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Meteorological variables and mosquito
monitoring are good predictors for
infestation trends of Aedes aegypti, the
vector of dengue, chikungunya and Zika
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Abstract

Background: Aedes aegypti is an important vector for arboviroses and widely distributed throughout the world.
Climatic factors can influence vector population dynamics and, consequently, disease transmission. The aim of this
study was to characterize the temporal dynamics of an Ae. aegypti population and dengue cases and to investigate
the relationship between meteorological variables and mosquito infestation.

Methods: We monitored and analyzed the adult female Ae. aegypti population, the dengue-fever vector, in Porto
Alegre, a subtropical city in Brazil using the MI-Dengue system (intelligent dengue monitoring). This system uses sticky
traps to monitor weekly infestation indices. We fitted generalized additive models (GAM) with climate variables including
precipitation, temperature and humidity, and a GAM that additionally included mosquito abundance in the previous
week as an explanatory variable. Logistic regression was used to evaluate the effect of adult mosquito infestation on the
probability of dengue occurrence.

Results: Adult mosquito abundance was strongly seasonal, with low infestation indices during the winters and high
infestation during the summers. Weekly minimum temperatures above 18 °C were strongly associated with increased
mosquito abundance, whereas humidity above 75% had a negative effect on abundance. The GAM model that included
adult mosquito infestation in the previous week adjusted and predicted the observed data much better than the model
which included only meteorological predictor variables. Dengue was also seasonal and 98% of all cases occurred at times
of high adult Ae. aegypti infestation. The probability of dengue occurrence increased by 25%, when the mean number of
adult mosquitos caught by monitoring traps increased by 0.1 mosquitoes per week.

Conclusions: The results suggest that continuous monitoring of dengue vector population allows for more reliable
predictions of infestation indices. The adult mosquito infestation index was a good predictor of dengue occurrence.
Weekly adult dengue vector monitoring is a helpful dengue control strategy in subtropical Brazilian cities.
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Background
Dengue, the most important vector-borne viral disease for

humans, both in terms of morbidity and economic impact,

is transmitted by Aedes mosquitoes [1]. It is estimated that

390 million dengue infections occur every year, 96 million

of which are symptomatic [2]. More than half of the

world’s population is at risk of contracting the disease,

mainly in urban centers of the tropics and subtropics [3].

The disease has expanded geographically in recent years,

so that all four dengue virus serotypes (DENV 1–4) are

now circulating in Asia, Africa and the Americas [4], and

autochthonous dengue transmission has recently reached

southern regions of North America and Europe [5, 6].

Urbanization, globalization, and increased international

travel have contributed to this trend [7]. Predicted climate

change scenarios favour a considerable increase of dengue

incidence in southern Europe, especially the coastal re-

gions [8] and an increased global distribution of the prin-

cipal vector Ae. aegypti in areas that are currently

considered to be unfavorable for this species [9].

Other important arboviruses, such as chikungunya [10]

and Zika [11] can also be transmitted by Ae. aegypti.

These two diseases present symptoms similar to dengue,

however, Zika virus has recently been associated with

Guillain-Barré syndrome in French Polynesia [12] and

microcephaly in Brazil [13, 14].

Southern Brazil differs from other Brazilian regions by its

subtropical climate, which is similar to that of southern

Europe and southern United States. Therefore, a Brazilian

city of subtropical climate might be a useful model for

studying dengue establishment and dynamics in such areas.

Systems for continuous disease and vector surveillance are

important to further the understanding about the vector-

disease mechanisms and disease dynamics [15, 16]. In our

model city Porto Alegre, located in the Brazilian state of

Rio Grande do Sul, the dengue vector and imported den-

gue cases were first detected in 2001 and 2002, respect-

ively, but the first autochthonous dengue cases were

confirmed only in 2010, always after the occurrence of

imported cases (Coordenadoria Geral de Vigilância em

Saúde, CGVS, Porto Alegre, personal communication).

This is similar to the situation in some European regions,

where dengue has re-emerged, also driven by the introduc-

tion of dengue-infected people (tourism and migration)

and the invasion of vector mosquito species (revised by

Schaffner et al. [17]). Porto Alegre city relied only on fast

larval survey (LIRAa) [18] for vector surveillance, which is

based on the House Index and is performed only three

times per year. After dengue occurrence in 2010 and 2011,

the General Health Surveillance Coordination (Coordena-

doria Geral de Vigilância em Saúde, CGVS) implemented a

large-scale mosquito surveillance system (intelligent den-

gue monitoring, MI-Dengue) that generates weekly infest-

ation indices [15].

During the past few years, some studies have attempted

to model the risk of dengue transmission and vector abun-

dance. Due to the low occurrence of dengue in North

American and European countries [19, 20], mosquito

population data in these areas are often of limited temporal

and spatial resolution and restricted availability. Factors

that influence dengue vector abundance and disease occur-

rence are therefore poorly understood [17, 21]. It is well

known that environmental factors influence diverse aspects

of vector and virus biology by interfering with mosquito

population dynamics and virus circulation [22, 23]. Fur-

thermore climatic factors such as temperature, humidity,

and rain, also affect dengue transmission (reviewed by

Morin et al. [24]). However, no study has evaluated the role

of these climatic factors in conjunction with vector mos-

quito abundance and disease surveillance in a region where

seasonal autochthonous dengue transmission was recently

introduced.

Therefore, the current study investigated the effects of

climatic factors on female adult Ae. aegypti abundance

and characterized the temporal profile of dengue vector

population and disease incidence in a city of humid sub-

tropical climate with a recent history of local dengue

transmission. We also examined how the dengue vector

density affects the probability of the occurrence of dengue

infections. We used data obtained from a large-scale adult

mosquito surveillance system that generates weekly infest-

ation indices and maps in real time that is integrated with

dengue disease notification in a decision support system

[15, 16]. We further explored and discussed how the in-

clusion of continuous vector monitoring data improves

the fit of vector population models. Our results have im-

plications for dengue forecasting models and may help

optimize decision making regarding vector control activ-

ities and dengue prevention measures in subtropical areas.

Methods
Study area

Porto Alegre (30°01′40″S, 51°13′43″W), the capital of the

Brazilian State of Rio Grande do Sul, has an area of 496.68

km2, an estimated population of 1,409,351 inhabitants

[25], and a population density of 2,837.53 inhabitants/

km2. The city consists of about 69% natural environment

and 31% urban area [26]. The climate is classified as

humid subtropical according to the Köppen climate classi-

fication. This climate class is characterized by precipita-

tion that is well distributed throughout the year [27]. In

the summer (December to March), temperatures often

reach 35 °C, whereas winter temperatures (June to

September) range from 2 °C to 20 °C. The average annual

temperature and rainfall are 19.5 °C and 1,397 mm, re-

spectively [28].

The study was conducted in 22 of 81 neighborhoods

of Porto Alegre city that are using MI-Dengue since
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2012 (Fig. 1a). This area was chosen to implement the

monitoring system because it was considered the most

vulnerable to disease introduction and occurrence, due to

high Ae. aegypti infestation (CGVS, Porto Alegre, personal

communication).

MI-Dengue mosquito monitoring system

MI-Dengue uses the sticky trap MosquiTRAP (Ecovec

LTDA, Belo Horizonte, Brazil) to monitor the adult

dengue vector population [15, 16]. The trap contains

a synthetic oviposition attractant (AtrAedes) that lures

gravid Ae. aegypti. A total of 712 sticky traps were

set on fixed outdoor positions, sheltered from rain

and sunlight throughout the study area (Fig. 1b), at a

distance of approximately 250 m between each other.

The traps were inspected weekly during 173 weeks,

from September 2012 to January 2016 (epidemio-

logical weeks 39/2012 to 2/2016). The entomological

index provided by the sticky trap is the Mean Female

Ae. aegypti Index (MFAI, the mean number of Ae.

aegypti females per trap). After MI-Dengue was im-

plemented in Porto Alegre city, all neighborhoods ad-

dressed their vector control based upon the MFAI

index above 0.4 by source reduction.

Meteorological data

Daily rainfall, temperature parameters (minimum, aver-

age and maximum), and average relative air humidity

data were obtained from the Brazilian National Institute

of Meteorology (INMET). The data were aggregated for

epidemiological weeks to accumulated rainfall, and

weekly average values of daily minimum, maximum and

mean temperature, and minimum humidity (hereafter

abbreviated as rain, Tmin, Tmax, Tmean and hum, re-

spectively). Weekly lags of up to four weeks were in-

cluded in the dataset for all meteorological variables:

Tmint, Tmint-1, Tmint-2, Tmint-3, Tmint-4 and humt,

humt-1, humt-2, humt-3 and humt-4.

Dengue cases

The Health Secretary of Porto Alegre provided data for

confirmed autochthonous dengue cases. The data were

organized by epidemiological week, considering the date

of first dengue symptoms.

Statistical analysis

Prior to exploratory analysis and model fitting, the data-

set was divided into a training and a test set. The train-

ing set, which was used for explanatory data analysis and

Fig. 1 Study area. a Map of the municipality of Porto Alegre (Rio Grande do Sul), southern Brazil. Lines represent the borders of the neighborhoods.
The neighborhoods that are monitored are represented with borders in bold. b Locations of MosquiTRAPs in Porto Alegre (Rio Grande do Sul)
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model fitting, includes the first 144 weeks of the dataset

(September 2012 - June 2015). The test set, which was used

to compare model predictions to observational records,

comprises the last 29 weeks (July 2015 - January 2016).

The relationship between meteorological variables

and the number of Ae. aegypti females collected in

MosquiTRAPs was first assessed with scatterplots (see

Additional file 1: Figure S1). As there was no appar-

ent linear relationship between mosquito catches and

the explanatory variables, generalized additive models

(GAM) were used to model the data. We used nega-

tive binomial models because the response variable

(number of Ae. aegypti females collected per week) is over-

dispersed count data (variance = 102,880.4, mean = 332.2).

Poisson models were also adjusted, but these proved to be

inappropriate due to overdispersion. Since the number of

weekly monitored traps was not constant, we included the

logarithm of the number of monitored traps as the model

offset. First, we adjusted several models with a single ex-

planatory variable and identified the best-fitting model

for each category of explanatory variables (five models

[= number of lags] for each of the following: Tmin,

Tmean, Tmax, hum), by comparing the Akaike Informa-

tion Criterion (AIC) [29] (see Additional file 2: Table S1).

We then built multiple models, adding variables in the se-

quence of increasing AIC of their corresponding simple

models. As the three categories of temperature variables

(Tmin, Tmean and Tmax) were collinear, we included

only Tmint-4 in a multiple model, since its corresponding

simple regression model had the lowest AIC value.

The interaction between minimum temperature and

humidity was also evaluated, but the model without

interaction term had a lower AIC value (see Additional

file 3: Table S2). The best full model with only meteoro-

logical explanatory variables is the following:

Aaefemt e Binomial Negative μt ; kð Þ
log μtð Þ ¼ log N tð Þ þ ƒ1 Tmint‐4ð Þ þ ƒ2 humt−4ð Þ

þ β0 M1ð Þ

where log(Nt), the model offset, is the logarithm of the

number of traps in week t (t = 1, …, 144); ƒ1(Tmint-4)

and ƒ2(humt-4) are smooth effects of minimum

temperature (lag 4) and humidity (lag 4), respectively; β0
is the intercept, and k is the dispersion parameter.

The autocorrelation plot of the M1 residues suggests

an autocorrelation at lag1. In order to account for the

autocorrelation and to investigate if the model’s fit im-

proves when mosquito population data collected from

the previous week are considered, we adjusted a second

model, where we included a smooth effect of the mean

number of female Ae. aegypti in the previous week

(MFAIt-1). In this case, humidity lost significance, so that

M2 is given by:

Aaefemte Binomial Negative μt ; kð Þ
log μtð Þ ¼ log N tð Þ þ ƒ1 Tmint‐4ð Þ þ ƒ2 MFAI t−1ð Þ

þ β0 M2ð Þ

The non-linear interaction between Tmint-4 and

MFAIt-1 was also evaluated. However, the resulting

model had a higher AIC value compared to M2.

Adequacy of adjusted GAM models was evaluated

through diagnostic residual plots (residuals vs fitted, re-

siduals vs explanatory variables, autocorrelation plot,

histogram and quantile-quantile plot of residuals) and by

plotting the observed versus predicted data.

Logistic regression was used to investigate how the

weekly mean female Aedes index and its lags of one to

four weeks (MFAIt, MFAIt-1, MFAIt-2, MFAIt-3, MFAIt-4)

affects the occurrence of human dengue cases. The bin-

ary response variable was the presence/absence of den-

gue cases in week t. The best lag was chosen based on

the lowest AIC value (see Additional file 4: Table S3).

All analyses were performed in the software R, version

3.1.2 using the packages mgcv [30] and MASS [31].

Results

Descriptive analysis of entomological data

The sticky traps collected a total of 121,385 mosquitoes

between September 2012 and January 2016. The most

abundant female mosquitoes were Ae. aegypti (44.0%)

and Culex spp. (38.1%), whereas Ae. albopictus (3.0%)

was less abundant (Table 1). Male Ae. aegypti (0.3%) and

Ae. albopictus (0.3%) constituted a lower proportion of

the collected mosquitoes compared to Culex spp. males

(14.2%). A mean (± standard deviation) of 0.43 ± 1.1 Ae.

aegypti females were collected per week per trap.

Descriptive temporal analysis

The weekly minimum and maximum temperatures ranged

from 4.9 °C to 24.5 °C and from 14.1 °C to 38.0 °C, re-

spectively, and the relative air humidity varied between

Table 1 Descriptive statistics of mosquitoes caught in
MosquiTRAPs (MQT) in Porto Alegre, Rio Grande do Sul, Brazil,
between September 2012 and January 2016

Species/ stage Total number (%) Range (n) Mean ± SD

Aedes aegypti

Female 53,411 (44.0) 0–41 0.43 ± 1.10

Male 415 (0.34) 0–9 0.003 ± 0.07

Aedes albopictus

Female 3,685 (3.0) 0–13 0.03 ± 0.21

Male 361 (0.3) 0–8 0.003 ± 0.07

Culex spp.

Female 46,261 (38.1) 0–40 0.37 ± 1.10

Male 17,252 (14.2) 0–20 0.14 ± 0.67

Abbreviation: SD standard deviation
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61.4 and 93%. Both temperature and humidity followed a

seasonal pattern, whereas rainfall was distributed through-

out the years without an apparent pattern (Fig. 2). A de-

scriptive table by year is in Additional file 5: Table S4.

The temporal pattern of female Ae. aegypti abun-

dance was seasonal during all three study years (Fig. 2).

Mosquito abundance started to increase in September/

October and decreased in April/May. Every year re-

vealed a high (> 0.5) MFAI between December and

April, and the highest value (1.76) was observed in the

last week of March 2015. MFAI values close to zero

begin to appear in June, remaining so throughout July

and August. Mosquito abundance increased approxi-

mately two months after the temperature started to in-

crease. Conversely, it began to decline simultaneously

with temperature (Fig. 2). Autochthonous dengue cases

also displayed a seasonal pattern. Cases occurred at

times of high vector infestation and an average

temperature above approximately 18 °C, and peaked

when the temperature started to decrease. Most of the

cases (155/181) occurred in 2013, and only 6 and 20

cases were recorded in 2014 and 2015, respectively. All

autochthonous dengue cases, except 10 cases, occurred

when the female Ae. aegypti infestation index was

above 0.4 (Fig. 2).

Relationship between mosquito abundance and

meteorological variables

All time lags of temperature (Tmin, Tmean and Tmax)

and humidity (hum) were significant non-linear explana-

tory variables of female Ae. aegypti abundance in univar-

iate GAM models (P < 0.05) (see Additional file 2: Table

S1). Rain was only significant at lag1 and approximately

negatively linear. The best-fitting models of each cat-

egory were Tmeant-4, Tmaxt-3, Tmint-4 and humt-4. The

plots of observed versus predicted values of the two best

simple GAM models (Tmint-4 and humt-4) are provided

in Additional file 6: Figure S2.

The full multiple model (M1) with meteorological var-

iables included the non-linear predictors Tmint-4 and

humt-4 (Table 2). The model indicates a positive relation-

ship between mosquito abundance and minimum

temperature. Above a minimum temperature of about

16 °C, the mosquito catches are above average (Fig. 3a).

The effect of Tmint-4 on mosquito abundance stabilizes

above 19 °C (approximately horizontal line in Fig. 3a).

Mosquito abundance steadily decreased when air humid-

ity was higher than 79% (Fig. 3b). The plot of observed

versus predicted values (Fig. 3c) indicates that the model

fitted the data well, although it underestimated mosquito

abundance in the third year of the study. The predicted

values displayed the trend of observed data reasonably,

despite the significant over- and underestimation of the

mosquito population in some weeks.

The second GAM model (M2) suggests approximately

the same relationship between Tmint-4 and mosquito

abundance, as previously described for M1 (Fig. 4a). Fur-

thermore, the model shows that mosquito abundance in-

creases with increasing MFAIt-1 values (Fig. 4b). The

strongest effects are observed for MFAIt-1 values below

0.2, and it stabilizes when MFAIt-1 values reach 1.0.

Figure 4c shows that predictions by the M2 model,

which incorporates vector population in the previous

week into the model’s mathematical equation, fits better

to actual population counts (AIC = 1,628, proportion devi-

ance explained = 87%), compared to M1, which considers

only meteorological predictors (AIC = 1,735, proportion

deviance explained = 74%). The predicted values closely

followed the trend of observed data (Fig. 4c), confirming a

superior performance of M2 in comparison to M1.

Fig. 2 Time series of dengue cases, mean number of Aedes aegypti females (MFAI), precipitation, minimum and maximum temperature, and
humidity in Porto Alegre, between September 2012 and January 2016
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Relationship between dengue occurrence and mean

female Aedes index (MFAI)

The median MFAI values in the presence and absence of

dengue cases were 0.78 and 0.15, respectively (Fig. 5a).

The MFAI in all evaluated lags (MFAIt, MFAIt-1, MFAIt-2,

MFAIt-3, MFAIt-4) significantly explained the probability

of dengue occurrence (Table 2; Fig. 5b). The best lag was

the MFAI of three weeks (MFAIt-3) (see Additional file 4:

Table S3), in this lag, the probability of disease occurrence

increased by 25%, when the MFAI increased by 0.1

(Table 2).

Discussion

In this study, we found that minimum temperature, humid-

ity and previous Ae. aegypti vector density are important

factors affecting the temporal pattern of vector abundance

in a region of subtropical humid climate in Brazil. Dengue

incidence increased significantly with increasing adult fe-

male vector infestation.

Weekly mean female Ae. aegypti population numbers in

this study followed a seasonal pattern with high infestation

in the summer and very low infestation (close to zero or

zero) in the winter. A similar pattern has been previously

described in subtropical Argentina when using ovitraps, lar-

val indices and larvitraps [32, 33]. Previous longitudinal

studies observed intra-annual fluctuations of adult female

Ae. aegypti collections in MosquiTRAPs in tropical Brazilian

Table 2 Output of the GAM models M1 and M2, and the
logistic regression model M3. M1 and M2 are minimal adequate
models to explain mosquito abundance, and M3 is the model
to explain presence and absence of dengue cases

Model Variable Estimate Standard Error χ
2 P-value

M1 Intercept -1.477 0.058 < 0.001

s(Tmint-4) Smooth 352.3 < 0.001

s (hum t-4) Smooth 37.1 < 0.001

M2 Intercept -1.590 0.038 < 0.001

s(Tmint-4) Smooth 27.9 < 0.001

s(MAaefem t-1) Smooth 296.3 < 0.001

z-value

M3 Intercept -2.376 0.3835 -6.196 < 0.001

MFAIt-3 2.298 0.499 4.599 < 0.001

Fig. 3 Graphical representation of the estimated results of the GAM model M1. Effects of minimum temperature lagged by four weeks (Tmint-4)
(a) and mean relative humidity lagged by four weeks (humt-4) (b) on female Aedes aegypti catches in MosquiTRAPs. c Plot of observed versus

fitted and predicted values
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Fig. 4 Graphic representation of the estimated results of the GAM model M2. Effects of minimum temperature lagged by four weeks (Tmint-4) (a)
and of the mean number of female Ae. aegypti caught in the previous week (MFAIt-1) (b) on female Aedes aegypti catches in MosquiTRAPs. c Plot
of observed versus fitted and predicted values

Fig. 5 Relationship between the presence and absence of dengue cases and the mean female Aedes index (MFAI). a Box plots of MFAI conditional on
dengue occurrence (0, absence of dengue cases; 1, presence of dengue cases). b Graph of the fitted values (solid line) obtained by the logistic regression
model applied on the dengue occurrence data. The dots represent the observed values
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cities [34, 35]. However, in these locations, observed infest-

ation indices rarely fell to values close to zero, reflecting a

year-round dengue vector infestation. The seasonal pattern

of mosquito infestation in our study was related to the sea-

sonality of temperature and humidity. Low temperatures

negatively affect dengue vector survival, which leads to a

strong fall in vector population. The mean minimum daily

temperature in Porto Alegre city was 2 °C during the win-

ters, with peaks as low as 0 °C, capable of drastically de-

creasing adult mosquito infestation and viability of laid eggs.

Even so, the mosquito population reestablishes during the

summers, reaching infestation indices that are similar to

and, in some weeks, even higher than in dengue-endemic

tropical Brazilian cities (Ecovec LTDA, personal communi-

cation). High humidity was associated with low temperature

and low mosquito infestation index. Rain was distributed

throughout the whole year (characteristic of humid subtrop-

ical climate) and, therefore, was not a significant predictor

of mosquito abundance.

The multiple GAM model M1 includes non-linear effects

of minimum temperature and humidity, both of which

lagged by four weeks. The model revealed an approximately

linear, positive effect of minimum temperature on mosquito

abundance up to approximately 20 °C; above this value, the

effect was stable. This means that positive variations in

minimum temperatures of up to 20 °C are associated with

growth of the adult vector population, whilst fluctuation in

minimum temperatures above 20 °C did neither increase

nor decrease the mosquito population. Since temperature

can also influence biting rates [36] and mosquito survival

[37], these factors may affect dengue transmission. Humid-

ity had an approximately linear negative effect on the vector

population when humidity was above 79%. Humidity is as-

sociated with increased Ae. aegypti survival, egg develop-

ment and biting rates [38–40]. The negative effect that we

observed could be due to complex interactions between cli-

matic factors. In our study, humidity was high when

temperature was low. Several researchers believe that

temperature is the most critical factor for the survival of

Ae. aegypti [41–43] and this may explain the negative effect

of humidity levels above 79% upon vector population.

The multiple model M2 includes a non-linear effect of

minimum temperature at lag 4 and a non-linear effect of

the mean number of female Ae. aegypti per trap with one

week lag (MFAIt-1). The model indicates that the higher

the number of mosquitoes in the previous week, the

higher it will be the number in the next week. This effect

was most prominent for MFAI values between 0 and 0.2,

reflecting the sharp increase in vector abundance at the

beginning of the mosquito proliferation season. The effect

of MFAI stagnates at about 1, as MFAI values above 1

were rare. The results indicate that the MFAI model is

more accurate and confirm that weekly vector population

indices are superior for predicting vector infestation in

comparison to using only meteorological predictor vari-

ables. Simões et al. [44], who analyzed mosquito infest-

ation data in MosquiTRAPs in a tropical Brazilian city

also reinforces the importance of considering previous

vector population indices in such models.

The study area includes 22 neighborhoods of the city of

Porto Alegre. Although it is an extensive area of the city,

where the majority of the population is concentrated, it is

important to be careful about the generalization of the re-

sults. In small areas there may be diverse microclimates

that affect the vector population in different ways in the

same interval of time. Future studies should evaluate the

city’s microclimates, and evaluate for example, if the pres-

ence of heat islands affects the abundance and spatio-

temporal distribution of dengue vectors and disease cases.

Another limitation of the present study is that we did

not consider the effect of mosquito control interventions

on the Ae. aegypti population and disease occurrence.

Nevertheless this variable could provide information on

the effectiveness of actions on the vector population,

and could be analyzed in future studies.

The temporal pattern of autochthonous dengue cases

was also seasonal. Dengue cases occurred approximately

three months after the adult mosquito population began

to increase and the peak of dengue cases in 2013 oc-

curred soon after the peak of mosquito infestation. Pre-

vious studies analyzing the correlation between dengue

incidence and adult Ae. aegypti population showed that

high dengue vector infestation precedes high dengue in-

cidence in tropical areas [45–47]. In all three summers

in Porto Alegre city, it took two to three months until

adult mosquito infestation peaked (MFAI > 0.4), which

explains the observed time lag between the increase of

mosquito infestation and case occurrence. The two den-

gue cases that occurred in June and July of 2013, at

times when the MFAI had values of 0.08 and 0.00, re-

spectively, were most likely imported cases.

The logistic regression confirmed that adult Ae. aegypti

infestation is closely associated with subsequent dengue

occurrence. Our results suggest that the weekly dengue

cases increase by 25%, when the mosquito infestation in-

creases by 0.1. Previous studies investigating the correl-

ation between dengue cases and immature mosquito

development stages (larvae and pupae) reported an ab-

sence or low correlation with dengue incidence [48, 49],

indicating that the adult dengue vector monitoring is a

better predictor for dengue transmission.

Due to the low total number of dengue cases, espe-

cially in 2014 and 2015, a rigorous analysis of the

association between disease transmission and me-

teorological predictor variables was unviable. We ob-

served, however, that cases occurred predominantly

when the average temperature was above 18 °C. In

subtropical Taiwan, months with temperatures above
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18 °C are also associated with high risk of dengue

transmission [50].

The higher number of autochthonous dengue cases in

2013, which peaked when the temperature was beginning

to decrease, may suggest that besides the high vector

abundance, other elements favored transmission [51]. One

likely important factor was the number of imported cases

in January and February (holiday season), which occurred

about one week before a pronounced increase of autoch-

thonous cases (CGVS, unpublished data). The February

holiday (carnival) occurs during the dengue season in

most Brazilian States and 2013 was a record epidemic

year. During this time, a high number of Brazilian and for-

eign visitors, including from dengue-endemic cities, trav-

eled all over Brazil. Since most dengue infections are

asymptomatic [52, 53], the probability of traveling whilst

being infected is relatively high, contributing to viral dis-

semination to other regions. Human migration patterns

not only due to holidays, but also because of economic

crises and wars, to name a few, appear to be important

factors for estimating the likelihood importing dengue to

non-endemic areas. As seen in Porto Alegre and several

European and North American settings [5, 6, 54, 55],

imported cases can lead to the occurrence of local trans-

mission of diseases, when competent vector populations

of Ae. aegypti and/or Ae. albopictus is present.

Another factor likely to be associated with a relatively

high number of cases in 2013, when compared to 2014

and 2015 is that 2013 was the year the highest number

of dengue cases in Brazil, which increased the probabil-

ity of introduction of imported cases. The notification

and confirmation delay of the dengue cases is the main

cause of late application of control strategies. In such sit-

uations, MI-Dengue can be a good tool to detect high

infestation of Ae. aegypti and to direct activities based

on the vector index. However, no previous data from

MI-Dengue monitoring was available for an area of sub-

tropical climate, and the MFAI was not yet evaluated for

this kind of scenario (Ecovec LTDA, personal communi-

cation). After three years of mosquito monitoring, we

can validate the mosquito index MFAI, together with

minimum temperature data, as good predictors for vec-

tor infestation and dengue incidence levels.

Conclusions

The current study shows that minimum temperature and

humidity are important meteorological variables that affect

Ae. aegypti population dynamics. Furthermore, a model

that includes data from continuous adult mosquito moni-

toring in addition to meteorological data adjusts and pre-

dicts the mosquito population substantially improved. We

also found a strong association between female mosquito

abundance and dengue case occurrence. Dengue transmis-

sion has complex dynamics, and climate factors and

entomological monitoring are only a part of the disease’s

determinants. Other factors, such as human movement

patterns and epidemiological information (circulation se-

rotypes, herd immunity), should also be considered for the

development of reliable predictive models that estimate

dengue spatio-temporal distribution in areas where it is

not yet epidemic.
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