

to domain specific ontologies. This relating and tagging of 

descriptions with concepts in ontologies is referred to as 

annotation. While significant research has been done on what to 

annotate, there has been little work on how to annotate. Current 

research of Web service annotation largely focuses on manual 

annotation [3] that poses several problems. The first problem is 

that of finding the relevant ontology or ontologies. In manual 

annotation, the burden of choosing the relevant ontology or 

ontologies lies with the user. This significantly increases the pre-

match effort as the user has to browse through the available 

ontologies to find a suitable domain ontology or ontologies (since 

a Web service may span more than one domain and may have to 

be mapped to a number of ontologies). The second problem arises 

because of the size of the Web service description and the size of 

the ontology or vocabulary. As Web service descriptions grow 

 

Copyright is held by the author/owner(s). 

WWW 2004, May 17–22, 2004, New York, New York, USA. 

ACM 1-58113-844-X/04/0005. 

 

553



 

larger (e.g., even a modest Web service “GlobalWeather” by 

CapeScience has 53 different elements and 55 different values of 

the parameters adding up to 108 concepts), the potential number 

of concepts in the Web service increase manifold. Furthermore the 

vocabularies, taxonomies, or ontologies used for annotation could 

also be very large with correspondingly large number of concepts 

(e.g. the world-fact-book ontology contains more than 1100 

concepts). Notice that average real world ontologies have been 

reported to exceed over 1 million instances [4]. Hence finding the 

appropriate ontological concepts to match to WSDL concepts can 

be a very tedious task. As we progress towards a Web of services, 

the number of services are likely to be in thousands or even more 

[5]. Given these factors, it is necessary to have a scalable and 

semi-automated way of annotating Web services with real world 

ontologies. 

A key enabling capability that can address the above scalability 

challenge is annotation with as much automation as possible 

without losing quality. We present a framework, METEOR-S 

Web service Annotation Framework (MWSAF), to semi-

automatically annotate WSDL descriptions of the services with 

relevant ontologies. MWSAF is a part of an ongoing project, 

METEOR-S, an effort to create Semantic Web processes, at the 

LSDIS lab, University of Georgia. We have implemented a 

number of algorithms to match concepts in WSDL files to 

ontologies.  

We describe the architecture, implementation, and working of the 

MWSAF in this paper. The main contributions of our work are 

• Addressing the need for semantics in the Web services 

framework, and providing a detailed approach that identifies 

four types of semantics for describing Semantic Web services 

• Identifying the technical challenges in (semantic) annotation 

of Web services.  

• Implementing algorithms for Semantic Annotation and 

categorization of Web services  

• Empirical testing of semantic annotation of Web services  

The rest of the paper is organized as follows: Section 2 describes 

the four types of semantics involved in the Web services 

framework. Section 3 describes the implementation and matching 

issues. The architecture is discussed in Section 4. Section 5 

discusses the empirical study. Section 6 lists the related works. 

We conclude in Section 7 and give an outline for future work. 

2. METEOR-S - ADDING SEMANTICS TO 
WEB SERVICE INDUSTRIAL STANDARDS 
There have been several attempts to add semantics to Web 

services [6][1]. The METEOR-S project at the LSDIS Lab, UGA 

attempts to add semantics to the complete Web process lifecycle 

by providing constructs for adding semantics to current industry 

standards. We believe our approach is more pragmatic than other 

top down approaches [2], which require developing new standards 

with no tangible benefits over our approach. We identify the four 

categories of semantics in the complete Web process lifecycle [7]. 

• Data Semantics (semantics of inputs/outputs of Web services) 

• Functional Semantics (what does a service do) 

• Execution Semantics (correctness & verification of execution 

) 

• QoS Semantics (performance and cost parameters associated 

with service) 

Covering the complete lifecycle of Web services involves adding 

the four categories of semantics to different layers of the Web 

service stack [8]. The service description layer of the stack 

provides the information necessary for invoking Web services. 

WSDL is the de facto standard for this layer. However, WSDL 

descriptions are syntactic and do not explicate the semantics of 

the service providers. METEOR-S provides a mechanism to add 

data, functional and QoS semantics to WSDL files. MWSDI 

provides an infrastructure to leverage data, functional and QoS 

semantics by enhancing UDDI [9]. The top layer i.e. the flow 

layer deals mainly with service composition. A comprehensive 

framework for Semantic Web service composition is provided in 

MWSCF [10]. This paper concentrates on a semi-automated 

approach for adding data semantics to WSDL files. 

Figure 1 gives an overview of these four types of semantics and 

different stages of Web process lifecycle development. 

 

Figure 1. Four types of Semantics in Web services 

3. IMPLEMENTATION AND MATCHING 

ISSUES 
Expressiveness of ontologies and the XML schema used by 

WSDL are significantly different because of the different reasons 

behind their development [11]. The XML schema is used in 

WSDL descriptions to provide a basic structure to the data 

exchanged by the Web service. It therefore provides a minimal 

containment relationship using the complexType, simpleType and 

element constructs. On the other hand ontologies are developed to 

capture real world knowledge and domain theory [12]. Therefore 

the languages used to describe the ontologies, model the real 

world entities as classes (concepts) and their properties. They also 

provide the named relationships between different concepts and 

properties, making it easier to model entities in the real world 

more expressively. For example, consider the real world 

phenomenon “Snowfall which is caused by extreme low 

temperatures”. An ontology can very well describe this 

phenomenon because it can have concepts “extreme low 

temperatures” and “Snowfall” and relate the two with the named 

relationship “causes”. A WSDL schema can have the elements 

“extreme low temperatures” and “Snowfall” but since there is no 
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support for named relationships, it cannot represent this 

phenomenon.  

3.1 SchemaGraphs 
The difference in expressiveness of XML schema and ontology 

makes it very difficult to match these two models directly. A 

possible solution to this problem is to convert both the models to 

a common representation format to facilitate better matching. We 

have used this approach and devised a representation format 

called SchemaGraph. SchemaGraph thus provides a generic 

solution wherein ontologies in any language like DAML, RDF-S, 

or OWL etc can be used. A SchemaGraph is a set of nodes 

connected by edges. We use conversion functions to convert both 

XML schema and ontology1 to SchemaGraphs.  

The conversion function used for converting XML schema to 

SchemaGraph is WSDL2Schema and uses the conversion rules 

specified in Table 1. 

Table 1. XML Schema to SchemaGraph conversion rules 

XML schema Construct SchemaGraph representation 

ComplexType Node 

Elementary XML Data Type 

Element defined under 

complexType   

Node and an Edge between 

complexType node and this node 

with name “hasElement” 

ComplexType XML Data 

Type Element defined under 

complexType   

Edge  

SimpleType Node 

Values defined for simple 

types 

Node and edge between 

simpleType and this node with 

name “hasValue” 

Elements Nodes 

Example 

 

                                                                 

1
 Currently we use ontologies represented using RDF-S and subset 

of DAML+OIL. 

Ontology2Schema is the conversion function used for creating 

SchemaGraph representation of the ontology. The set of 

conversion rules used for this are listed in Table 2. 

 

Table 2. Ontology to SchemaGraph conversion rules 

Ontology representation SchemaGraph representation 

Class Node 

Property with basic 

datatypes as range 

(Attribute) 

Node with edge joining it to the 

class with name “hasProperty” 

Property with other class as 

range (Attribute) 

Edge between the two class nodes 

Instance Node with edge joining it to the 

class with name “hasInstance” 

Class – subclass 

relationship 

Edge between class node to 

subclass node with name 

“hasSubClass” 

Example 

 

Once both the ontology and the XML schema are represented in a 

common SchemaGraph representation, we apply our matching 

algorithm to find the mappings between them. Once a concept is 

matched against all the concepts in an ontology, the best mapping 

needs to be picked out for annotation. In the next few sections we 

present our algorithm to calculate the match between two 

SchemaGraphs. 

3.2 Mapping Two Concepts 
Every concept from the WSDL SchemaGraph is compared against 

concepts from the ontology SchemaGraph. The function 

findMapping listed in Table 3 returns the mapping between a 

WSDL and ontology concept pair which consists of wci, oci 

(WSDL concept and  ontology concept) and MS (Match Score). 

<daml:Class rdf:ID="WindEvent"> 

     <rdfs:comment>Superclass for all events  

          dealing with wind</rdfs:comment>  

     <rdfs:label>Wind event</rdfs:label>  

     <rdfs:subClassOf rdf:resource="#WeatherEvent" />  

</daml:Class> 

<daml:Property rdf:ID="windDirection"> 

     <rdfs:label>Wind direction</rdfs:label>  

     <rdfs:domain rdf:resource="#WindEvent" /> 

     <rdfs:range rdf:resource = 

"http://www.w3.org/2000/10/XMLSchema#string" />  

</daml:Property> 

<daml:Property rdf:ID="windSpeed"> 

    <rdfs:label>Wind speed</rdfs:label>  

    <rdfs:domain rdf:resource="#WindEvent" />  

    <rdfs:range rdf:resource="#Speed" />  

</daml:Property>  

WindEvent 

windDirection Speed 

hasProperty windSpeed

SchemaGraph representation of  the part of ontology* 

<xsd:complexType name="Direction"> 

   <xsd:sequence> 

     <xsd:element maxOccurs="1" minOccurs="1"       

           nillable="true"  name="compass" 

           type="xsd1:DirectionCompass" />  

     <xsd:element maxOccurs="1" minOccurs="1"  

           name="degrees" type="xsd:int" />  

   </xsd:sequence> 

</xsd:complexType>   

SchemaGraph representation of  the part of WSDL 

Direction 

degrees Direction 

Compass 

hasElement compass 
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Table 3. Overview of function findMapping 

FUNCTION   findMapping 

INPUTS 

 

wci Є W, oci Є O 

where, W is the set of all elements in a WSDL 

file, W = {wc1, wc2, wc3, …., wcn} in 

SchemaGraph representation 

and O is the set of ontological concepts of an 

Ontology denoted by O = {oc1, oc2, oc3, …, 

ocm} in SchemaGraph representation 

OUTPUT 

 

mi = (wci, ocj, MS) 

where, mi is the mapping between wci and ocj 

and MS is the Match Score calculated for the 

mapping wci and ocj ( MS Є [0,1] ) 

The MS is composed of two different measures : Element Level 

Match (ElemMatch) and Schema level match (SchemaMatch). 

ElemMatch provides the linguistic similarity of two concepts 

whereas SchemaMatch takes care of structural similarity. The MS 

is calculated as the weighted average of ElemMatch and 

SchemaMatch as shown in Equation 1. 

( ) ( )12w011w0,where

2w1w

hSchemaMatc*2wElemMatch*1w
  SM

≤≤≤≤
+

+=

 

Equation 1. Formula for Calculating Match Score (MS) 

Weights w1 and w2 indicate the contribution of Element level 

match and Schema level match, respectively, in the total match 

score. If two concepts have a matching structure then more 

weightage should be given to the SchemaMatch. If a WSDL 

concept does not have any structure then the SchemaMatch should 

not be considered. Based on these conditions the values of w1 and 

w2 are changed as shown in Table 4. 

Table 4. Weight values for calculating MS 

Condition w1 w2 

Default 0.4 0.6 

WSDL concept is leaf node 1 0 

SchemaMatch > 0.9, ElemMatch < 0.9 0.1 0.9 

SchemaMatch > 0.75, ElemMatch < 0.75 0.2 0.8 

SchemaMatch > 0.65, ElemMatch < 0.65  0.3 0.7 

SchemaMatch < 0.5, ElemMatch > 0.5 and 

WSDL Concept is of SimpleType 

1 0 

SchemaMatch < 0.5, ElemMatch < 0.5 and 

WSDL Concept is of SimpleType 

0.5 0.5 

3.2.1. Element level Match (ElemMatch) 
The Element level match (ElemMatch) is the measure of the 

linguistic similarity between two concepts based on their names. 

Here we assume that the concepts from WSDL and ontologies 

have meaningful names. The ElemMatch function uses various 

name and string matching algorithms like NGram, synonym 

matching, abbreviation expansion, stemming, tokenization, etc. 

The NGram algorithm calculates the similarity by considering the 

number of qgrams [13][14][15] that the names of two concepts 

have in common. The CheckSynonym algorithm uses WordNet 

[16] to find synonyms whereas; the CheckAbbreviations 

algorithm uses a custom abbreviation dictionary. The 

TokenMatcher uses the Porter Stemmer [17] algorithm, 

tokenization, stop-words removal, and substring matching 

techniques to find the similarity. It first tokenizes the string based 

on punctuation and capitalization. Then it removes unnecessary 

words from the list of tokens, using a stop-word list. If it cannot 

match these individual token then it stems them using porter 

stemmer algorithm and tries to match them using NGram 

technique. If any of these algorithms return a full match, i.e., 1 on 

scale of 0 to 1, then a match score of 1 for linguistic similarity is 

returned. If all the match algorithms give a match value of zero, 

then the linguistic similarity of those concepts is 0. If on the other 

hand, none of the match algorithms give a match score of 1, i.e., 

an exact match, then the average of all non-zero match scores is 

taken. Equation 2 and Table 5 explain all these cases with 

examples. 

( )
( ) ( )( )

( )
( )

( )
( )ExpansiononAbbreviatiMatchScorems

MatchingSynonymMatchScorems

NGramMatchScorems

,where

0msmsmsif

0msms1ms0if

1msmsmsif

0

ms

1

ElemMatch

3

2

1

321

312

321

2

=
=

=

===
==∧<<

=








=
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Equation 2. Formaula for Calculating ElemMatch 

Table 5. Examples of ElemMatch 

WSDL 

Concept 

Ontological 

Concept 

Elem

Match 

Algorithm 

wind WindEvent 0.639 NGram 

wind WindChill 0.478 NGram 

snow Snowfall 1 Synonyms 

slp Sea Level Pressure 1 Abbreviation 

relative_humidi

ty 

Relative 

Humidity 

1 NGram 

3.2.2. Schema level Match (SchemaMatch) 
The Schema level Match is the measure of structural similarity 

between two concepts. Many times concepts from both XML 

schema and ontologies are expressed in terms of other concepts. 

Hence while matching such concepts, it is important to match the 

sub-concepts tree under that concept also. SchemaMatch accounts 

for this by calculating the geometric mean of Sub-concept 

Similarity (subConceptSim) and the Sub-concept Match 

(subConceptMatch). Equation 3 gives the formula for 

SchemaMatch. 

[ ] [ ]1,0MatchsubConcept1,0SimsubConcept,where

MatchsubConcept*SimsubConcepthSchemaMatc

∈∈
=

 

Equation 3. Formula for Calculating SchemaMatch 

3.2.1.1 Sub-concept Similarity (subConceptSim) 

The Sub-concept Similarity (subConceptSim) (Equation 4) is the 

average match score of each individual property of the concept.  
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n

subconceptMS

SimsubConcept

n
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i

=
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Equation 4. Formula for Calculating subConceptSim 

3.2.1.2 Sub-concept Match (subConceptMatch): 

subConceptMatch (Equation 5) can be defined as the fraction of 

the total number of properties of a concept that are matched. 

( )
( )ssubConcepttotaln

ssubConceptmatchedn
MatchsubConcept =

 
Equation 5. Formula for Calculating subConceptMatch 

Table 6 below shows how subConceptSim and subConceptMatch 

are calculated. Pressure is the WSDL concept with sub-concepts 

delta, slp and relative_humidity and PressureEvent is the 

ontological sub-concept with properties Sea Level Pressure, 

RelativeHumidity etc. 

Table 6. Calculations of SchemaMatch 

WSDL Concept 

Pressure 

Ontological Concept 

PressureEvent 

MS 

Delta ---- 0 

Slp Sea Level Pressure 1 

relative_humidity RelativeHumidity 1 

subConceptSim (Pressure, PressureEvent) = (1+1+0)/3 = 0.667 

subConceptMatch (Pressure, PressureEvent) = 2/3 = 0.667 

3.3 Finding the Best Mapping 
As each WSDL concept is compared against all the concepts from 

ontologies, it is necessary to find the best matching concept. We 

have implemented a function getBestMapping listed in Table 7 for 

the same. 

Table 7. Overview of function getBestMapping 

FUNCTION  getBestMapping 

INPUTS  wci Є W,  O = {oc1, oc2, oc3, …, ocm} 

OUTPUT  Best(mi = (wci, ocj, MS)) 

This algorithm maintains a variable for best mapping, whose MS 

is checked against the newly generated mapping. If the new 

mapping has a better MS, it is assigned as the best mapping. Since 

we are trying to find a match for a WSDL concept, while 

comparing with the ontological concept we only consider the 

number of children of the WSDL concept. This gives the same 

schema level match for the best matching ontological concept and 

its super-concepts. Therefore, it is necessary to implement some 

technique to rank the best matching ontological concept higher 

than its super-concepts. The getBestMapping function achieves 

this by considering the total number of sub-concepts of the two 

concepts being mapped.  

 

 

Table 8. Mappings for WSDL concept PhenomenonType 

Ontology 

Concept 

Elem 

Match 

Schema 

Match 

sub 

concep

ts 

MS Ra

nk 

Weather 

Phenomena 

0.614 0.854 106 0.81 2 

OtherWeather 

Phenomena 

0.442 0.396 13 0.42 3 

CurrentWeather 

Phenomena 

0.564 0.854 35 0.79 1 

For example, consider a WSDL concept PhenomenonType which 

best matches to ontological concept CurrentWeatherPhenomena 

and WeatherPhenomena is the super-concept of 

CurrentWeatherPhenomena. From Table 8 we can see that both 

have the same SchemaMatch but WeatherPhenomena has a better 

ElementMatch making MS for it slightly better than the MS of 

CurrentWeatherPhenomena. Thus if we do ranking based on MS, 

WeatherPhenomena will get ranked higher. This can be avoided 

by considering the number of sub-concepts of both of them. From 

Table 4 we know that ElemMatch has very little weightage (0.2) if 

SchemaMatch is above 0.75. Also if we have two candidate 

concepts with same SchemaMatch value, then the concept with 

less number of sub-concepts is a better match. Thus ranking 

algorithm gives more weight to number of concepts than 

ElemMatch when SchemaMatch is same. Hence we are able to 

rank CurrentWeatherPhenomena higher than WeatherPhenomena. 

3.4 Categorizing and Annotating WSDL 
Each Web service description, i.e., the WSDL file, is compared 

against all the ontologies in the Ontology-store (Explained in 

Section 4). For every ontology, a set of mapping is created. Two 

measures are derived from these set of mappings; the first is the 

Average Concept Match (avgConceptMatch) and the second is the 

Average Service Match (avgServiceMatch).  

3.4.1. Average Concept Match (avgConceptMatch) 

The Average concept match tells the user about the degree of 

similarity between matched concepts of the WSDL schema and 

ontology. This measure is used to decide if the computed 

mappings should be accepted for annotation. It is normalized on 

the scale of 0 to 1 where 0 denotes no similarity and 1 denotes 

complete similarity. Equation 6 gives the formula for 

avgConceptMatch. 

( )

conceptsmappedofnok,where

k

mMS

MatchavgConcept

k

1i

i

=

=
∑

=  

Equation 6. Formula for Calculating avgConceptMatch 

3.4.2. Average Service Match (avgServiceMatch) 
The Average service match helps us to categorize the service into 

categories. It is calculated as the average match of all the concepts 

of a WSDL schema and a domain ontology. The domain of the 

ontology corresponding to the best average service match also 

represents the domain of the Web service. The Average service 
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match as shown in  Equation 7 is also normalized on the scale of 0 

to 1. 

( )

conceptstotalof.non

conceptsmappedof.nok,where

n

mMS

MatchavgService

k

1i

i

=
=

=
∑

=

 

Equation 7. Formula for Calculating avgServiceMatch 

We explain both these measures further with the example given in 

Table 9. From the table we can see that AirportWeather service 

matches better with Weather-ont ontology (5 ot of 8 concepts 

mapped) than Geo ontology (2 out of  8 concepts mapped). 

Therefore, the domain of AirportWeather service is Weather. 

Similarly, IMapQuest service is from Geographical domain.  

Table 9. avgServiceMatch and avgConceptMatch 

Num concepts Web 

service 

Ontolo

-gy total mappe

d 

avg 

concept 

Match 

avg 

service 

Match 

Airport 

Weather 

Weathe

r-ont 

8 5 0.756 0.47 

Airport 

Weather 

Geo 8 2 0.655 0.16 

IMapQuest Geo 9 6 0.9 0.6 

IMapQuest Weathe

r-ont 

9 2 0.388 0.075 

4. ARCHITECTURE 
In this section we explain the architecture of the system. The three 

main components of the system are an ontology-store, the matcher 

library, and a translator library. 

4.1 Ontology-Store 
Ontology-store as the name suggests stores the ontologies. These 

ontologies will be used by the system to annotate the Web service 

descriptions in WSDL. The ontologies are categorized into 

domains. The system allows the user to add new ontologies to the 

ontology store. Currently the system supports DAML, and RDF-S 

ontologies. These ontologies are stored as “.daml” or “.rdfs” files 

in different folders. Names of these folders correspond to domain 

names. This component of our architecture will be replaced by a 

high quality search mechanism of ontologies from ontology 

registries or a P2P mechanism supporting semantic search of 

ontologies [8]. 

4.2 Translator Library  
The translator library consists of the programs that are used to 

generate the SchemaGraph representations (explained in Section 

3.1). Currently, the translator library provides two translators, 

WSDL2graph and Ontology2graph. WSDL2graph takes as input 

the WSDL file to be annotated and generates the SchemaGraph 

representation, which is fed to the matching algorithm. In a 

similar manner the Ontology2Graph generates the SchemaGraph 

for the ontology. 

4.3 Matcher Library 
The matcher library provides two types of matching algorithms, 

element level matching algorithms and schema matching 

algorithms.  

Currently only one schema matching algorithm, findGraphMatch, 

is implemented. Element level matching algorithms provided by 

the library include NGram, TokenMatcher, CheckSysnonyms and 

CheckAbbreviations which are detailed in Section 3.2.1. The 

Matcher library also provides user with option to add new 

matching algorithms using an API. Figure 2 shows the interface 

for selecting existing element level algorithms and for adding new 

ones. 

 
Figure 2. Matcher Library – Algorithm Selector 

Once the getBestMapping function returns a set of best mappings 

for the WSDL schema the mappings can be displayed using the 

user interface. The user is provided with the ability to accept or 

reject the suggested mappings. Concepts can also be matched 

manually. The user can also visualize the WSDL descriptions and 

ontologies in a tree format. Once the mappings are accepted, they 

are written back to the WSDL file (Section 9 – Figure 5). Figure 3 

gives an overview of MWSAF architecture. 

 

Figure 3. MWSAF – Architecture 
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5. RESULTS AND EMPIRICAL TESTING 
To test our algorithm we first obtained a corpus2 of 424 Web 

services from SALCentral.org and XMethods.com. Although our 

initial intention was to test our algorithm on the whole corpus, we 

have limited our testing to two domains, due to lack of relevant 

domain specific ontologies. We are in the process of creating new 

domain ontologies and plan to extend our testing for remaining 

Web services in the future. 

The two domains we have selected for testing are Weather and 

Geographical domains. Although the ontologies used are not 

comprehensive enough to cover all the concepts in these domains, 

they are sufficient enough to serve the purpose of categorization. 

We have taken a set of 24 services out of which 15 are from 

geographical domain and 9 from weather domain. The services are 

categorized based on the categorization threshold (CT), which 

decides if the service belongs to a domain. If the best average 

service match (Section 3.4.2) calculated for a particular Web 

service is above the CT then the service belongs to the 

corresponding domain. Graph 1 depicts the categorization 

obtained by applying our algorithm on this set of 24 Web services 

for different CT values. 
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Graph 1. Categorization statistics of Web services 

It is very important to choose the CT value correctly. We can see 

from Graph 1 that for CT = 0.5, very few services have been 

categorized. Whereas for CT = 0.4, although all Web services are 

categorized, two services from the weather domain have been 

wrongly categorized in the geographical domain. These two 

services are WorldWeather and ForecastByICAO. Both these 

services take “ICAO code” as input and return the “weather as an 

array of string”. As the output is not described in terms of 

concepts from weather domain and the categorization is based 

only on the input concept “ICAO code” (which is mapped to 

concept from Geo ontology), these services are wrongly 

categorized. 

                                                                 

2 Acknowledgement: Andreas Hess and N. Kushmeric [18] for 

lending us the corpus 
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Graph 2. Selecting domain for a Web service 

Graph 2 summarizes the categorization process of 6 different Web 

services. These services are compared to 5 different ontologies 

and the average service match scores are obtained. A service 

belongs to the category of the domain ontology for which it gives 

the best match score. For example, the second service in the 

graph, i.e., the AirportWeather service best matches to the 

“Weather-ont” ontology and hence belongs to the weather 

domain. The match scores for other domain ontologies suggest 

that this service may contain a few concepts from these other 

domains. 

Graph 3 shows two plots of match scores of 17 Web services 

(categorized in geographical domain) compared with two versions 

of domain specific Geo ontology. The lower plot shows Match 

Scores with the original Geo ontology. We can see that the Match 

Scores are quite low because the Geo ontology (number of 

concepts = 94) is not comprehensive enough to contain all the 

concepts from the geographical domain. This observation is 

proved by the upper plot, which shows a significant increase in 

Match Scores of these Web services, when compared with the 

new Geo ontology with a few added concepts. 
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Graph 3. Mappings with Geo ontology – Match Scores 

Graph 4 gives a comparison between total number of concepts and 

the number of mapped concepts for all the 17 Web services. The 

topmost plot shows total number of concepts in web services, the 

plot at bottom shows number of mapped concepts before adding 

new concepts to Geo ontology and the middle plot shows the 

number of concepts mapped after adding new concepts to the 
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ontology. This plot also supports the fact that matches are low due 

to the incomplete domain ontology. 
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Graph 4. Mappings with Geo ontology – Number of concepts 

Although Graph 3 and Graph 4 show that low match scores can be 

improved with better ontologies, still we can see that some of the 

Web services do not show much increase in the Match Scores. 

The reason behind this is many Web services span more than one 

domain and hence contain concepts from domains other than the 

geographical domain. Also as WSDL files are generated 

automatically by web servers, the input and output parameters do 

not always have meaningful names. 

6. RELATED WORK 
Our work presents an approach for adding semantics to Web 

services. In this section, we discuss some other efforts that 

describe adding semantics to Web services. We also look into 

some schema matching efforts, as it is the basis of our approach to 

semantically describe Web services. 

DAML-S (soon to be OWL-S) uses an upper ontology to 

semantically describe Web services. We share the vision of adding 

semantics to Web services by using annotated WSDL descriptions 

in our previous work [8]. The common factor in the 

aforementioned two efforts is in mapping the message parts in 

WSDL to ontologies. With the potential growth in Web services, 

finding relevant ontologies for a particular service will be a 

significant problem. An even more difficult task will be to map 

the concepts in the ontologies to elements in WSDL. Even though 

DAML-S assumes manual annotation of Web services, we believe 

that annotation in the real world will be a non-trivial task, without 

some degree of automation. This work primarily aims on 

providing a semi-automatic approach to matching elements in 

WSDL to ontologies. [18] talks about using semantic metadata to 

semi-automatically categorize Web services into predefined 

categories making the service discovery simpler. It uses machine 

learning techniques for categorization. There are two significant 

differences in our approach and that suggested in [18]. First, we 

believe our approach is richer as we consider the structure of 

WSDL concepts, rather than just the names. Secondly, we use 

ontologies for classification as compared to vocabularies used by 

[18]. Ontologies are more descriptive and capture domains more 

accurately than vocabularies, leading to better classification.  

Since we are matching XML schema used by the WSDL files to 

ontologies, it is worthwhile to explore the Ontology matching and 

Schema matching areas. Mapping ontologies is a hard problem 

[19]. The research in this area varies from ontology merging [20] 

to mapping ontologies for service discovery [21]. The techniques 

used are also varied, ranging from machine learning [22][23], 

graph analysis [20][24], to heuristic based matching [24]. Schema 

matching is an old research area and there has been a lot of 

research in this area from different perspectives [24], which is 

also related to earlier schema integration work [26][27][28]. 

There are different approaches to schema matching like matching 

the whole schema structure versus matching the individual 

elements of the schema. There are many machine learning 

techniques [29][30][31] where some matching rules are fed to the 

match algorithm and then it guesses the new matches. Some 

match algorithms use more than one technique and are called 

hybrid matchers. Due to space limitation, we are not able to 

discuss all of them in this paper. Rather, we focus on two of the 

more relevant schema matching techniques and their relationship 

to our work, namely, COMA [32] and Cupid [33]. 

Cupid is a hybrid matcher which combines name matching with 

structure matching. It uses predefined synonym dictionary to find 

element level matches. Every schema node has two dimensions of 

similarity; the element level match calculated using name matches 

and predefined synonym dictionary and structure match. COMA 

implements a matcher library which has different matchers 

varying from simple matchers like name, soundex, and synonym 

matchers to hybrid matchers using name and path information. 

Although these matching techniques are different and find the 

matches using different algorithms, some of the basic steps like 

name matching, tokenization, word expansion, finding words with 

similar meaning, etc., are common. In fact, even though the 

implementations are different, these steps are the basis of the most 

of the schema matching techniques.   

In this paper, we have discussed annotation of input and output 

concepts of Web services. Relating Web services to process 

ontologies has been discussed in [34]. We are currently working 

on algorithms to map operations in WSDL files to concepts in 

process ontologies. 

7. CONCLUSION AND FUTURE WORK 
In this paper we have described MWSAF, a framework for semi-

automatic annotation of Web services. We have discussed the 

issues in matching XML schemas to ontologies, which forms the 

crux of our approach.. This work was undertaken as a part of the 

METEOR-S system. While many other efforts have talked about 

adding semantics to Web services, practical implications of 

actually annotating Web services with real world ontologies have 

not been discussed in great detail. We further carried out 

experiments involving Web services and ontologies independently 

created by others, and coped with the practical difficulty in our 

effort due to lack of domain ontologies and well structured WSDL 

files. This prototyping and early experimentation leads us to 

believe that our approach will scale well when the users will have 
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to deal with thousands of Web services, but also have the benefit 

of higher quality and more comprehensive ontologies. We plan to 

release our tool for public use through sourceforge. We are 

currently working on completing the documentation and user 

guide for this public release.  
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9. APPENDIX A 

 

Figure 4. Screenshot of the MWSAF tool 

Figure 4 above gives a screenshot of the MWSAF tool. The user first loads the WSDL file (1) to be mapped. This WSDL file is compared 

with all the ontologies from the ontology-store to find the most suitable domain ontology using the “findDomain” option from the “Tools” 

menu. This option returns the match scores with each ontology (2). The best-matched ontology can then be selected for annotation. 

Mappings for this ontology can be viewed and the user can accept or reject suggested mappings (3). The tool also allows viewing of 

mappings with other ontologies, in case if the WSDL file contains concepts from other domains. There is also a facility to add extra 

mappings manually. The WSDL file and ontology can be viewed in a tree format (1) and (5) respectively to facilitate manual mapping. (4) 

shows accepted mappings, which are then written to the WSDL file as shown in Figure 5.  
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+<xsd:complexType Ont-Concept="weather:windDirection" name="Direction"> 

- <xsd:complexType name="Station"> 

- <xsd:sequence> 

  <xsd:element Ont-Concept="geo:icao" maxOccurs="1" minOccurs="1" name="icao" nillable="true" type="xsd:string" />  

  <xsd:element Ont-Concept="geo:wmo" maxOccurs="1" minOccurs="1" name="wmo" nillable="true" type="xsd:string" />  

  <xsd:element Ont-Concept="geo:iata" maxOccurs="1" minOccurs="1" name="iata" nillable="true" type="xsd:string" />  

  <xsd:element Ont-Concept="geo:elevation" maxOccurs="1" minOccurs="1" name="elevation" type="xsd:double" />  

  <xsd:element Ont-Concept="geo:latitude" maxOccurs="1" minOccurs="1" name="latitude" type="xsd:double" />  

  <xsd:element Ont-Concept="geo:longitude" maxOccurs="1" minOccurs="1" name="longitude" type="xsd:double" />  

  </xsd:sequence> 

  </xsd:complexType> 

 

Figure 5. Part of Annotated WSDL file 
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