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Abstract

Tropospheric ozone is a key air pollutant and greenhouse gas. Its fate strongly depends on meteorological conditions and
therefore subject to climate change influences. Such dependences through biogenic, chemical, and dynamic processes on
different spatiotemporal scales have been unraveled from observations and modeling studies. In this process-oriented review,
we summarize three dominant pathways of meteorological and climatic impacts on tropospheric ozone and present their recent
progress. The three pathways are influences through changes in the natural precursor emissions, the kinetics and partitioning of
chemistry and deposition, and the transport of ozone and its precursors. Tropospheric ozone levels have shown significant global
or regional responses to meteorological/climatic changes (e.g., changes in the Brewer-Dobson Circulation, the Hadley
Circulation, and El Niño–Southern Oscillation) and can be explained through the conjunction of these pathways. Most recent
model projections predict that future climate will increase surface ozone in polluted regions and decrease ozone at a global scale
due to stronger ozone chemical loss. However, uncertainties in climate-ozone responses and limitations in model capability still
challenge the magnitude and even the sign of such projections. We highlight the rising importance of future increase of
stratosphere-troposphere exchange in modulating tropospheric ozone that may largely compensate the predicted chemical loss
of tropospheric ozone burden. We also highlight that uncertainties in isoprene chemistry, biogenic emissions in changing CO2

levels and vegetation, and interactions between ozone and vegetation may largely affect the surface ozone response to climate
change. Future research and model improvements are required to fill these gaps.
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Introduction

Ozone at the surface is detrimental to human health and eco-
system [123], while in the middle and upper troposphere, it is
a greenhouse gas contributing to positive radiative forcing
[175, 184]. Efforts of reducing anthropogenic emissions of
ozone precursors such as nitrogen oxides (NOx =NO+NO2)
have been applied to improve ozone air quality particularly in

Europe and North America [51]. However, as the natural
sources, chemistry, and transport of ozone and its precursors
are highly climate-sensitive, the effectiveness of such efforts
will be modulated by climate variations or even offset by
unfavorable weather conditions, imposing challenges for
ozone quality management. As such, it is of particular impor-
tance to evaluate the connections between tropospheric ozone
and meteorological conditions (and associated climate varia-
tions), and their implications for future ozone projection in the
context of climate change. We review our current understand-
ings and recent advances on this issue.

Meteorology variations and climate change influence tro-
pospheric ozone through a number of processes. We summa-
rize three dominant pathways in Fig. 1, including (1) natural
emission pathway, i.e., a large amount of ozone precursors are
emitted from climate-sensitive natural sources such as light-
ning and biosphere; (2) chemistry pathway, i.e., meteorologi-
cal conditions such as solar radiation, temperature, and humid-
ity alter the partitioning and efficiency of chemical reactions
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and dry deposition, and therefore modulate ozone production
and loss; and (3) transport pathway, as the lifetime of ozone
and its precursors in the free troposphere can be longer than
months, they are subject to changes of transport patterns on
different spatiotemporal scales. It shall be noted that the im-
pacts of meteorology and climate on tropospheric ozone often
appear as a conjunction of more than one pathway.
Tropospheric ozone changes in turn alter climate through ra-
diative feedback and interactions with the biosphere (Fig. 1).

The overall responses of tropospheric ozone to changes of
meteorology and climate have been summarized in previous
reviews [46, 47, 78, 82, 205]. The responses are generally
quantified through observed statistical relationships of ozone
with meteorological variables, or through perturbation analy-
ses using chemical models [82]. One distinguished finding is
the positive surface ozone-temperature relationship in the pol-
luted regions, mainly driven by the role of temperature in
increasing natural emissions (in particular biogenic isoprene
emissions) and accelerating ozone chemical production at
high NOx levels [150]. The positive ozone-temperature rela-
tionship implies that global warming will deteriorate surface
ozone air quality in industrial regions even without increases
of anthropogenic emission, an impact referred as “climate
penalty” [217]. Previous reviews also documented the rela-
tionship between ventilation conditions (stagnations and cy-
clones) and ozone air quality, and summarized future ozone
projections driven by climate change, although the confidence
of such projections can be limited by uncertainties in chemical
mechanisms (such as organic nitrates production) and the lack
of atmosphere-biosphere interactions in the model [46].

Different from previous reviews which focus on the over-
all ozone response to climate change, this study aims to pres-
ent a process-oriented review on how meteorology and tro-
pospheric ozone interacts through each of the pathways. A
number of recent progresses of these processes are also in-
cluded. Particularly, recent studies have shown that shifts of
stratosphere-troposphere exchange (STE) and large-scale cli-
mate patterns such as the El Niño–Southern Oscillation
(ENSO) and Atlantic Multidecadal Oscillation (AMO) have
significant impacts on present-day ozone distribution and fu-
ture ozone projections. We include these important responses
in the review. The review is organized as follows. The three
pathways as described in Fig. 1 are reviewed in the “Effect on
Natural Sources of Ozone Precursors” section, the “Effect on
Ozone Chemistry and Deposition” section, and the “Effect on
Ozone and Precursor Transport Patterns (Associated with
Weather and Climate Patterns)” section, respectively. We
summarize recent studies (since 2009) of future tropospheric
ozone projections due to climate change in the “Future Ozone
Change Due to Climate Change” section, and discuss the
feedback from tropospheric ozone to climate in the
“Feedback from Tropospheric Ozone Change to Climate”
section. A conclusion is provided in the “Conclusion”
section.

Effect on Natural Sources of Ozone Precursors

We start with a brief overview on tropospheric ozone chemis-
try summarized from Jacob [81], Atkinson [7], andWang et al.

Fig. 1 Pathways of interaction between meteorology/climate changes
and tropospheric ozone. The red (blue) triangles represent that at global
scale future climate will increase (decrease) tropospheric ozone through

the specific pathway based on current understanding. More discussions
are provided in the text
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[210]. In the troposphere, photolysis of NO2 (at wavelengths
< 424 nm) provides O(3P) (the ground electronic state oxygen
atom) (1). Ozone is then formed through a termolecular reac-
tion of O(3P), O2, and a third body M (2).

NO2 þ hv→NOþ O 3P
� �

ð1Þ

O 3P
� �

þ O2 þM→O3 þM ð2Þ

O3 reacts rapidly with NO to regenerate NO2 through (3),

NOþ O3→O2 þ NO2 ð3Þ

contributing to null ozone production through (1)–(3).
However, the presence of oxidant radicals (hydroperoxyl rad-
ical (HO2) and organic peroxy radicals (RO2)) provides addi-
tional pathways to convert NO to NO2 through (4) and (5),

NOþ HO2→OHþ NO2 ð4Þ

NOþ RO2→ROþ NO2 ð5Þ

RO2, HO2 are products from oxidation of CO (6), hydro-
carbons (RH, 7), or alkoxy radicals (RO) (8).

COþ OHþ O2→HO2 þ CO2 ð6Þ

RHþ OHþ O2→H2Oþ RO2 ð7Þ

ROþ O2→R
0

Oþ HO2 ð8Þ

The oxidation of CO and hydrocarbons requires hydroxyl
radical (OH). It originates principally from photolysis of O3

(9) and reaction with water vapor (10).

O3 þ hv→O2 þ O 1D
� �

ð9Þ

O 1D
� �

þ H2O→2OH ð10Þ

The abovemechanisms present the tropospheric ozone produc-
tion through a chain photochemical oxidations of CO and hydro-
carbons (or in broader context, volatile organic compounds
(VOCs)) catalyzed by HOx (HOx =OH+H+peroxy radicals) in
the presence of NOx. The chain is terminated by the loss of HOx

radicals, which happens through the oxidation ofNO2 byOH (11),
and the self-reaction of HO2 (12):

NO2 þ OHþM→HNO3 þM ð11Þ
HO2 þ HO2→H2O2 þ O2 ð12Þ

H2O2 and HNO3 are then removed mainly by wet deposi-
tion due to their high solubility in water.

Ozone chemistry is strongly nonlinear. At low NOx levels, the
controlling termination is (12); thus, ozone production is limited by
the supply of NOx and is not sensitive to hydrocarbons, referred as
“NOx-limited regime.” At high NOx levels, the controlling termi-
nation is (11); thus, ozone production linearly increases with
VOCs concentrations but decreases with NOx concentrations, re-
ferred as “VOC-limited regime.”

Meteorological conditions therefore influence ozone
through modulating the climate-sensitive natural emission of
its precursors, including soil NOx emissions (“Soil NOx
Emission” section), lightning NOx emissions (“Lightning
NOx Emission” section), biogenic VOC (BVOC) emissions
(“BVOC Emissions” section), wildfire emissions (“Wildfire
Emission” section), and wetland methane emissions
(“Wetland Methane Emissions” section). We present a
process-based description on the role of meteorology in each
process and discuss the ozone response.

Soil NO
x
Emission

NOx can be produced naturally from soil as byproduct of
microbial activities (nitrification and denitrification). Soil
emissions contribute to approximately 10~15% (3 to
8 Tg N year−1) of the present-day global NOx emissions
([31, 77, 196, 204]). It is controlled by inorganic nitrogen
availability in soil, canopy structure (such as vegetation type),
and edaphic conditions such as soil temperature and moisture
[204, 226].

Soil temperature and moisture are critical factors in con-
trolling soil NOx emissions. These two factors together can
explain up to 74% of the observed variations of soil NOx

emissions in European forests [160]. Rising soil temperature
accelerates the enzymatic process and exponentially increases
soil emissions as observed over different biomes [160, 222].
The dependence of soil emissions on temperature, however,
weakens when soil temperature further increases (e.g., above
30 °C) and soil becomes dry, and then soil emissions become
more limited by water content [222]. High soil moisture also
suppresses soil NOx emissions, as wet condition with fewer
oxygen supply favors denitrification which preferentially
emits N2O and N2, and also limits gas diffusion through the
soil pores [77, 222]. Further impacts from soil moisture can be
found when there is a sudden shift from dry to wet conditions.
The sudden shift can release accumulated inorganic N rapidly
and reactivate the water-stressed bacteria, leading to a burst of
soil NOx emission. Rapid and intense soil NOx pulsing emis-
sions following rainfall in the US and India have been cap-
tured by daily satellite NO2 observations [13, 53].

Changes in soil NOx emissions due to variations of meteo-
rology and climate further modulate ozone. As soil emissions
dominate in rural regions where ozone chemical production is
typically NOx-limited, it is expected that soil NOx emissions
trigger strong local ozone production. Romer et al. [152]
showed that soil NOx emissions contributed to nearly half of
the ozone increases with rising temperature in a rural site in
the southeastern US. Hudman et al. [76] showed that warmer
(2 K) and drier (50%) weather conditions followed by con-
vective precipitation over the central US in June 2006 led to
about 50% higher soil NOx emissions compared to the average
for 2005–2008, mainly due to stronger pulsing emissions in
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that year. Increased soil NOx emissions alone then led to sur-
face ozone enhanced by 3–5 ppbv (episodically up to
16 ppbv). Similar enhancements (May–August 2017 vs.
2016) of soil NOx emissions (~ 25%) and surface ozone (1–
2 ppbv) due to warmer climate were simulated over the indus-
trial eastern China [119]. For future projections, modeling
studies predict significant enhancement of soil NOx emissions
driven by climate change (e.g., ~ 23% higher in 2100 com-
pared to 2000 in IPCC A2 emission scenario, [61, 108]), un-
derlying future climate will likely degrade ozone air quality
via increasing soil NOx emissions.

Lightning NO
x
Emission

Energy produced by lightning flashes dissociates and converts
atmospheric N2 molecules into NOx. Estimated global light-
ning NOx emissions are ranging from 2 to 8 Tg a−1 N with
large uncertainties [31, 126, 163]. The importance of lightning
NOx in atmospheric chemistry and potential radiative effect is
disproportionally large as it is mainly released in the upper
troposphere, where ozone chemical production is more effi-
cient, and where NOx and ozone have longer lifetimes [10].

Lightning NOx emissions strongly depend on the intensity
and frequency of lightning activities in the convective thun-
derstorms. Price and Rind [149] showed that the total light-
ning flash frequency in the thunderstorm exponentially in-
creased with convective cloud top height (CTH) with a power
of 4.9 in continental cloud. Several studies also linked light-
ning flashes to other convection-related characters such as
updraft velocity, latent heat release, and more recently upward
cloud ice flux [40, 42, 163]. These dependencies are then
parameterized into models to estimate lightning NOx emission
and ozone production. Lightning emissions contribute to up-
per tropospheric ozone by more than 10 ppbv [27, 75], and
also influence surface ozone especially at regions with high
elevations such as the US Intermountain West and the Tibetan
Plateau [119, 238]. It is also an important driver of observed
interannual variability of ozone and OH in tropical upper tro-
posphere [125, 127].

Climate variabilities can then influence tropospheric ozone
through altering lightning NOx emissions. Anomalously, high
ozone contributed by lightning emissions in El Niño condi-
tions (“Large-Scale Climate Patterns (ENSO, AMO, NAO)”
section) has been found at tropical upper-troposphere [55,
130] due to intensified convection over land and coastal area
[58]. The projected changes of future lightning ozone produc-
tions due to climate change, however, largely depend on the
parameterization of lightning in the model. Most studies with
lightning parameterized based on CTH showed enhancements
of lightning NOx emissions (4–60% K−1) in the warming fu-
ture due to more frequent and intense convections [163].
However, studies that used cloud ice flux for parameterization
resulted in an opposite conclusion, as the cloud ice crystal

declines with increasing temperature [41, 42, 83]. Therefore,
the projections of future lightning and its impact on ozone
need to be interpreted with caution.

BVOC Emissions

VOCs are important ozone precursors, a large amount of
which are emitted from terrestrial ecosystems. BVOC emis-
sions vary among plant functional types and are strongly mod-
ulated bymeteorological conditions. Temperature is one of the
key factors controlling BVOCs emissions due to the nature of
photosynthesis. Exponential enhancements of biogenic iso-
prene and monoterpene emissions with rising temperature
have been shown in field and laboratory observations and
implemented in chemical models [57]. The exponential de-
pendency of BVOC emissions on increasing temperature is
also identified as a main driver of the positive ozone-
temperature correlations especially over urban areas where
NOx levels are high [119, 150]. Modeling results showed that
a 3 K temperature enhancement on BVOC emissions alone
would increase biogenic isoprene emissions by 6–31% and
surface ozone by > 2 ppbv in the northern mid-latitudes [35].
The increased isoprene also affects the partitioning among
oxidized nitrogen to produce more peroxyacetyl nitrate
(PAN, a NOx reservoir compound), which can transport a long
distance and produce ozone downwind ([45]; see also the
“HOx Chemistry” section).

BVOC emissions are suppressed at extreme high tempera-
ture conditions (e.g., > 40 °C) which adversely affect cellular
activities [56]. The suppression of biogenic isoprene emis-
sions can explain the observed decline of surface ozone at
extreme high temperatures (> 312 K) over California [183].
Drought conditions also impede isoprene emissions as de-
creasing water content slows down photosynthetic rate and
stomatal conductance. Jiang et al. [87] estimated that includ-
ing the drought effect in the model would lead to reduction of
biogenic isoprene emissions by 17% globally. However, there
is evidence that in the initial phase of drought, the shutdown of
the plant physiological processes can enhance BVOC emis-
sions [87, 144, 148]. Zhang and Wang [235] showed that
enhanced biogenic isoprene emissions from water-stressed
plants at the onset stage of drought contributed to the abnor-
mally high ozone episodes over the southeast US in October
2010.

Model projections tend to predict significant increases of
BVOC emissions in the warming future, which would elevate
tropospheric ozone concentrations (e.g., [109, 199, 217]).
However, these projections might be influenced by uncer-
tainties in isoprene chemistry and interactions with the bio-
sphere as pointed out by recent studies and summarized as
follows:

1. Uncertainties in isoprene chemistry. Whereas oxidation
of the emitted BVOCs by OH produces RO2 (7) and further
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generates NO2 (5) and ozone, RO2 and NO can also go
through another branch that forms isoprene nitrates (RONO2),

NOþ RO2 þM→RONO2 þM ð13Þ

RONO2 presents as a sink of both NOx and RO2, thus
inhibits ozone production. The ratio of (13) branch in the total
(NO+RO2) reaction is estimated to be 10 ± 5% [142, 219],
depending on a variety of factors including temperature [7,
164]. Isoprene nitrates could be either recycled to regenerate
NO2 and ozone, or be deposited to surface [142]. Therefore,
different chemical mechanisms of isoprene oxidations (wheth-
er include (13) or not, include recycle or not, and their ratios)
presented in the models determine the sensitivity of ozone to
perturbed temperature and biogenic isoprene emissions [49,
79, 182, 216]. Through modeling studies, Ito et al. [79]
showed that if no RONO2 were recycled to NOx, the ozone
burden would be 17 Tg higher in a 5 K warmer scenario than
the cooler scenario, while if all RONO2 were recycled, ozone
burden differences between the two scenarios would be much
larger (57 Tg). Fu et al. [49] also showed that assuming a
higher cycling rate of RONO2 (55% versus 0%) in the model
produced a larger sensitivity of surface ozone to temperature
(8 ppbv K−1 vs. 5 ppbv K−1 in 2000) in the southeastern US.
Improving understanding of isoprene chemistry mechanism is
therefore critical for estimating the climate-BVOC-ozone
response.

2. Response to future ambient CO2 concentrations.
Laboratory and field observations have shown substantial re-
ductions in isoprene synthesis at elevated ambient CO2 levels
[6]. As such, future CO2 increases could largely offset [63,
191], or even counteract the warming induced enhancements
of BVOC emissions [59]. Tai et al. [191] showed that includ-
ing CO2 inhibition on BVOC emissions in the model de-
creased projected future surface ozone in eastern US,
Southeast Asia, and Europe by 6 ppbv compared to the results
without CO2 inhibition, but increased ozone in western
Amazon, central Africa, and Southeast Asia, where reduced
sequestration of NOx by isoprene oxidation products en-
hanced NOx levels in these NOx-limited regions [228]. The
above studies all point to the important role of the CO2 inhi-
bition effect on BVOC emissions that may change the magni-
tudes and signs of future ozone projections, yet most of the
current projections tend to miss this mechanism in the models
(see also “Future Ozone Change Due to Climate Change”
section).

3. Changes in land cover/vegetation types. Future environ-
ment (e.g., higher CO2 fertilization, changes in temperature
and precipitation) could naturally alter the abundance and dis-
tribution of vegetation, which may lead to large discrepancies
in the projected effect on BVOC emissions. Sanderson et al.
[158] showed that the climate-driven changes of vegetation
types (e.g., the recession of tropical forests) would lead to less
BVOC emissions, while Wu et al. [218] found increases in

global isoprene emissions. More recently, Hantson et al. [59]
found that such different responses largely depended on the
relative changes of different plant functional types.

Wildfire Emission

Wildfires emit large amounts of CO, NOx, and VOCs and
produce approximately 170 Tg year−1 (about 3.5% of the an-
nual total chemical production) of ozone with large interannu-
al variability [84]. Meteorology can alter wildfire emissions
and associated ozone production throughmodulating (1) wild-
fire frequency and intensity, (2) emitted tracers, and (3) ozone
photochemistry in wildfire plumes.

Wildfires are prone to occur in hot and dry weather condi-
tions. The intensity and frequency of wildfires have been in-
creasing in the western US since 1970 due to rising tempera-
ture and earlier snowmelt [214]. Lu et al. [116] estimated the
relationship between meteorological parameters and summer-
time wildfire frequency and intensity at monitoring sites in the
western US. They found that occurrences of large wildfire
events could enhance notably with increasing temperature
and solar radiation, and with decreasing relative humidity
and wind speed. When temperature was higher than 30 °C,
the frequency of large wildfire events was four times higher
than that of small events. Wildfire emissions are also influ-
enced by combustion efficiency, which largely depends on
meteorological conditions [168]. High temperature favors
flaming combustion (high combustion efficiency), leading to
stronger oxidation of fuel nitrogen compounds, larger propor-
tion of NOx emissions, and therefore higher ozone production.
Smoldering combustions in cooler conditions, on the other
hand, tend to release higher proportion of reduced nitrogen
compounds such as NH3 and are not favorable for ozone pro-
duction [84].

Ozone chemical production in wildfire plumes is also sub-
ject to meteorological conditions. Low temperature typically
in boreal wildfires favors rapid conversion from emitted NOx

to PAN. It limits ozone production near fire burning spots but
may lead to ozone enhancement downwind ([3], see also
“PAN Chemistry” section). Vertical diffusion influences the
injection heights of wildfire plumes which are critical to ozone
production and transport [200, 246]. At higher altitudes, the
wildfire plumes are exposed to higher solar radiation without
the blocking of wildfire aerosols and can also be more effi-
ciently transported downwind [86, 141]. All these complexi-
ties in meteorology-relevant wildfire emissions and chemistry
lead to a wide range of observed wildfire ozone enhancements
as the plumes travel and age ([84], and reference therein), and
make it difficult for chemical transport models to capture wild-
fire ozone influences especially at coarse grid resolution [116,
238].

Hot and dry weather condition then favors wildfire ozone
enhancement, as it increases the frequency and intensity of
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wildfire, enhances the combustion efficiency, and facilitates
wildfire ozone chemical production. Summertime wildfire
ozone enhancements in the western US could be 1–3 ppbv
higher in hot and dry years such as 2002–2003 than other
years [116]. Predictions of future wildfire activities have been
available in several climate models or vegetation models [93,
203], all suggesting increasing burned area and wildfire emis-
sions in the warming future, consistent with previous projec-
tions based on statistical methods [19, 181, 230].

Wetland Methane Emissions

Methane is an important ozone precursor in remote regions
due to its long chemical lifetime (about 9 years). Wetland
emissions (100–250 Tg year−1) are the dominant natural
source accounting for 20~50% of the total methane emissions
[92, 159]. Wetland releases methane when bacteria reduce
organic carbon to methane under the anaerobic environment
[15]. This process is controlled by soil temperature which
influences bacteria activity, water table position which deter-
mines production and oxidation depth, carbon availability
(soil carbon substrate), and decomposition rate [14, 159].
Increasing temperature accelerates the methane production
and oxidation rates. Increasing precipitation extends wetland
areas and raises water tables; both enhance wetland methane
emissions [134]. Christensen et al. [20] showed that soil tem-
perature explained 84% of the methane emission variations
over a number of northern wetland sites. Recent studies point-
ed out that climate variabilities such as ENSO could partly
explain the interannual variations of wetland methane emis-
sions especially in tropics through changes in temperature and
precipitation [68, 245].

Significant enhancements of wetland methane emissions
are projected with future increases in temperature and precip-
itation [134], although the enhancements may be partly offset
by the effect of soil moisture depletion [18]. Shindell et al.
[174] showed that global wetland methane emissions would
increase by 78% if CO2 concentrations double in the future.
Increasing wetland methane emissions would cause a cascade
of chemical influences and climate feedbacks. It could en-
hance ozone concentration, influence global OH burden
[174], amplify methane chemical lifetime, exert a strong radi-
ative forcing that faster the warming [52], and further increase
methane emissions from wetland and thawing permafrost
[134].

However, so far, only few models include interactive
climate-sensitive wetland methane emissions, with the major-
ity using prescribed methane mixing ratios for the future
ozone projection [99, 124]. To our knowledge, future ozone
changes due to increasing wetland methane emissions have
not been comprehensively quantified so far. Our current un-
derstanding of ozone production from climate-sensitive natu-
ral methane sources such as permafrost, lakes and ponds

[215], and marine methane hydrate [153] are rather limited,
and should be addressed in the future studies.

Effect on Ozone Chemistry and Deposition

Meteorology can influence tropospheric ozone through mod-
ulating the rate of chemical kinetics, the partitioning of reac-
tion pathways, and efficiency of deposition. In this session, we
discuss changes in ozone production and loss due to climate-
sensitive PAN chemistry (“PAN Chemistry” section), HOx

chemistry (“HOx Chemistry” section), and dry deposition
(“Dry Deposition” section).

PAN Chemistry

PAN is generated through the oxidation of acetaldehyde in the
presence of NOx in hydrocarbon-rich environment ((14) and
(15)) [81].

CH3CHOþ OHþ O2→CH3C Oð ÞOOþ H2O ð14Þ

CH3C Oð ÞOOþ NO2 þM→CH3C Oð ÞOONO2 þM ð15Þ

It is removed mainly via thermal decomposition (16) in the
lower troposphere below ~ 7 km [192].

CH3C Oð ÞOONO2 þM→CH3C Oð ÞOOþ NO2 þM ð16Þ

One important feature of PAN is the dependence of its
lifetime on temperature. Because the decomposition rate of
PAN (16) drops dramatically with decreasing temperature,
the lifetime of PAN extends from 30 min at 295 K to several
months at 240 K [7, 81]. This feature allows temperature to
influence the production and transport of ozone through PAN
chemistry. The formation of PAN serves as sinks for both NOx

and peroxy radicals, and therefore lowers ozone production
near the source region. Nevertheless, PAN can be transported
to a long distance in the cold free troposphere, eventually be
thermally decomposed to release NOx (often due to air heating
with subsidence), and consequently enhances ozone produc-
tion with high efficiency in remote regions [48]. Previous
studies have shown the role of PAN as a NOx reservoir com-
pound that helps transport NOx from polluted regions such as
east Asia [236] and fire spots [3] to remote regions and pro-
duce ozone there. Increasing PAN thermal decomposition
with rising temperature is also a driver of the observed posi-
tive ozone-temperature correlation [150], but this relationship
could be much weaker at extremely high temperature (e.g., >
312 K, [183]).

Temperature increases in the future will lead to stronger
thermal decomposition on PAN, resulting in ozone increases
in the polluted regions but decreases in remote regions.
Doherty et al. [35] showed that a 3 K temperature increase
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on the chemical reaction rate coefficient of (16) would cause
up to 4.2 ppbv ozone enhancement over land and up to 1 ppbv
ozone decrease over the remote oceans. The decrease of PAN
over remote regions, however, can be compensated by in-
creasing PAN generated from higher BVOC emissions in
warmer climate as discussed in the “BVOC Emissions”
section.

HO
x
Chemistry

Atmospheric water vapor (HOx sources) is essential to ozone
photochemistry. Its influences on tropospheric ozone are sen-
sitive to ozone chemical regimes. In the remote regions where
NOx levels are low, ozone removal by HOx is effective,
resulting in significant negative correlations between ozone
concentration and relative humidity (as a proxy of HOx con-
centration), e.g., ozone vs. relative humidity correlation of −
0.69 in the summertime western US in 1989–2010 [116]. In
polluted regions where NOx levels are relatively high, water
vapor has competing effects on ozone production. OH radical
oxidizes CO and hydrocarbons through (4)–(8) and activates
ozone production, while it also terminates ozone formation by
converting NO2 to nitric acid (HNO3) (11), leading to a more
complicated relationship between ozone and water vapor [82].
These weak or sign-varied correlations have been revealed in
urban areas in Europe and the US [9, 17].

From a global perspective, increasing water vapor in the
warming future would lead to a decline of tropospheric
ozone burden [205]. Doherty et al. [35] showed that 19%
increase of water vapor would reduce surface mean ozone
concentrations by 1–2 ppbv for global average and 3 ppbv
in the tropics. In the US, however, Dawson et al. [29]
showed that 20% decrease of absolute humidity would re-
duce the national mean surface ozone by 0.5 ppbv. A pos-
itive response of ozone to increasing water vapor content
was also found in California in a recent study [69],
reflecting the competing role of water vapor in tropospher-
ic ozone in polluted regions.

Dry Deposition

Dry deposition to vegetation is an important sink of tropo-
spheric ozone, accounting for about 20% of the annual total
tropospheric ozone chemical production [196]. Ozone dry de-
position dominantly occurs over vegetated surfaces via stoma-
tal uptake on leaf surface and nonstomatal uptake on plant
canopies [60, 243]. It is typically described separately by three
processes: turbulent transport in aerodynamic layer, molecular
diffusion through the quasi-laminar boundary layer, and up-
take at the surface [213]. These mechanisms are commonly
parameterized by analogy to the Ohms’ law that considers the
deposition resistance (reciprocal of deposition velocity) as

electrical circuits: resistances in aerodynamic layer (RA),
quasi-laminar layer (RB), and surface resistance (RC).

Dry deposition is significantly influenced by meteorologi-
cal conditions such as air stability and soil moisture. Strong air
stability results in large RA and impedes dry deposition. At
daytime when turbulent is active (small RA), ozone dry depo-
sition is usually limited by RC. RC is further decomposed into
stomatal uptake on leaf surface and nonstomatal uptake on
plant canopies and ground, both linked to meteorological con-
ditions. Stomatal ozone uptake is controlled by light that con-
trols stomata activity and is also influenced by soil moisture
and relative humidity. Drought and high temperature in air or
soil would suppress stomatal uptake (therefore suppress dry
deposition) due to the closure of stomata to protect plants from
desiccation. This mechanism significantly influences ozone in
semi-arid regions such the Mediterranean [4] and helps to
explain the negative ozone-humidity correlations in the US
[89]. Model results also showed that reductions of ozone dry
deposition due to persistent high temperatures and drought
could contributed to high ozone levels in Europe [179] and
China [119]. The nonstomatal ozone deposition, which de-
scribes the thermal decomposition of ozone with external sur-
faces including soil and canopy, also shows some degrees of
dependence on temperature and solar radiation [123]. A recent
modeling study showed that the Monin-Obukhov length (a
parameter for quantifying air stability) and surface tempera-
ture, were respectively, key factors influencing model esti-
mates of ozone dry deposition velocity during nighttime and
daytime [241].

To our knowledge, the responses of ozone dry deposition to
future climate change have not yet been comprehensively
quantified. There is one effort by Andersson and Engardt
[5], which found that in winter decreasing snow cover in
warmer future climate would lead to more effective ozone
dry deposition, while in summer, changes in air stability, soil
moisture, and temperature would lead to increase aerodynam-
ic and surface resistances (therefore suppress ozone dry depo-
sition). All these effects together led to ozone enhancements
of up to 6 ppbv in Europe. They also found that the weaker dry
deposition explained more than 60% of the total ozone en-
hancements, outweighed the effect from increasing biogenic
isoprene emissions, implying the important role of dry depo-
sition in climate-induced future ozone changes.

Effect on Ozone and Precursor Transport
Patterns (Associated with Weather
and Climate Patterns)

As the lifetime of tropospheric ozone and its precursors (e.g.,
CO, PAN) can reach weeks or months in the free troposphere
[229], it allows shifts of transport patterns (typically associat-
ed with weather and climate patterns) to influence
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tropospheric ozone by redistributing them. Based on the spa-
tial scales, these weather patterns can be classified as synoptic
circulations (~ 1000 km), large-scale climate patterns (~ 10,
000 km), and global vertical circulations (e.g., [47, 82]). The
physical mechanisms of ozone response to these weather pat-
terns have been documented from ground-based measure-
ments, satellite observations, and modeling studies. This sec-
tion will focus on a “transport” perspective and also combine
with discussions in the “Effect on Natural Sources of Ozone
Precursors” and “Effect on Ozone Chemistry and Deposition”
sections to illustrate that the responses are often associated
with changes in natural emissions and chemistry. We will start
with the response of tropospheric ozone to STE (associated
with large-scale circulation, “STE and Large-Scale
Meridional Circulations” section), to large-scale climate vari-
ability (~ 10,000 km) such as ENSO and AMO (“Large-Scale
Climate Patterns (ENSO, AMO, NAO)” section), and then
changes driven by synoptic circulations (~ 1000 km) such as
monsoons, subtropical highs, and mid-latitude jet streams
(“Synoptic Patterns” section).

STE and Large-Scale Meridional Circulations

From a global and long-term perspective, STE is driven by the
large-scale stratospheric meridional circulation known as the
Brewer-Dobson circulation (BDC). BDC is characterized by
upwelling from troposphere to stratosphere in the tropics,
transport to the extratropical stratosphere, and descending
from stratosphere to troposphere at middle and high latitudes
[185]. STE also occurs episodically at mid-latitudes associat-
ed with synoptic scale and mesoscale processes, such as tro-
popause folds near the jet streams, gravity wave breaking, and
deep convections [185, 193]. The role of STE in modulating
tropospheric ozone (550 Tg year−1, approximately 10% of the
annual global tropospheric ozone chemical production) and
surface ozone has been well documented [67, 73, 178, 195].

BDC has been strengthening and is expected to further
intensify in the warming future [16]. Increasing tropospheric
greenhouse gases and depletion of polar stratospheric ozone
(particularly in the Southern Hemisphere) can intensify me-
ridional temperature gradient in the upper troposphere/lower
stratosphere (UTLS) region, which enhances planetary wave
activity and strengthens the BDC [16]. It then leads to ozone
increase in the mid-latitude lower stratosphere and further de-
scends to the troposphere [38, 187, 234]. Hegglin and
Shepherd [65] showed that STE ozone transport would en-
hance by 23% in 2095 compared to the 1965 conditions due
to strengthening BDC in the IPCC A1B scenario. Banerjee
et al. [11] showed that future climate change alone would
increase STE by 17% and 28% in 2100 compared to 2000
conditions for RCP 4.5 and RCP8.5 scenarios, respectively.
A more recent study estimated a larger enhancement of STE
by 50% for RCP 8.5 [122]. The implications for future ozone

change will be discussed in details in the “Future Ozone
Change Due to Climate Change” section.

Tropospheric ozone is also affected by changes in strength
and location of the subtropical jet streams or mid-latitude
storm tracks where episodic STE occurs [72, 100]. There is
observational evidence that subtropical jet streams and mid-
latitude storm tracks have been moving poleward (a feature
also diagnosed as widening of the Hadley Circulation/tropical
belt) [74, 80, 121, 227] most likely caused by changes in
meridional temperature gradients in the UTLS [115, 194]. A
recent study by Lu et al. [120] attributed the large-scale pos-
itive tropospheric ozone trends in the Southern Hemisphere
over 1990–2010 to widening of the Hadley circulation, by
demonstrating the resulting changes in transport patterns fa-
vored stronger STE and ozone chemical production in the
Southern Hemisphere. Positive tropospheric ozone trends at
individual sites were also reported and linked to stronger STE
(e.g., [112, 139]). Xu et al. [221] showed that increasing STE
likely associated with strengthening of the mid-latitude jet
stream explained approximately 70% of the observed spring-
time ozone enhancements at Mt. Waliguan Observatory
(3816 m) in western China over 1994–2013. Linkages be-
tween STE and climate variabilities such as ENSO and the
North Atlantic Oscillation (NAO) have also been reported and
will be discussed in the next section.

Large-Scale Climate Patterns (ENSO, AMO, NAO)

ENSO

ENSO is one of the dominant climate models that modulates
global climate variability and also influences tropospheric
ozone on the interannual timescale. In the El Niño condition,
tropospheric ozone decreases (increases) in the eastern
(western) Pacific regions, as illustrated by negative (positive)
correlations between the Niño 3.4 Index and tropospheric col-
umn ozone (TCO) over the Pacific seen from satellite obser-
vations and model simulations [136–138, 248]. These re-
sponses can be explained by changes in zonal transport pat-
terns. In the El Niño condition, the warm ocean shifts eastward
into the coasts adjacent to the South America. Abnormal air
upwelling above the warmer water in the eastern Pacific lifts
the ozone-poor marine air and lowers TCO. Meanwhile,
strengthened subsidence occurs in the western Pacific, in-
creasing ozone concentrations there.

Besides influencing transport pathways, ENSO also affects
ozone through altering chemistry and precursor emissions.
Abnormal uplift in the eastern Pacific in El Niño brings more
water vapor (sources of HOx) into atmosphere, leading to
stronger ozone chemical loss ((9) and (10)). The drier western
Pacific is, in contrast, more favorable for ozone production
than that in La Niña. Sekiya and Sudo [165] showed that
although the impacts from transport outweighed those from
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chemistry globally, they were comparable over the central
Pacific. Warmer and drier weather conditions in the western
Pacific during El Niño also promote biomass burning there
[176] and enhance lightning activity as discussed in the
“Lightning NOx Emission” section, both contributing to
higher ozone [237]. The response of tropical tropospheric
ozone to ENSO therefore well illustrates that climate influ-
ences ozone through a conjunction of pathways of natural
precursor sources, chemistry, and transport.

While the ozone-ENSO response is most significant in tro-
pics, it can expand to mid-latitudes. The El Niño condition,
also characterized as easterly shear Quasi-Biennial Oscillation
(QBO) phase [100, 131, 247], can enhance STE at mid-
latitudes due to stronger subtropical jet than La Niña [166].
Zeng and Pyle [233] found that STE increased the global
tropospheric ozone burden by about 4 Tg following the strong
1997–1998 El Niño event. Regionally, higher TCO (4.9 DU)
over the Europe in spring 1998 was found associated with
stronger STE, Asian pollution transport, and wildfires [94].
Shifts in the polar stream position after La Niña winter have
shown to increase frequency of deep stratospheric ozone in-
trusion events in the western US [111]. Changes in meteoro-
logical conditions and transport patterns in El Niño years have
also found to cause surface ozone increases in the eastern US
but decreases in the southern and western parts [169, 220]. On
a 30-year time scale, Lin et al. [110] found that weaker trans-
port from Eurasia to Mauna Loa (Hawaii) observatory, driven
by more frequent occurrence of La-Niña-like conditions from
1980 to 2011, contributed to the flattening of springtime
ozone, which offset the ozone enhancement due to increasing
anthropogenic emissions.

AMO

On the multi-decadal timescales, AMO exerts considerable
influences on the global and regional meteorological variabil-
ity (e.g., [21]). To our knowledge, only a few studies have
examined its influence on ozone air quality [170, 173, 223].
AMO is a climate cycle that features positive sea surface
temperature (SST) anomalies in the northern Atlantic in its
warm phase. Since 1900s, there have been warm AMO
phases over 1931–1960 and 1990–2012 and cold phases in
1900–1929 and 1960–1994 [173, 189]. In the warm phase,
warming Atlantic SSTs can trigger diabatic heating in the
atmosphere, which further influences the extratropical climate
through stationary wave propagations [189, 190]. This results
in hotter, drier, and more stagnant weather in the eastern US
and favors high ozone concentrations there. Understanding
such linkages between ozone and SST [225] is particularly
valuable because sea heat content has longer memory than
atmosphere and can serve as a potential tool to predict ozone
air quality. Shen et al. [173]estimated that in one half cycle of
AMO (~ 35 years) from its cold to warm phase, the

summertime ozone levels in the US could increase by about
1–3 ppbv in the Northeast and 2–5 ppbv in the Great Plains.
Yan et al. [223] also showed that AMO and ENSO indices
could explain ~ 40% of the interannual variability of ozone
concentrations in the US.

NAO and AO

Other climate oscillations such as the Arctic Oscillation (AO)
and NAO have been found to influence tropospheric ozone at
mid-high latitudes [28, 66]. In the positive AO phase, charac-
terized by weaker sea level pressure in the polar region but
higher sea level pressure at mid-latitudes, the weakened pole-
ward transport frommid-latitudes to Arctic led to lower ozone
(− 1 DU) over the Artic [165]. The variability of AO has
shown to account for up to 50% of the observed ozone vari-
ability in the lower troposphere over North America in sum-
mer via changes in STE and intercontinental transport of
ozone and its precursors [98]. The positive NAO phase inten-
sifies the temperature gradient in the upper troposphere be-
tween mid-latitudes (~ 50° N) and high-latitudes (north of
60° N), and then affect the position of storm tracks and inten-
sity. It is thus likely to strengthen STE [85] and influence
surface ozone over Europe [143].

Synoptic Patterns

Monsoon

Monsoon is characterized by distinct seasonal transitions of
prevailing wind and precipitation [33, 206]. The most ener-
getic monsoon system is the Asian-Australian monsoon sys-
tem spanning over the South and East Asia [33]. During win-
ter, northerly wind prevails over South and East Asia, brings
dry and cool weather conditions. The prevailing southwesterly
with the onset of summer monsoon brings clean and moist
ocean air to the continental southeast Asia, enhances cloud
covers and precipitations. Convections are also active in the
summer monsoon seasons.

Satellite and in situ observations have shown declines of
tropospheric ozone in southeast Asia from May to August
with the evolution of summer monsoon [155]. Significant
ozone decreases over India could be attributed to transport
pattern shifts, i.e., cleaner marine air input and stronger air
uplift [156], and also lower ozone chemical production as a
result of cloudy, cooler, and wetter weather conditions [135].
By quantifying the individual processes, Lu et al. [117]
showed that the ozone chemical production decreased by
4.2 Tg over the Indian lower troposphere (from surface to
600 hPa) from May to August, and strong convection in
August effectively uplifted 3.3 Tg ozone to above 600 hPa,
together led to significant decreases in the Indian lower tropo-
spheric ozone in the summer monsoon month. The uplifted
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ozone in tropics can then be transported by the easterly jet in
the upper troposphere and impact global tropospheric ozone
distribution [96, 102, 106]. Similar ozone-monsoon responses
but with different seasonal variations were also found for near-
surface ozone in China [34, 62, 107, 118, 207, 240, 242].

Interannual ozone variability in monsoon regions shows
strong correlations with the monsoon strength. Lu et al.
[117] showed that ozone concentrations in the lower tropo-
sphere (from surface to 600 hPa) were 3.4 ppbv higher in
weaker monsoon years than stronger years, mainly due to
stronger ozone net chemical production. This negative corre-
lation between ozone levels and monsoon strengths is also
found at Pacific Ocean sites near the Asian continent [71].
Yang et al. [224], however, showed that stronger East Asian
summer monsoons led to higher surface ozone concentrations
over central and western China, mainly attributed to smaller
ozone outflow to the East China Sea. Asian summer monsoon
circulations are further modulated by climate variabilities such
as ENSO [95] and AMO [114], and are projected to change in
the warming future [157]. We thus expect these climate vari-
abilities could also influence tropospheric ozone through
change in monsoon on a longer timescale, which is still un-
known due to the lack of long-term ozone observations.

Cyclone and Stagnation

The cold fronts associated with the mid-latitude cyclones
can effectively lower air pollution [105, 197]. The frequen-
cy of ozone episodes in the northeastern US has showed a
strong negative correlation with the cyclone frequency
[105]. These cyclone activities are often related to the po-
sition of the polar jet wind. Combining observations and
model simulations, Barnes and Fiore [12] found that the
daily variability of US surface ozone was linked with the
north-south latitudinal shift of the jet winds. Shen et al.
[171] showed that the frequency of the jet wind traversing
the Midwest and Northeast US acted as a good metric to
diagnose the ozone variability in the northern US.

Surface ozone in Europe is strongly impacted by the
strength and frequency of high-latitude blocks and subtropical
ridges in summer [140]. A recent review from Dayan et al.
[30] concluded that high summertime tropospheric ozone over
the eastern Mediterranean could be attributed to frequent STE
associated with tropopause folding activities [198], strong air
subsidence at mid-troposphere [232], and the long-range
transport of ozone-rich air masses from eastern continental
Europe [154]. Myriokefalitakis et al. [128] suggested that
the contribution of these dynamic processes (~ 90%) signifi-
cantly outweighed that of local precursor emissions. High
summertime ozone concentrations over the UK were often
associated with anti-cyclonic conditions (degrading ventila-
tion) and the easterly flows (transporting pollution from the
continental Europe to the UK) [147].

Similar with front activities, stagnant conditions have been
applied to diagnose air quality. Stagnations, which are usually
characterized by slow wind speeds, no precipitation, and tem-
perature inversion in the boundary layer, are unfavorable for
ventilation and tend to build up high ozone air pollution [186].
High temperature events (heatwaves) could occur associated
with stagnations under persistent high-pressure systems, lead-
ing to high ozone extremes [161, 172, 188]. Solberg et al.
[179] summarized that during the 2003 Europe heatwave
events, high ozone extremes were contributed by (1) extended
air residence time in the stable boundary layer, (2) biomass
burning due to drought and heat, (3) high biogenic isoprene
emissions, and (4) reduced ozone dry deposition velocity. Sun
et al. [188] showed that on average one stagnation day could
increase the mean surface ozone concentration in the north-
eastern US by about 4.7 ppbv.

Subtropical High

The semi-permanent subtropical high-pressure systems are
mainly confined to oceans, but their intensifications in sum-
mer exert large influences on regional weather and air quality
in regions such as the eastern US and eastern China [37, 43,
171, 239, 244]. Shen et al. [171] found that the influences of
the Atlantic subtropical high (known as the Bermuda High) on
ozone over the US depended on the location of its west bound-
ary. The westward shift of the Bermuda High could increase
ozone concentrations in regions under the high-pressure sys-
tem, but decrease ozone along its west boundary by bringing
clean and humid air from the ocean. Wang et al. [209] further
showed that the location and strength of the Bermuda High
explained 60–70% of the interannual variability of summer-
time ozone concentrations in the Houston–Galveston–
Brazoria (HGB) metropolitan region. Focused on ozone air
quality in China, Zhao and Wang [239] found that intensified
West Pacific subtropical high enhanced southwesterly trans-
port of moisture and clean air into South China, and therefore
decreased ozone levels, but led to dry and sunny conditions
over North China and thus increased ozone levels there.

Future Ozone Change Due to Climate Change

Previous sections have summarized three pathways of climat-
ic influences on tropospheric ozone. In this section, we exam-
ine their combined effects in the context of future climate
change. A review of future ozone projections driven by cli-
mate change was previously conducted by Jacob and Winner
[82] and updated by Fiore et al. [46, 47] with more focus on
the US. Here, we extend tomore recent results (published after
Jacob and Winner [82]), and include broader regional results.

Along with global warming driven by increasing green-
house gas levels, there will be increases in the frequency,
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duration, and intensity of regional hot extremes [25].
Hydrological cycle (water content, cloudiness, wet convec-
tions) will also respond to the warming. Global averaged spe-
cific humidity tends to increase due to more water vapor that
can be accommodated in a warmer atmosphere, but relative
humidity over land is expected to decline. There have also
been some studies focusing on the future change of transport
pattern (e.g., [36]). As discussed in the “STE and Large-Scale
Meridional Circulations” section, increasing greenhouse gases
will likely lead to accelerated stratospheric BDC andwidening
of the Hadley Circulation, which are expected to enhance STE
in the future. Model projections show decreases of mid-
latitude cyclone frequency due to poleward shift of polar jet
stream over the eastern US in the twenty-first-century climate
[103, 167, 227], and degradation of ventilation conditions
with increasing stagnation days [70, 145].

Table 1 lists recent model projected future changes in sur-
face or tropospheric ozone driven by climate change alone.
The projections are from state-of-art chemical models with
different frameworks (offline chemical transport model or
on-line chemistry-climate model), model capability (dynam-
ics, representation of natural emissions, and chemical mecha-
nisms), model resolution, future greenhouse gas scenarios,
time slice, and reported metrics. All these differences contrib-
ute to a wide range of projected ozone changes even for the
same region [46, 47].

Despite different regional characteristics, most models pre-
dicted future climate changewould lead to increases of surface
ozone over polluted regions and decreases over remote land
and oceans. Significant surface ozone enhancements were pre-
dicted in East Asia, Europe (in particular the southern
Europe), and the northeastern US. Most models attributed
surface ozone increases to warming-induced BVOC emission
enhancements, faster chemistry kinetics, and also faster PAN
decomposition. Only one result (Tai et al., 2013) listed in
Table 1 included CO2 inhibition on BVOC emissions. They
showed that surface ozone enhancements would be reduced
by 50% in major polluted regions when the CO2 inhibition
effect was included in the model. Over remote land and
oceans, future surface ozone levels would generally decrease
due to more water vapor and less PAN decomposition.

The different responses of surface ozone to future climate
suggest “the most ozone polluted regions get worse while their
neighbors get better” [162]. This is evident by more frequent
occurrence of high ozone events (extremes) (e.g., [101, 104,
172, 208, 212]). For example, the 95th percentile of daily
maximum 8-h average (MDA8) surface ozone in the US
was projected to increase from 79 to 87 ppbv under the
IPCC A2 scenario [146]. The increases of ozone extremes
can be induced by a combined effect of higher ozone-
temperature response in high NOx regions [150], and more
frequent and severe stagnations [70, 145] accompanied with
persistent hot weather conditions [50, 172].

We highlight here the importance of increasing STE on
future tropospheric ozone burden. Three projections ([11,
90]; and [122]) listed in Table 1 included stratosphere-
resolved chemistry and dynamics in the models and thus bet-
ter represent stratospheric influences on tropospheric ozone.
All three models revealed significant enhancements of STE
driven by stronger BDC, leading to increases of tropospheric
ozone burden. Banerjee et al. [11] found that under the
RCP8.5 scenario, climate change alone would indeed de-
crease net ozone chemical production (− 109 Tg) due to
higher water vapor content, but would then be compensated
by increases of STE (+ 101 Tg), and result in a 13% increase
of the tropospheric ozone burden. These results emphasized
the need to better simulate STE in future ozone projections,
however, many models (e.g., about half of the models in the
Atmospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP) Phase 1; [99]) and most results listed in
Table 1 still used prescribed stratospheric ozone as the lateral
boundary or linearized stratospheric ozone schemes for future
projections. Future studies are needed to understand to what
extent the increasing STE influences future surface ozone air
quality.

Feedback from Tropospheric Ozone Change
to Climate

While tropospheric ozone is affected by climate change, its
variations in turn influence climate through altering radiation
and atmosphere-biosphere interactions. Using 17 different
global climate-chemistry models with varying radiation
schemes, Stevenson et al. [184] estimated the tropospheric
ozone radiative forcing of 410 mW m−2 from the pre-
industrial era (1750) to 2010. Compared to CO2 and methane,
the shorter lifetime of tropospheric ozone leads to heteroge-
neous spatial distributions of its abundance and resulting ra-
diative forcing. The highest tropospheric ozone radiative forc-
ing values are found over the northern mid-latitudes where the
sources of ozone precursors are large, and over cloudless sub-
tropical regions such as the Sahara Desert where vertical tem-
perature differences are high [184].

The heterogeneous distribution of ozone radiative forcing
may alter atmospheric general circulation. High tropospheric
ozone and black carbon levels at the northern mid-latitudes
intensify the meridional temperature gradient in the UTLS,
and partly drive the observed expansion of the Northern
Hemisphere tropics [2]. As discussed in the “STE and
Large-Scale Meridional Circulations” section, widening of
the tropics (also the Hadley Circulation) may further increase
tropospheric ozone, providing a potential positive feedback
[120]. Exclusion of ozone radiative feedback in CCMs would
also cause models to predict stronger weakening of theWalker
circulation and more ENSO extremes in the future [133]. In
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addition, tropospheric ozone can influence the radiative forc-
ing of other chemical tracers such as methane and NOx by
changing their lifetimes [44, 47].

Tropospheric ozone also affects climate indirectly through
its impacts on vegetation and carbon uptake [113, 177].
Stomatal uptake of ozone damages plant cells and impedes
plant photosynthesis, leading to reductions of plant primary
productivity [1, 39, 231]. Sitch et al. [177] estimated that
under the IPCC A2 scenario, increasing tropospheric ozone
in 2100 would decrease the global gross primary productivity
by up to 30 Pg C year−1 compared to the 1990 condition,
exerting indirect radiative forcing of 1.09 W m−2. The de-
clined vegetation would decrease the amount of BVOC emis-
sions, and therefore limit ozone production, but it would also
suppress ozone dry deposition. Such interactions between cli-
mate, atmospheric chemistry, and the biosphere are still poorly
understood and are generally not considered in current studies.

Conclusion

Variations and future changes of tropospheric ozone are
strongly tied to meteorology and climate (Fig. 1).
Meteorology influences the biogenic activities of vegetation
and microbes in the ecosystem and hence their emissions of
ozone precursors. These climate-sensitive natural emissions
mainly include soil NOx, lightning NOx, BVOCs, wildfires,
and wetland methane emissions. Meteorology also determines
the nature of atmosphere where photochemistry relies on, and
therefore influences tropospheric ozone through altering the
kinetics, and partitioning and deposition of chemicals.
Changes in atmospheric circulation on different spatiotempo-
ral scales influence the transport of ozone and its precursors.
In particular, robust signals of ozone response have been
found to large-scale circulations (e.g., BDC) and STE, large-
scale climate patterns (e.g., ENSO, AMO), and synoptic pat-
terns (e.g., monsoon, cyclones). All these connections togeth-
er determine the high sensitivity of tropospheric ozone levels
to climate.

Projections of future ozone changes driven by climate
change largely reflect the dominant role of increasing temper-
ature and water vapor in the atmosphere. These suggest in-
creasing surface ozone in the polluted regions such as eastern
US, southern Europe, and the south and east Asia, most likely
due to increasing biogenic isoprene emissions, increasing so-
lar radiation with less cloudiness, decreasing ozone dry depo-
sition, increasing PAN decomposition, and higher frequency
of stagnations and heat waves. Additional emission control
measures are thus required over such regions to meet the
ozone air quality standards in the future. In remote regions
and ocean, surface ozone levels are projected to decrease
due to stronger chemical loss with higher water vapor and also
less PAN decomposition. The change of tropospheric ozone

burden can be affected by the competing roles of increasing
water vapor (which decreases tropospheric ozone) and in-
creasing STE due to stronger BDC (which increases tropo-
spheric ozone).

Considerable limits still exist in the current understanding
of the biogenic, chemical, and dynamic linkages between
ozone and climate, which challenge our confidence in the
model projections of future ozone change. Previous reviews
have raised somemajor recommendations, e.g., improving the
capability of climate models to present local processes,
constraining uncertainties in atmospheric chemistry mecha-
nisms (in particular the uncertain yield and fate of isoprene
nitrates), and using ensemble model runs for future projec-
tions [46, 47, 82]. Here, we prioritize two important issues
for further research and model development.

1. Uncertainties in biogenic activities and their responses to
changing environment. The ecosystem serves as a hub to con-
nect tropospheric ozone and climate, yet their linkages need to
be better understood. Models may not adequately present
many of these biogenic activities, for example, the inhabita-
tion of BVOC emissions with rising CO2 levels [191], bio-
genic isoprene emissions in rapid transition of weather condi-
tions (e.g., [235]), and ozone damage on vegetation (further
influence emission of BVOCs and uptake of ozone and car-
bon). Many models also do not consider the climate-induced
terrestrial change (e.g., evolution of plant types and land cov-
er), which has important implications for the ozone variation
as many of the terrestrial responses are dependent on plant
types [26]. Improved scientific knowledge as well as the de-
velopment of fully coupled earth system models is in need to
better quantify such interactions.

2. The role of future stratospheric circulation and STE on
tropospheric ozone. As discussed in the “Future Ozone
Change Due to Climate Change” section, models that predict
stronger stratospheric BDC in the future show notable in-
creases in tropospheric ozone burden driven by changes of
STE, while models with no or inadequately stratosphere dy-
namics predicted tropospheric ozone decreases. Coupling
with future stratosphere ozone recovery [32, 180], stronger
STE may become a key factor modulating future tropospheric
ozone and even surface ozone. Representing these dynamic
ozone responses requires models to include stratosphere-
resolved dynamics and chemistry.

Finally, we also briefly review the feedback of tropospheric
ozone to climate change through exerting RF and interactions
with biosphere. The heterogeneous spatial distribution of tro-
pospheric ozone exerts notable influences on the global and
regional scale atmospheric circulations such as the Hadley
Circulation and theWalker Circulation. The increasing surface
ozone also impedes the carbon uptake in ecosystem and there-
fore indirectly influence climate. A comprehensive view of the
interactions between tropospheric ozone, ecosystem, and ra-
diation remains to be quantified in future studies.
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