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Abstract. The spread of the new coronavirus SARS-CoV-
2 that causes COVID-19 forced the Spanish Government
to implement extensive lockdown measures to reduce the
number of hospital admissions, starting on 14 March 2020.
Over the following days and weeks, strong reductions in
nitrogen dioxide (NO2) pollution were reported in many
regions of Spain. A substantial part of these reductions
was obviously due to decreased local and regional anthro-
pogenic emissions. Yet, the confounding effect of meteo-
rological variability hinders a reliable quantification of the
lockdown’s impact upon the observed pollution levels. Our
study uses machine-learning (ML) models fed by meteoro-
logical data along with other time features to estimate the
“business-as-usual” NO2 mixing ratios that would have been
observed in the absence of the lockdown. We then quan-
tify the so-called meteorology-normalized NO2 reductions
induced by the lockdown measures by comparing the esti-
mated business-as-usual values with the observed NO2 mix-
ing ratios. We applied this analysis for a selection of urban
background and traffic stations covering the more than 50
Spanish provinces and islands.

The ML predictive models were found to perform remark-
ably well in most locations, with an overall bias, root mean
square error and correlation of +4 %, 29 % and 0.86, respec-
tively. During the period of study, from the enforcement of
the state of alarm in Spain on 14 March to 23 April, we
found the lockdown measures to be responsible for a 50 %
reduction in NO2 levels on average over all provinces and
islands. The lockdown in Spain has gone through several
phases with different levels of severity with respect to mo-
bility restrictions. As expected, the meteorology-normalized

change in NO2 was found to be stronger during phase II (the
most stringent phase) and phase III of the lockdown than
during phase I. In the largest agglomerations, where both ur-
ban background and traffic stations were available, a stronger
meteorology-normalized NO2 change is highlighted at traf-
fic stations compared with urban background sites. Our re-
sults are consistent with foreseen (although still uncertain)
changes in anthropogenic emissions induced by the lock-
down. We also show the importance of taking the meteoro-
logical variability into account for accurately assessing the
impact of the lockdown on NO2 levels, in particular at fine
spatial and temporal scales.

Meteorology-normalized estimates such as those pre-
sented here are crucial to reliably quantify the health impli-
cations of the lockdown due to reduced air pollution.

1 Introduction

The rapid spread of the new coronavirus SARS-CoV-2 that
causes COVID-19 has led numerous countries worldwide to
put their citizens on various forms of lockdown, with mea-
sures ranging from light social distancing to almost complete
restrictions on mobility (Anderson et al., 2020). Spain has
been among the countries most severely affected by COVID-
19; therefore, proportional (drastic) containment measures
have been implemented. Spanish authorities declared a con-
stitutional state of alarm on 13 and 14 March 2020, to be
enforced on the 14th. During this period (phase I) residents
had to remain inside their primary residence except when
purchasing food and medicines, working or attending emer-
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gencies. Nonessential shops and businesses, including bars,
restaurants and commercial businesses had to close. Due to
the persistent rise in hospital admissions, an even more se-
vere second phase (phase II) of the lockdown was imple-
mented between 30 March and 9 April, during which only
essential activities including food trade, healthcare services,
and some industries were authorized. A third phase (phase
III) began on 10 April, when some nonessential sectors, in-
cluding construction and industry, were allowed to return to
work.

The shutdown of both social and economic activities
in Spain has reduced anthropogenic pollutant emissions.
Among the sectors presumably most affected, road trans-
port, which is a dominant source of air pollution in urban ar-
eas, and air traffic have fallen to unprecedentedly low levels.
The impact on the industrial sector is presumably more con-
trasted, as some essential industries (e.g., fuel- and energy-
related industry and petrochemical plants) were authorized
to continue their production, while others were forced to halt
their activity.

While such an extraordinary situation has obviously im-
pacted the levels of air pollution in the country, as seen in
both surface and satellite observations (Tobías et al., 2020;
Bauwens et al., 2020), the extent of such reductions remains
uncertain. Besides emissions, air pollution is strongly in-
fluenced by meteorological conditions that drive their dis-
persion and short- to long-range transport and affect their
removal and chemical evolution. As highlighted by Tobías
et al. (2020) in Barcelona, this makes the quantification of
air pollution reductions during the lockdown unreliable when
solely based on the analysis of in situ observations. Chem-
istry transport models (CTMs) are an essential tool for in-
vestigating both actual and alternative states of the atmo-
sphere under different emission scenarios. Actually, the lock-
down offers unique opportunities for so-called dynamical
CTM evaluations (Rao et al., 2011), i.e., testing the ability
of CTMs to reproduce the observed changes in concentra-
tions under unusually different emission scenarios (Guevara
et al., 2020a; Menut et al., 2020). However, given the diffi-
culty of accurately estimating the changes in emissions in-
duced by the lockdown along with the inherent limitations of
CTMs, particularly in urban areas, estimating the reductions
with this method remains a complex task that is sullied by
substantial uncertainties that are difficult to quantify.

The need to attribute changes in pollutant concentrations
to changes in emissions recently motivated the develop-
ment of so-called weather normalization techniques based
on machine-learning (ML) algorithms (Grange et al., 2018;
Grange and Carslaw, 2019). The idea consists of training ML
models to predict pollutant concentrations at air quality (AQ)
monitoring stations based on a set of features including me-
teorological data and other time variables. This allows for
the building of ML models that learn the influence of me-
teorology upon pollutant concentrations under a given aver-
age emission forcing. These ML models can then be used to

predict pollutant concentrations under a range of meteoro-
logical conditions, with the associated average referred to as
meteorology-normalized time series in Grange et al. (2018)
and Grange and Carslaw (2019). In addition, such ML mod-
els can be used to predict business-as-usual pollutant concen-
trations during periods with presumably different emissions,
i.e., estimating the pollutant concentrations that would have
been experienced without the change in emissions.

Following the ideas introduced in Grange et al. (2018) and
Grange and Carslaw (2019), the present study uses ML mod-
els to investigate the reduction in nitrogen dioxide (NO2)
concentrations in Spain due to the COVID-19 lockdown.
Since road transport and industry are major sources of NO2
emissions, the impact of the lockdown on this primary pol-
lutant is expected to be strong and, thus, easier to detect and
quantify. Due to its short lifetime and relatively simple chem-
istry, NO2 is likely more directly impacted by meteorological
conditions than other pollutants, such as particulate matter,
that depend upon more numerous and complex processes.

2 Data and methods

2.1 NO2 data

This study primarily relies on hourly NO2 measurements
performed routinely in Spanish AQ surface monitoring sta-
tions. We considered the time period from 1 January 2013
to 23 April 2020. We used the NO2 data available from the
GHOST (Globally Harmonised Observational Surface Treat-
ment) project developed at the Earth Sciences Department of
the Barcelona Supercomputing Center. GHOST is a project
dedicated to the harmonization of global surface atmospheric
observations and metadata for the purpose of facilitating
quality-assured comparisons between observations and mod-
els within the atmospheric chemistry community (Bowdalo,
2020). GHOST ingests numerous publicly available AQ ob-
servational datasets. In this study, we used the NO2 data from
the European Environmental Agency (EEA) AQ e-Reporting
(EEA, 2020). We prioritized the validated data (E1a) and
used the near-real-time data (E2a) only when necessary. The
fraction of E1a data is 0 % in 2020, 99 % in 2019 and 100 %
in 2013–2018.

All NO2 measurements taken into account here are oper-
ated using chemiluminescence with an internal molybdenum
converter. Although predominantly used over Europe for
measuring NO2, this measurement technique is well known
to have potentially strong positive artifacts due to interfer-
ence from NOz compounds (e.g., nitric acid, peroxyacetyl ni-
trates and organic nitrates), especially during daytime when
these species are photochemically formed, of up to a fac-
tor of 2–4 as observed during summertime in urban atmo-
spheres (e.g., Dunlea et al., 2007; Villena et al., 2012). In our
case, the positive artifacts at urban background stations are
probably lower because the period of study (late winter and
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early spring) is less photochemically active than summer-
time. Even lower interference is expected at traffic stations
where the NOz/NOx ratio is typically lower due to the prox-
imity to fresh NOx emissions. In any case, the present study
focuses on the relative changes in NO2 due to the lockdown,
so biases in the NO2 measurements are of lower importance.

GHOST provides a wide range of harmonized metadata
and quality assurance (QA) flags for all pollutant measure-
ments. In this study, we took advantage of these flags and
used them to apply an exhaustive QA screening. More de-
tails on the QA flags used can be found in Appendix A.

NO2 measurements are available over the period from
2013 to 2020 at 551 stations in Spain. This study aims at
investigating the reduction in NO2 over a variety of environ-
ments and geographical locations. Thus, we designed an al-
gorithm for automatically selecting (when possible) one ur-
ban/suburban background station and one traffic station in
each Nomenclature of Territorial Units for Statistics level 3
(NUTS-3; Ceuta and Melilla excluded), which corresponds
to Spanish provinces over the mainland and individual is-
lands over the Balearic and Canary islands (hereafter referred
to as provinces for convenience). After the QA screening
of NO2 data, we set different thresholds for minimum data
availability over different periods of interest, namely 50 % of
daily data over the entire period of study, 50 % over the pe-
riod from 1 January 2017 to 1 January 2019 (used for training
the ML models, see below), 25 % over the period from 1 Jan-
uary to 13 March 2020 (used for testing the ML models) and
10 % during the lockdown period. Stations in each province
were then selected to maximize the surrounding population
density (within a geodesic radius of 5 km) and the data avail-
ability (both before and during the lockdown). The popula-
tion density at AQ monitoring stations was retrieved through
GHOST, which ingests the Gridded Population of the World
(GPW) version 4 dataset (Center for International Earth Sci-
ence Information Network – CIESIN – Columbia University,
2018). Stations fulfilling the different criteria were identified
in 50 Spanish provinces and are considered in this study (38
provinces with urban background stations and 37 provinces
with traffic stations). No appropriate stations were found in
Palencia, Ávila or on some islands (La Palma, La Gomera, El
Hierro, Lanzarote, Eivissa and Formentera). A map of the en-
tire NO2 monitoring network and the stations selected in each
Spanish province are shown in Fig. 1. The names and geo-
graphical locations of the stations are reported in Table C1 in
the Appendix.

2.2 Meteorological data

Meteorological data are taken from the ERA5 reanalysis
dataset (Hersbach et al., 2020). ERA5 data have a spatial
resolution of about 31 km. At all AQ monitoring surface
stations, we extracted the following variables at the daily
scale: daily mean 2 m temperature, minimum and maximum
2 m temperature, surface wind speed, normalized 10 m zonal

and meridian wind speed components, surface pressure, to-
tal cloud cover, net solar radiation at the surface, downward
solar radiation at the surface, downward UV radiation at the
surface and the boundary layer height.

2.3 Methodology

We implement and train ML models to estimate the daily
NO2 mixing ratios that would have been observed without
the implementation of the lockdown in each selected station,
i.e., under business-as-usual emission forcing. Hereafter, we
will refer to these mixing ratios as business-as-usual NO2.

2.3.1 Machine-learning model

In this study, we retain the gradient boosting machine
(GBM), a popular decision-tree-based ensemble method be-
longing to the boosting family (Friedman, 2001). More in-
formation on this model is given in Appendix B. ML mod-
els based on decision trees offer several interesting attributes.
First, they internally handle the process of feature selection,
which allows for the inclusion of potentially useless features
without strong deterioration of the prediction skills. Second,
they provide useful information about the importance of the
different features. Third, in contrast to most parametric meth-
ods that derive a unique (more or less sophisticated) func-
tion supposedly valid over the whole features’ space, non-
parametric methods based on decision trees internally rely
on successive splitting operations (a mother branch being di-
vided into two daughter branches), which may be convenient
for designing one single model that is able to work efficiently
under different seasonal and weather regimes.

2.3.2 Choice of features and modeling strategy

Following the work of Grange and Carslaw (2019), the idea
here is to use past recent data to train an ML model that is
able to reproduce the NO2 mixing ratios based on a com-
bination of meteorological features and other time features.
The features used in this study are the daily mean 2 m tem-
perature, minimum and maximum 2 m temperature, surface
wind speed, normalized 10 m zonal and meridian wind speed
components, surface pressure, total cloud cover, net solar ra-
diation at the surface, downward solar radiation at the sur-
face, downward UV radiation at the surface, boundary layer
height, date index (days since 1 January 2013), Julian date
and weekday. All of the data used in this study are daily.
Some pollutant concentrations are known to strongly vary
depending on the season and day of the week, notably due to
the variability in emissions and chemistry. The two last time
features act as proxies for these processes and aim to rep-
resenting their climatological variations. Over longer (multi-
annual) timescales, air pollutant concentrations cannot typ-
ically be considered as stationary due to substantial trends
(especially in emissions), which is intrinsically problematic
for training ML models. Following Grange et al. (2018) and
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Figure 1. Mean NO2 mixing ratios (ppbv; 2013–2020) at all (circles) and selected (squares and triangles) stations. Administrative borders
show the NUTS-3 administrative units, which correspond to the Spanish provinces over the mainland and to individual islands. Dark gray
areas indicate provinces and islands with a lack of stations that fulfill the selection criteria.

Grange and Carslaw (2019), we introduced the date index
as a proxy for this potential trend. Including such a feature
with unique values (from 0 for 1 January 2013 to 2669 for
23 April 2020) is not expected to directly help the ML model
to learn about NO2 variability; however, it allows us to train
one single ML model over a relatively long and, thus, poten-
tially nonstationary time series. In contrast to linear regres-
sion, GBM does not learn equations relating the target vari-
able to the different features but rather builds nonparamet-
ric relationships between the target and features. As a con-
sequence, such a model will always make NO2 predictions
within the range of NO2 values used in the training, regard-
less of the inclusion of the aforementioned date index feature
or the feature values it uses to make the predictions. How-
ever, if NO2 strongly increases (decreases) with time in the
training dataset, the GBM model is able to split the data us-
ing the trend feature and, therefore, predict NO2 in the range
of the higher (lower) mixing ratios reached by the end of the
training period. We note that even with a trend feature, such
a model is not expected to stay valid very far in time relative
to the training data when the training data follow an overly
strong trend. Our sensitivity tests have clearly shown that the
behavior of the ML models substantially improves when in-
cluding the trend feature.

In our study, the GBM models are trained and tuned over
the 3 last full years, namely 2017–2019, and then used to
predict business-as-usual NO2 mixing ratios over the 4 fol-
lowing months, from January to April 2020. This ML exper-
iment is hereafter referred to as EXP2020. Such a duration

for training is expected to allow for a substantial part of the
interannual variability of NO2 mixing ratios and meteorolog-
ical conditions to be captured and ensures some past data are
available for quantifying the uncertainties of our ML model-
ing strategy (as explained later in Sect. 2.3.3). Note that no
improvement was found with extended training periods of 4
or 5 years. Although our interest is to predict NO2 during the
lockdown period, the 2.5 preceding months were kept to test
the validity of our predictions and uncertainty estimates.

The machine-learning modeling in this study is performed
using the “scikit-learn” Python package (Pedregosa et al.,
2011). The GBM model comprises a number of hyperpa-
rameters to be tuned. Since features are temporal variables,
instances cannot be considered as independent due to auto-
correlation. Thus, we tuned our ML models using the so-
called time series cross-validation with five splits, which cor-
responds to a rolling-origin cross-validation in which data
used for the validation are always posterior to the data used
for the training (“TimeSeriesSplit” in scikit-learn). Over a se-
lection of the most important hyperparameters, we applied
a so-called “randomized search” over a range of possible
hyperparameter values. Compared with the so-called “grid
search” in which all combinations of hyperparameters are
tested, the randomized approach tests only a certain number
(20 in our case) of tuning configurations that are chosen ran-
domly. This allows for the exploration of a large part of the
hyperparameters’ space at a greatly reduced computational
cost, and it tends to be less prone to overfitting. More de-
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tails on the tuning of the GBM model can be found in Ap-
pendix C.

2.3.3 Uncertainty estimation

In order to quantify our prediction uncertainty, we repli-
cated four similar experiments over the past years since 2013,
i.e., training ML models over 2013–2015, 2014–2016, 2015–
2017 and 2016–2018 and testing them over the 4 first months
of 2016, 2017, 2018 and 2019, respectively. These ML ex-
periments are hereafter referred to as EXP2016, EXP2017,
EXP2018 and EXP2019, respectively. We obtained on aver-
age 538 daily residuals (predicted minus observed NO2 daily
mixing ratios) for each station, and we took the associated
5th and 95th percentiles as the uncertainty interval for our
ML-based predictions of daily NO2 mixing ratios. There-
fore, for each station, we obtained a fixed asymmetric 90 %
confidence interval used to characterize the uncertainty of
our predictions during the first 4 months of 2020. Aver-
aged over all Spanish provinces, the uncertainty interval is
[−5.1, +5.3] ppbv at urban background stations and [−6.6,
+6.7] ppbv at traffic stations.

In 2020, the period before the lockdown, namely 1 January
to 13 March, is used to check the performance of the ML
models trained over the period from 2017 to 2019 against
the observed NO2 mixing ratios, given the aforementioned
uncertainty. Ideally, we expect the differences between ob-
served and predicted NO2 mixing ratios to remain within the
estimated uncertainty during that period. Conversely, after
14 April, due to the reduction in NO2 emissions caused by
the lockdown, we expect the observed NO2 mixing ratios to
quickly decrease compared with the business-as-usual NO2
mixing ratios predicted by the ML model, eventually down
to a level at which the differences are statistically significant.

These uncertainties are suited for our ML-based daily NO2
predictions. Because these daily uncertainties are likely at
least partly uncorrelated, NO2 daily predictions averaged
over time periods longer than 1 d are expected to have smaller
uncertainties due to error compensations. We estimated the
uncertainty affecting our ML predictions at the weekly scale.
We used a similar approach to that previously described for
the daily uncertainty but based on the 7 d running average
of the daily residuals (by requiring a minimum of 5 over 7 d
with available data). The 5th and 95th percentiles were com-
puted based on the entire set of residuals (514 residuals on
average at each station from 2016 to 2019). On average over
all provinces, the weekly uncertainty intervals obtained are
[−3.8, +3.6] ppbv at urban background stations and [−4.9,
+4.7] ppbv at traffic stations, which represents a reduction
of 28 % for both types of stations with respect to the daily
uncertainties.

Our main interest in this study is to quantify the mean NO2
changes during the lockdown period. We decided to keep the
weekly scale uncertainties for the predictions of business-as-
usual NO2 mixing ratios averaged over its different phases

(10–13 d each) and over the entire lockdown period (41 d).
The use of weekly uncertainties is likely conservative when
used for the entire lockdown average but accounts for poten-
tial data gaps, particularly when estimating the shorter phases
therein.

Note that the ancillary ML experiments used here for
quantifying the uncertainties also allow for the evaluation of
the performance of our modeling strategy during the period
of the year of the lockdown (as explained later in Sect. 3.1).

3 Results and discussion

In this section, we first evaluate the ML-based predictions
of business-as-usual NO2 mixing ratios (Sect. 3.1). We then
illustrate our methodology in the two provinces with the
largest population density, namely Madrid and Barcelona
(Sect. 3.2). Time series for the other 48 Spanish provinces
can be found in the Supplement. We then analyze the
meteorology-normalized changes in NO2 obtained for all
Spanish provinces (Sect. 3.3). In Sect. 3.4, we discuss the
potential relationships with emission reductions. Finally, in
Sect. 3.5, we discuss the advantages of our ML-based ap-
proach for estimating the baseline NO2 pollution compared
with the climatological approach.

3.1 Evaluation of machine-learning predictions

The performance of the ML predictions for each Spanish
province and station type is shown in Fig. 2, and the statis-
tics over all Spanish provinces are reported in Table 1. The
statistical results in Table 1 are given for both the reference
ML experiment (EXP2020) and the other experiments com-
bined (EXP2016, EXP2017, EXP2018 and EXP2019, hereafter
referred to as EXP2016−2019). Besides providing a broader
view of the performance of our modeling strategy, consider-
ing these past experiments also allows for an assessment of
the performance of the ML predictions during the period of
the year of the lockdown (14 March–30 April for years 2016
to 2019), which may be important given the potential sea-
sonality of prediction errors. The statistics obtained at urban
background and traffic stations are given in Table C2 in the
Appendix. Results are evaluated using the following metrics,
which are calculated based on daily NO2 mixing ratios: mean
bias (MB), normalized mean bias (nMB), root mean square
error (RMSE), normalized root mean square error (nRMSE)
and Pearson correlation coefficient (PCC).

For information purposes, we included the statistical re-
sults obtained over the training dataset (1 January 2017–
31 December 2019 in EXP2020). Checking results over the
training data may be useful for highlighting obvious situa-
tions of overfitting, when the performance is almost perfect.
At both urban background and traffic stations, results show
no bias, a low nRMSE (always below 35 %; 19 % when con-
sidering all provinces) and a high PCC of 0.96. Similar re-

https://doi.org/10.5194/acp-20-11119-2020 Atmos. Chem. Phys., 20, 11119–11141, 2020



11124 H. Petetin et al.: Impact of COVID-19 lockdown upon NO2

sults are obtained when considering the ensemble of all past
experiments (EXP2016−2019). Although such performance is
very good, there are no clear signs of overly prejudicial over-
fitting at this stage.

On the test dataset of the EXP2020 reference experiment
(1 January–13 March 2020, before the lockdown), the per-
formance remains reasonably good in most provinces. Over
all of the Spanish provinces, the nMB increases to +4 %, the
nRMSE increases to 29 % and the PCC is reduced to 0.86,
which is in very close agreement with the performance ob-
tained with EXP2016−2020 (nMB of +1 %, nRMSE of 28 %
and PCC of 0.86). In comparison, the performance obtained
in EXP2016−2019 during the period of the year of the lock-
down (14 March–23 April) is a bit lower but remains reason-
able, with a nMB of +4 %, a nRMSE of 37 % and a PCC
of 0.80. Although moderate, such a deterioration in perfor-
mance after mid-March might reflect some seasonality in the
ML model errors and/or could be related to the presence of
trends in the NO2 concentrations. Concerning this last point,
as previously discussed in Sect. 2.3.2, including the date in-
dex feature in the ML model aims to limit this potential issue
but likely cannot completely solve it. Generally, only minor
differences in performance are found between urban back-
ground and traffic stations (Table C2).

Results of EXP2020 per province (Fig. 2) highlight some
interregional variability in the performance, with poorer
statistics in some provinces, at least for one type of station.
At most stations, the bias remains below ±20 % while the
nRMSE ranges between 15 % and 45 % (highest nRMSE
around 50 % in Teruel, Tenerife and Fuerteventura). Most
provinces show a PCC of around 0.6–0.9, with only a few
exceptions below 0.6 (urban background sites in Bizkaia,
Fuerteventura and Huesca, and traffic sites in Granada and
Gran Canaria).

Several factors may explain the poorer statistical results
obtained at some stations. First and foremost, it may be due
to deficiencies in the ML modeling, in particular to some
overfitting. This seems to be the case for Fuerteventura and
Huesca, given the good performance obtained with the train-
ing data (note also that the data availability of test data in
Fuerteventura is among the poorest). Since we consider nu-
merous stations in this study, we need a fixed procedure that
can be applied similarly to all ML models to be trained. As
described in Sect. 2.3.2, we designed our training and tun-
ing procedure in order to limit this common issue as much as
possible, using rolling-origin cross-validation and random-
ized search in the hyperparameters space. Overall the results
are satisfactory, but some overfitting can still persist in some
cases.

Second, although moderately, some of the biases and er-
rors may be partly due to trends and/or interannual variability
in NO2. As previously explained (Sect. 2.3.2), by model de-
sign, if the NO2 levels in the first months of 2020 are outside
of the NO2 range in the 2017–2019 training dataset, our pre-
dictions over the lockdown period could be equally biased.

The different NO2 time series indeed show some cases where
NO2 mixing ratios are lower than in the past years (since
2013). In the framework of our study, it is important to men-
tion that, although the lockdown was officially implemented
on 14 March, COVID-19 started to perturb the business-as-
usual situation in the days and weeks before – first through
the cancellation of numerous events and, later, through un-
usual movements of a part of the population (e.g., to second
homes). Although complicated to assess more precisely in
each of the Spanish provinces, this likely explains part of the
biases noticed in the second half of the test period.

Third, poor performance for some stations may be due to
weaker relationships between meteorological input data and
NO2 mixing ratios. This points to uncertainties in the ERA5
meteorology data. For example, the relatively coarse spatial
resolution (31 km) of ERA5 data may only capture part of
the meteorological variability existing at a given station. This
is especially true when considering stations located in ur-
ban areas where the complex urban morphology (e.g., pres-
ence of buildings, canyon streets) is known to locally distort
the mesoscale circulation. Decision-tree-based ML methods
like GBM offer some interpretability by providing a measure
of the importance of the different features included as input
data. In our case, on average over all ML models, the most
important feature is the boundary layer height (18±6 %) fol-
lowed by the surface wind speed (12 ± 5 %). These two pa-
rameters drive the ventilation and dispersion of the pollutants
emitted at the surface, and their variability at some stations
may be only partly captured by the ERA5 data at some ur-
ban stations. Also, the ERA5 data may poorly capture the
meteorological conditions at some stations located on small
islands with complex orography, like in the Canary Islands
(e.g., Tenerife and Fuerteventura).

The chosen training and tuning procedures applied in this
study were designed to limit some of these different sources
of uncertainty, but persistent errors cannot be excluded. This
is why we added another layer of analysis in which we esti-
mated the uncertainties of our ML predictions by replicating
exactly the same procedure over the past years since 2013 (as
explained in Sect. 2.3.3). Computed as the 5th and 95th per-
centiles of the daily residuals obtained over a large test period
extending over several years (2016–2019), the uncertainty in-
tervals are expected to cover most (90 %) of the errors caused
by these different sources of uncertainties. Indeed, consider-
ing all stations, our results indicate that 89 % (4240 points
over 4788) of the daily NO2 observations in 2020 before
the lockdown fall within the corresponding prediction uncer-
tainty interval at each station, which is very close to 90 %.
This demonstrates that the daily uncertainty estimated in this
study is well quantified.

All in all, we have shown that our ML predictions
and associated uncertainties are qualified for estimating the
business-as-usual NO2 mixing ratios during the lockdown.
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Table 1. Performance of the ML predictions of NO2 mixing ratios. Results are shown for the reference experiment EXP2020 and for the
ensemble of past experiments (EXP2016−2019).

Experiments Dataset Period of the year MB (ppbv), RMSE (ppbv), PCC N

nMB (%) nRMSE (%)

EXP2020 Training 1 Jan–31 Dec −0.0 (−0 %) 2.2 (19 %) 0.96 72 983
Test 1 Jan–13 Mar 0.6 (4 %) 3.8 (29 %) 0.86 4788

EXP2016−2019 Training 1 Jan–31 Dec 0.0 (0 %) 2.2 (18 %) 0.96 297 609
Test 1 Jan–13 Mar 0.1 (1 %) 4.0 (28 %) 0.86 19 178

14 Mar–23 Apr 0.5 (4 %) 4.0 (37 %) 0.80 11 097
1 Jan–23 Apr 0.2 (2 %) 4.0 (31 %) 0.85 30 275

Figure 2. Statistical results of the ML-predicted business-as-usual NO2 mixing ratios (EXP2020 reference experiment) over the training
dataset (2017–2019, in gray) and test dataset before lockdown (1 January–13 March 2020, in blue). Metrics are mean bias (MB), normalized
mean bias (nMB), root mean square error (RMSE), normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC).
For information purposes, the uncertainties (90 % confidence interval) at the daily scale are added to the MB (horizontal blue bars).

3.2 Illustration of the results in specific provinces

3.2.1 Madrid

The daily NO2 mixing ratios observed and predicted in the
province of Madrid are shown in Fig. 3 for both the urban

background station and the traffic station, with station codes
(names) ES1941A (Ensanche de Vallecas) and ES1938A
(Castellana), respectively. The NO2 mixing ratios observed
over the past years since 2013 are also included. Since days
of the week are not consistent from one year to another, we
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also show the NO2 7 d running mean time series where a min-
imum of 5 over 7 d is required to compute the average.

In Madrid, the ML reproduces the variability in NO2 mix-
ing ratios at the urban background and traffic stations be-
fore the lockdown remarkably well (nMB of −3 and +6 %,
nRMSE of 19 % and 22 %, PCC of 0.87 and 0.85, respec-
tively). Importantly, prediction errors remain within the un-
certainty interval. The two subperiods with lower NO2 mix-
ing ratios, during the second half of January and early March,
occur concomitantly with strong wind speeds in Madrid,
above 6 m s−1 on a daily average (above the 95th percentile
of the ERA5 daily wind speed from 2013 to 2020 during
this season), and relatively high boundary layer heights (up
to 1000–1500 m on a daily average). It is worth mentioning
that a low emission zone (LEZ) with relatively strict vehi-
cle restrictions applied for entering a limited area of about
5 km2, corresponding to the heart of the city center, was im-
plemented in early January 2020. Such a change in emissions
may, in principle, directly impact the performance of the ML
predictions by inducing a positive bias (as the ML models
are designed precisely for highlighting such events). In our
case, we expect a limited impact because the LEZ was still
in its transition phase (strict enforcement via fines for offend-
ing motorists was not expected until 1 April and was finally
postponed until 15 September 2020 due to the COVID-19 sit-
uation) and the two stations selected in Madrid province are
located outside of the LEZ (9 and 3 km from the city center,
respectively).

After the implementation of the lockdown, the observed
NO2 mixing ratios decreased down to about 11 and 7 ppbv
on average, and they reached daily minimum mixing ratios
of 6 and 3 ppbv, respectively, over the entire period. Com-
pared with the previous years, the NO2 mixing ratios at the
urban background site are clearly in the lower tail of the dis-
tribution. At the traffic site, NO2 levels had not been that
low for such an extended period of time since at least 2013.
In comparison, business-as-usual NO2 mixing ratios at these
two sites would have remained at around 17–18 ppbv on av-
erage. After the lockdown, the differences between the ob-
served and business-as-usual NO2 are found to progressively
increase, becoming more and more statistically significant.
This demonstrates unambiguously that the lockdown consid-
erably reduced the NO2 pollution in Madrid, regardless of the
meteorological conditions, which points to a drastic decrease
in the business-as-usual emission forcing.

We computed the meteorology-normalized change in NO2
during the lockdown period covered by this study (from
14 March to 23 April) as the mean difference between
ML-based business-as-usual and observed NO2 daily mix-
ing ratios. The uncertainty at the weekly scale is used
here as an estimate of the uncertainty at a 90 % confi-
dence level (by construction, given that they are computed
as the 5th and 95th percentiles of the weekly residuals, see
Sect. 2.3.3) affecting the mean NO2 change. On average over
the entire lockdown period, NO2 levels have decreased by

−7[−13,−1] ppbv at the urban background station, which
corresponds to −39[−74,−4] % in relative terms. The im-
pact is faster, stronger and more statistically significant at the
traffic station than at the urban background site, with a mean
NO2 reduction of −10[−15,−5] ppbv, or −59[−87,−30] %
in relative terms. This result is consistent with a lockdown
most strongly affecting the traffic emissions sector. At the
daily scale, the reduction in NO2 in Madrid reached its max-
imum at the end of the second and more stringent lockdown
phase, while a strong reduction persisted during the third
phase.

3.2.2 Barcelona

Figure 4 presents the results for Barcelona for both the urban
background and traffic stations, with station codes (names)
ES1396A (Sants) and ES1480A (L’Eixample), respectively.
Compared with Madrid, the ML predictions in Barcelona
have relatively similar errors (nRMSE of 25 %) and corre-
lations (PCC of 0.72). The bias is very low at the urban
background station (+0 %), and it reaches +8 % at the traffic
station, which largely remains within the uncertainty inter-
val. The positive bias in the traffic station started in early
February and persisted during the following weeks, particu-
larly after the second week of February. The ML model failed
to reproduce these low NO2 mixing ratios, notably because
some of the observed NO2 mixing ratios during that period
were lower than during the previous years. As in Madrid, a
LEZ was implemented in Barcelona, starting in early Jan-
uary 2020, with less stringent vehicle restrictions but over
a larger area (95 km2). Both the urban background and traf-
fic stations selected in Barcelona are included in this LEZ.
The potentially stronger effect of the LEZ on traffic sta-
tions could at least partly explain this positive bias. As in
the case of Madrid, fines for noncompliance with the LEZ
restrictions were not planned to start before 1 April (post-
poned to 15 September 2020 due to the COVID-19 situation).
Therefore the effect of the LEZ is expected to be progressive,
which is consistent with the absence of a bias at the beginning
of the period. In addition, the 2020 World Mobile Congress
(the largest annual event in Barcelona, with 109 000 visitors
in 2019) that takes place every year by the end of Febru-
ary was officially canceled by the organizers due to the risks
posed by the emerging COVID-19 pandemic. Therefore, we
hypothesize that this cancellation contributed to the reduc-
tion in NO2 levels in the city and to the slight positive bias of
the ML prediction before the lockdown.

After the lockdown, NO2 mixing ratios decreased down to
8 and 11 ppbv on average at the urban background and traffic
stations, respectively, both reaching minimum daily mixing
ratios of 4 ppbv. These results highlight strong and statisti-
cally significant differences with the business-as-usual situ-
ation in which NO2 levels would have remained at around
15–21 ppbv during that period. As in Madrid, the strongest
differences are found in April, during phases II and III of
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Figure 3. NO2 mixing ratios in Madrid province. Panels (a) and (b) show the daily mean and the 7 d running mean at the urban background
station, respectively. Panels (c) and (d) show the time series at the traffic station. Each panel displays the NO2 mixing ratios observed in
2020 (in blue) and during the past years (2013–2019, in gray), and the NO2 mixing ratios predicted in 2020 by the ML model (business-
as-usual – BAU, in green). The uncertainties of the ML predictions are given at a 90 % confidence level at the daily (light green) and
weekly scales (medium green). The climatological monthly averages computed over the period from 2017 to 2019 are also shown (in black).
The vertical black line identifies the beginning of the lockdown, and the next dotted lines separate the different lockdown phases (phase I:
14–29 March 2020; phase II: 30 March–9 April 2020; phase III: 10–23 April 2020).

the lockdown. Note that these differences greatly exceed the
aforementioned positive bias encountered after February. In-
terestingly, besides the strong reduction, observed NO2 mix-
ing ratios followed a very similar variability to business-as-
usual NO2, which highlights the major influence of meteo-
rological conditions on the levels of pollution, as previously
mentioned by Tobías et al. (2020). For instance, the increase
in NO2 mixing ratios between 6 and 9 April appears linked
to unusually low wind speeds over Barcelona (1.7 m s−1 on
average over these days), which is slightly below the clima-
tological (2013–2020) 5th percentile of wind speed in April
(1.8 m s−1). Without the lockdown, this stagnant situation as-
sociated with the business-as-usual emission forcing would
have increased NO2 by about 5–10 ppbv, according to the
ML predictions. Observed NO2 also slightly increased dur-
ing the episode of stagnant meteorological conditions, but
due to the lockdown, NO2 remained at very low levels. This
event illustrates the usefulness of considering an ML model
fed by meteorological data for quantifying the baseline air
pollution during the lockdown.

Over the entire lockdown period, NO2 in Barcelona
decreased by −7[−12,−2] ppbv (−47[−78,−16] %) at

the urban background station, regardless of the meteo-
rological conditions. As in Madrid, a stronger reduction
is found at the traffic station, with −15[−20,−10] ppbv
(−61[−80,−38] %). Therefore, in relative terms, the lock-
down induced a relatively similar decrease in NO2 in both
Madrid and Barcelona.

3.3 Meteorology-normalized changes in NO2 mixing

ratios over Spain

We computed the meteorology-normalized changes in NO2
for all of the selected stations. The results are presented in
Fig. 5, along with the weekly uncertainty of our ML predic-
tions (colored lines). For information purposes, we also dis-
play the daily uncertainty (black lines). Results are colored
as a function of their degree of significance, here computed
as the distance between the NO2 change best estimate and the
upper limit of the weekly uncertainty interval, normalized by
the distance between the best estimate and zero. Thus, a de-
gree of significance of 1 indicates an NO2 change significant
at a 90 % confidence level. Statistics regarding the changes
in NO2 obtained in all provinces are reported in Table 2. A
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Figure 4. Similar to Fig. 3 but for the Barcelona province.

map of best estimates of NO2 changes at each station is also
given in Fig. 6.

Results highlight that the reduction previously described
in Madrid and Barcelona extends to most Spanish provinces,
although with some interregional variability in the extent of
the change and the degree of statistical significance. During
the lockdown period, 96 % (2734 points over 2844) of the ob-
served daily NO2 mixing ratios are lower than the ML-based
business-as-usual NO2 estimates. On average over all urban
background stations during the entire lockdown period, NO2
has decreased by −4[−8,−0] ppbv (−49[−95,−0] % in rel-
ative terms), independently of the meteorological conditions.
The 5th and 95th percentiles (computed based on the mean
NO2 changes obtained in all provinces) are −7 ppbv (−65 %)
and −1 ppbv (−31 %). The NO2 change is significant with
more than 90 % confidence in 22 out of 38 provinces, with
many of the remaining sites being relatively close to that con-
fidence level. A similar yet more statistically significant re-
duction is found at traffic stations, with a mean NO2 decrease
of −7[−11,−2] ppbv (or −50[−91,−8] %) and 26 out of
37 stations exceeding the 90 % confidence level. The spread
of NO2 change between the different provinces is also quite
similar between the two types of stations, with 5th and 95th
percentiles of −69 % and −29 %, respectively. Generally, the
meteorology-normalized NO2 reductions in the provinces of
the southern half of the country appear stronger and in more
cases statistically significant.

As previously observed in Madrid and Barcelona, the re-
sults in Table 2 highlight noticeable differences between the
different phases of the lockdown. The corresponding figures
(with both absolute and relative changes) can be found in the
Appendix (Figs. C1, C2, C3 and C4). The mean reduction in
NO2 during phase I was about −42 % at both station types,
and it further increased to about −54 % during phases II and
III. The lower reduction during the first phase is partly ex-
plained by the fact that NO2 concentrations started at their
business-as-usual levels and took a few days to reach their
minimum. During the two last phases, NO2 was found to be
reduced in many more provinces, as shown by the 95th per-
centile that ranges between −20 and −40 % depending on
the type of station during phases II and III, compared with
only −9 % to −19 % during phase I.

3.4 Relationship to emission reductions

We contrasted our results with a detailed NOx anthropogenic
emission inventory at 4km × 4km resolution over Spain
available through the bottom-up module of the HERMESv3
emission model, developed at the Earth Sciences Department
of the Barcelona Supercomputing Center (Guevara et al.,
2020b). Averaged over the different stations considered in
this study, road transport emissions are the dominant source,
with 66 and 69 % of the total NOx emissions in the vicinity of
urban background and traffic stations, respectively. The other
emission sources are the residential and commercial com-
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Figure 5. Meteorology-normalized mean NO2 changes at urban background (squares) and traffic (triangles) stations during the COVID-19
lockdown. Changes are shown during the entire lockdown period and during the second and most stringent phase. Best estimates and weekly
uncertainties are colored according to the degree of significance (a value of 1 indicates a change that is statistically significant at a 90 %
confidence level, see text for more details). For information purposes, daily uncertainties are also indicated (black lines). For comparison,
the mean NO2 changes obtained using the climatological average (from 2017 to 2019) rather than the ML-based business-as-usual NO2
concentration are also shown (stars), as well as the relative difference between both approaches (circles).

bustion sector (14 % and 15 %), industrial point sources (8 %
and 13 %), and shipping and port activities (11 % and 3 %).
In Spain, the public agency in charge of monitoring traffic
(Dirección General del Tráfico) reported progressive reduc-
tions in total traffic down to levels about −60 % to −90 %
lower than usual, with substantial day-to-day variability and
strongest reductions during weekends. Assuming to first or-
der a linear relationship between NO2 urban background
mixing ratios and local surrounding NOx emissions (within
a 4km × 4km cell) and applying a 70 % (80 %) reduction in
road transport would lead to a NO2 reduction of about 47 %
(54 %), which is consistent with our findings. Our knowledge
about the impact of the lockdown on the other emission sec-
tors remains quite limited at this stage. NOx emissions from
industry likely also decreased but quantifying this reduction,

even roughly, is more complex as some industries were con-
sidered to be essential and, thus, were not affected by the
lockdown. Although 9 %–13 % of the surrounding emissions
(in the 4km × 4km cell of the inventory) are associated with
this sector, the impact of idling industrial activities on the
pollution levels observed at the selected stations may be rela-
tively small considering that none of these stations are classi-
fied as “industrial”. The residential and commercial emission
sector represents another unknown, as the expected emis-
sion increment caused by a population spending more time at
home may be compensated for by the closure of most shops,
schools and offices. A more detailed analysis of the activity
data in these different emission sectors is required to better
quantify how the emission forcing has been modified by the
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Table 2. Meteorology-normalized changes in NO2 mixing ratios in Spain during the lockdown (phase I: 14–29 March 2020, phase II:
30 March–9 April 2020, phase III: 10–23 April 2020). Statistics are computed based on the mean NO2 changes in the different Spanish
provinces.

Change Metric Phases I, II and III Phase I Phase II Phase III
Background Traffic Background Traffic Background Traffic Background Traffic

Absolute (ppbv) Mean −4.1 −6.5 −3.4 −5.6 −5.2 −7.4 −4.3 −6.8
[−7.8,−0.3] [−11.1,−1.6] [−7.1,0.4] [−10.2,−0.7] [−8.9,−1.4] [−11.9,−2.4] [−7.9,−0.4] [−11.3,−2.0]

SD 2.0 3.4 1.8 3.2 2.4 3.6 2.2 3.7
Min −10.0 −15.5 −8.4 −13.3 −10.8 −16.1 −10.9 −16.8
p05 −7.1 −12.8 −6.3 −11.5 −9.2 −14.2 −7.7 −13.5
p10 −6.8 −11.4 −5.5 −10.9 −8.3 −12.8 −7.0 −12.3
p25 −5.3 −7.4 −4.8 −6.9 −6.8 −8.2 −5.3 −9.5
p50 −3.9 −6.1 −3.2 −5.0 −4.7 −7.0 −3.8 −5.9
p75 −2.6 −4.5 −2.0 −3.9 −3.2 −5.0 −2.5 −4.3
p90 −2.1 −2.6 −1.5 −1.7 −2.9 −3.3 −1.9 −2.6
p95 −1.4 −2.0 −1.2 −0.6 −2.5 −2.4 −1.2 −2.3
Max −0.8 −0.8 −0.5 −0.0 −1.1 −1.6 −0.7 −0.7

Relative (%) Mean −49 −50 −41 −42 −55 −53 −53 −55
[−95,−0] [−91,−8] [−89,8] [−82,−0] [−95,−11] [-90,-13] [-100,-1] [-97,-11]

SD 13 12 14 17 9 11 15 13
Min −72 −71 −65 −67 −69 −73 −76 −73
p05 −65 −69 −62 −63 −68 −71 −73 −72
p10 −64 −63 −59 −60 −67 −68 −70 −70
p25 −58 −58 −53 −55 −65 −60 −65 −65
p50 −51 −52 −41 −46 −54 −54 −55 −56
p75 −39 −43 −29 −38 −47 −46 −42 −51
p90 −34 −33 −24 −14 −43 −35 −36 −39
p95 −31 −29 −19 −9 −40 −34 −20 −31
Max −14 −14 −14 −1 −39 −27 −12 −12

Figure 6. Meteorology-normalized mean NO2 changes at selected urban background and traffic stations during the COVID-19 lockdown in
Spain. The size of symbols is proportional to the annual average NO2 mixing ratio (from 2013 to 2020).

lockdown (Guevara et al., 2020a) and to understand the re-
ductions in NO2 obtained in this study.

Concerning traffic stations, although HERMESv3 gives a
quite similar contribution of the different emission sectors
compared to urban background stations, a larger contribution
of road transport emissions is evidently expected as measure-
ment instruments are deployed under the direct influence of
vehicles. As a consequence, assuming that road transport is

the emission sector most impacted by the lockdown (along
with air traffic, although this last sector does not emit strong
amounts of NOx around our set of stations), we could expect
a stronger relative reduction in NO2 at traffic stations, com-
pared with urban background stations. At first glance, Table 2
does not highlight such a difference between the two types
of stations. This seems to be due to the fact that we gather
urban background and traffic stations that are not always co-
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located in the same cities and/or that are located in cities of
very different sizes. In both Madrid and Barcelona provinces,
the two selected stations are located in the same agglomera-
tion, and the results do highlight substantial differences in
NO2 reductions (Sect. 3.2). In total, urban background and
traffic stations are co-located in the same agglomeration in
16 provinces. On average over this set of provinces, the NO2
reduction is −44 % and −53 % at the urban background and
traffic stations, respectively, showing a noticeable but still
relatively small difference. Focusing on the six largest cities
within this group of provinces (Madrid, Barcelona, Valencia,
Sevilla, Málaga and Mallorca), the difference in NO2 reduc-
tions increases, with −50 % and −63 % at urban background
and traffic stations, respectively. Focusing on the two largest
cities, namely Madrid and Barcelona, the discrepancy fur-
ther increases, with NO2 reductions of −43 % and −60 %,
respectively. Therefore, results suggest that the lockdown has
more strongly impacted the business-as-usual NO2 levels at
traffic stations than those at urban background sites and that
this difference tends to be stronger in the largest cities.

3.5 Machine-learning-based business-as-usual NO2

versus climatological average NO2

We developed the ML-based approach arguing that it al-
lows for avoiding potentially erroneous assessment of the
lockdown-related NO2 changes caused by the variability of
meteorological conditions. In this section, we quantitatively
illustrate the benefits of our method. Besides the business-
as-usual NO2 daily concentrations obtained with our ML-
based approach, we consider the mean NO2 concentrations
observed in the period from 2017 to 2019 during the time
of the year in which the lockdown took place (this approach
hereafter being referred to as the climatological average ap-
proach). We compared the mean NO2 concentrations ob-
tained in each province with both approaches during the dif-
ferent phases of the lockdown. Taking the ML-based ap-
proach as a reference, we computed the bias of the climato-
logical average approach. In this frame, in a given province,
a small bias between the two approaches should indicate
that the meteorological conditions prevailing during a given
phase of the lockdown are relatively close to their climato-
logical values at this time of the year. For convenience, both
urban background and traffic stations are gathered in this
analysis.

The NO2 changes obtained with the climatological aver-
age approach are reported in Fig. 5 (and for the different
phases in Figs. C1, C2, C3, C4 in the Appendix). Consid-
ering the entire lockdown period, the mean business-as-usual
NO2 mixing ratio predicted by the ML models averaged over
all provinces is 10.3 ppbv, which is in close agreement with
the corresponding climatological mean NO2 of 10.6 ppbv.
This corresponds to a mean bias (of the climatological aver-
age approach) of only +0.3 ppbv (or +2 % in relative terms).
This shows that under a business-as-usual scenario, the NO2

concentrations during the lockdown period should have been
close to the values typically observed at this time of the year.
However, this holds at a relatively large temporal (the en-
tire lockdown period in this case, i.e., 41 d) and spatial (all
Spanish provinces) scale. These relative biases between both
approaches are shown for all stations in Fig. 5 (black circles).
Among the different provinces, they range between −41 and
+33 %, with 5th and 95th percentiles of −22 and +27 %,
which is greatly larger than its average of +2 %. This high-
lights the presence of substantial departures from the cli-
matology at the province scale. For instance, in Barcelona
province, the ML-based business-as-usual and climatological
mean urban background NO2 mixing ratios during the lock-
down period are 15 and 19 ppbv, respectively, which corre-
sponds to a climatological approach that is positively biased
by +27 %. Such a result is not surprising, as encountering the
same climatological conditions simultaneously in all Spanish
provinces is very unlikely.

Although it is higher when considered at the province
scale, the bias of the climatological average approach can
also further increase when computed over shorter time pe-
riods. Indeed, during the three phases of the lockdown, it
reaches +12 %, +2.3 % and +1.8 %, respectively, when av-
eraged over all provinces. Among the different provinces,
the corresponding 5th and 95th percentiles reach −21 and
+52 %, −34 and +44 %, and −41 and +36 % during phases
I, II and III, respectively. For the case of Barcelona province,
these relative biases are +35 %, +19 % and 22 % for the
three respective phases of the lockdown.

This analysis demonstrates the need to take the meteoro-
logical variability into account (with ML or other techniques)
in order to accurately estimate the baseline pollution and as-
sess the changes in pollution induced by an altered emis-
sion forcing, which appears all the more crucial when pollu-
tion changes are investigated at a fine temporal and/or spatial
scale.

4 Conclusions

The fast spread of the COVID-19 coronavirus disease pushed
Spanish authorities to implement a severe lockdown of the
population, with drastic restrictions of social and economic
activities starting on 14 March 2020. This situation had an
impact on the anthropogenic emissions from numerous ac-
tivity sectors, some of them unambiguously (road transport
and air traffic, and to a lesser extent the industrial sector)
and others with a still unclear response (residential and com-
mercial sector). Concomitantly, a reduction in NO2 mixing
ratios was reported in many locations based on in situ NO2
measurements operated by air quality monitoring stations or
space-based remote sensing (e.g., TROPOMI). Part of the re-
duction in NO2 pollution is likely explained by the modified
emission forcing caused by the lockdown. However, the po-
tential confounding impact of the meteorological variability
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(a major driver of the NO2 variability) prevents one from
directly relating the reduction in NO2 mixing ratios to the
lockdown-related reduction in emissions.

To tackle this issue, we used ML models fed by meteo-
rological data and time variables (Julian date, day of week
and date index) to estimate the NO2 mixing ratios that would
have been normally observed during the COVID-19 lock-
down period under a business-as-usual emission forcing and
meteorological conditions prevailing during that period. We
also estimated (conservative) uncertainties affecting our ML
predictions. This allowed us to quantify the changes in NO2
during the lockdown that are not directly related to the vari-
ability of meteorological conditions. On average over Spain,
NO2 mixing ratios at urban background and traffic stations
were found to decrease by about −50 % due to the lockdown,
with stronger reductions in phases II and III (about −55 %)
than in phase I (about −40 %). We also demonstrated the
benefits of our meteorology-normalized approach compared
with a simple climatological-based approach, especially at
smaller temporal and spatial scales.

Due to the peculiarities of NO2 (e.g., primary pollu-
tant, short chemical lifetime and simple chemistry), we ex-
pect these changes to be mainly driven by the reduction in
NOx anthropogenic emissions. Considering that the lock-
down also impacted the emissions of numerous other chemi-
cal compounds, an alteration of the business-as-usual chemi-
cal fate of NO2 (via a modification of its oxidation into nitric
acid) cannot be excluded. However, here we consider urban
stations located close to the NOx emission sources, where
this effect is likely small compared with the reduction in di-
rect emissions.

Regarding our methodology, we note that the COVID-19
lockdown and the associated changes in pollutants, such as
particulate matter, should have also altered the meteorologi-
cal conditions by perturbing the radiative fluxes and clouds.
Indeed, this methodology precludes the remote and local in-
fluences of lockdown-related air pollution changes upon lo-
cal weather. In any case, given the chaotic nature of the at-
mosphere and the long duration of the lockdown, it would
indeed be impossible to know the weather conditions that
would had been observed during the lockdown in a business-
as-usual scenario.

It is also worth noting that the quality of the ERA5 mete-
orological data may have deteriorated during the lockdown
due to the strong reduction in air traffic. Indeed, although
satellites remain the dominant provider of meteorological ob-
servations, commercial aircraft provide valuable amounts of
in situ meteorological observations in the troposphere and
lower stratosphere, especially regarding wind speed. How-
ever, some meteorological services are currently operating
additional atmospheric soundings to compensate for this loss
of data. In any case, the impact on the meteorological condi-
tions close to the surface is probably limited.

In this work, we analyzed the NO2 data available in Spain
over the first 41 d of lockdown, which includes the phase of
most stringent lockdown in early April. At the date of sub-
mission of this study, the lockdown was still on-going in
Spain, with restrictions planned to be progressively relaxed
until late June at least. Indeed, the impact of the lockdown
upon air pollution levels will likely extend far beyond the pe-
riod considered in this study. Besides the direct effects of the
lockdown-related restrictions, the foreseen economic down-
turn – the size, length and characteristics of which are still
uncertain – may also substantially affect the levels of NO2
pollution, as has already observed following the 2008–2009
economic recession, with 1-year recession-driven NO2 re-
ductions of 10 %–30 % across Spain and Europe (Castellanos
and Boersma, 2012).

The results of the present study provide a valuable ref-
erence for validating similar assessments of the impact of
the COVID-19 lockdown on air quality based on chemistry
transport models and emission scenarios derived from activ-
ity data during the lockdown (e.g., Guevara et al., 2020a;
Menut et al., 2020).

In a separate study, our meteorology-normalized estimates
are used to quantify the circumstantial reduction in the mor-
tality attributable to the short-term effects of NO2 during the
lockdown (Achebak et al., 2020).
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Appendix A: Quality assurance (QA) applied to the

NO2 dataset

Using the information provided by GHOST (Globally Har-
monised Observational Surface Treatment; Bowdalo, 2020),
we applied numerous QA screening flags to the NO2 dataset,
in order to remove the following: missing measurements (flag
0), infinite values (flag 1), negative measurements (flag 2),
zero measurements (flag 4), measurements associated with
data quality flags given by the data provider which have been
decreed by the GHOST project architects to suggest that the
measurements are associated with substantial uncertainty or
bias (flag 6), measurements for which no valid data remain to
average in the temporal window after screening by key QA
flags (flag 8), measurements showing persistently recurring
values (rolling seven out of nine data points; flag 10), con-
centrations greater than a scientifically feasible limit (above
5000 ppbv; flag 12), measurements detected as distributional
outliers using adjusted boxplot analysis (flag 13), measure-
ments manually flagged as too extreme (flag 14), data with
an overly coarse reported measurement resolution (above
1.0 ppbv; flag 17), data with an overly coarse empirically
derived measurement resolution (above 1.0 ppbv; flag 18),
measurements below the reported lower limit of detection
(flag 22), measurements above the reported upper limit of de-
tection (flag 25), measurements with inappropriate primary
sampling for preparing NO2 for subsequent measurement
(flag 40), measurements with inappropriate sample prepara-
tion for preparing NO2 for subsequent measurement (flag 41)
and measurements with erroneous measurement methodol-
ogy (flag 42).

Appendix B: Decision-tree-based ensemble methods

Among the myriad of ML models available nowadays, we
opted for decision-tree-based ensemble methods. The gen-
eral idea of ensemble methods is to combine an ensemble of
independent base learners (or weak learners). Base learners
here designate simple models that perform only slightly bet-
ter than a random guessing. Decision trees are currently the
base learner most commonly used in ML ensemble meth-
ods (but other types of learners could be possible). Given a
training dataset and a regression problem, one characteris-
tic of decision trees lies in the fact that it is always possible
to reach a high accuracy (by growing a large enough tree)
but at the cost of very poor generalization skills. In ML ter-
minology, such large trees are said to have a small bias but a
large variance. Thus, to be appropriate base learners, decision
trees used in ensemble methods are constrained to have a low
number of branches (sometimes referred to as trunks), which
increases the bias but reduces the variance. The strength of
ensemble methods then stems from the fact that combining a
sufficiently large number of base learners (of quite poor per-
formance individually) allows one to obtain enhanced per-

formance in addition to better generalization skills, with the
corresponding ensemble being less unstable to the addition
of new data.

Once the form of the base learner is chosen, a strategy is
required for building this ensemble of “independent” base
learners. Three main approaches have been proposed in the
past: (i) bagging, (ii) boosting and (iii) random forests (RF).
Bagging consists of aggregating base learners trained on a
bootstrap sample of the training dataset. Boosting consists of
aggregating base learners trained on different labels: the first
base learner is trained on the dataset, the second is trained on
the errors left by the previous one, the third on the errors left
by the two previous ones and so on. RF, used by Grange et al.
(2018) and Grange and Carslaw (2019), consists of aggregat-
ing base learners trained on random subsets of the training
dataset based on a random subset of features.

Appendix C: Tuning of the GBM model

The training of the model is conducted along with a search of
the optimal hyperparameter tuning. We retained a so-called
randomized search in which a range of values is given for
each hyperparameter of interest and a total number of hyper-
parameter combinations to test (20 in our case). Compared
with the so-called grid search in which all combinations of
hyperparameters are tested; this choice allows for the ex-
ploration of a large part of the hyperparameters space for a
greatly reduced computational cost, and it is less prone to
overfitting.

We used the scikit-learn Python package. The learning rate
was fixed to 0.05, and the number of features to consider
when looking for the best split was fixed to the square root of
the number of features (“max_features” in scikit-learn, set to
“sqrt”). In addition, the tuning of the GBM model was done
over the following set of hyperparameters: the tree maximum
depth (“max_depth” in the scikit-learn Python package: val-
ues from 1 to 5 by 1), the subsample (“subsample”: values
from 0.3 to 1.0 by 0.1), the number of trees (“n_estimators”:
values from 50 to 1000 by 50) and the minimum sample in
terminal leaves (“min_samples_leaf”: values from 1 to 30).
The maximum depth (or the maximum number of subsequent
splits in the individual decision trees) controls how much in-
teraction between the features can be taken into account. The
subsample hyperparameter represents the fraction of samples
to be used for fitting an individual base learner. Values below
unity correspond to the so-called “stochastic gradient boost-
ing” and usually allow for a decrease in the variance at the
cost of an increased bias (low values also allow for the train-
ing phase to be sped up). The minimum sample leaf hyper-
parameter controls the minimum number of samples that are
allowed in a terminal node (larger values limit the risk of
overfitting).
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Figure C1. Absolute and relative meteorology-normalized NO2 changes during phase I of the lockdown (14–29 March 2020) at urban
background (a, b) and traffic stations (c, d). The uncertainties shown with colored bars correspond to the 90 % confidence level interval
computed at the weekly scale. For information purposes, the uncertainties affecting the ML-based daily predictions are also shown (black
bars). For comparison, the mean NO2 changes obtained using the climatological average (from 2017 to 2019) rather than ML-based business-
as-usual NO2 concentration are also shown (stars), as well as the relative difference between both approaches (circles).
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Figure C2. Similar to Fig. C1 but for phase II of the lockdown (30 March–9 April 2020).
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Figure C3. Similar to Fig. C1 but for phase III of the lockdown (10–23 April 2020).
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Figure C4. Similar to Fig. C1 but for the entire lockdown period (14–23 April 2020).
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Table C1. Stations selected in each Spanish province.

Province Urban background station Traffic station

A Coruña ES1957A Torre de Hércules (43.382800, −8.409200) ES1901A San Caetano (42.887800, −8.531100)
Albacete ES1535A Albacete (38.979300, −1.852100) –
Alicante/Alacant ES1915A Alacant-Florida-Babel (38.340278, −0.506667) ES1849A Elx-Parc de Bombers (38.259167, −0.717500)
Almería ES1549A El Ejido (36.769720, −2.810970) ES1393A Mediterráneo (36.841330, −2.446720)
Araba/Álava ES1544A Agurain (42.849000, −2.393700) ES1492A Tres Marzo (42.856070, −2.667790)
Asturias ES1974A Montevil (43.516600, −5.670700) ES1272A Constitución (43.529900, −5.673500)
Badajoz ES1819A Merida (38.907500, −6.338060) –
Barcelona ES1396A Barcelona (Sants) (41.378803, 2.133098) ES1438A Barcelona (L’Eixample) (41.385343, 2.153822)
Bizkaia ES1713A Parque Europa (43.254900, −2.902300) ES1244A Mazarredo (43.267500, −2.935200)
Burgos ES1598A Zalla (43.212910, −3.134400) ES1160A Burgos 1 (42.350830, −3.675560)
Cantabria ES1529A Tetuán (43.467780, −3.790280) ES1580A Santander Centro (43.460560, −3.808610)
Castellón/Castelló – ES1834A Castelló-Patronat d’Esports (39.988889, −0.026111)
Ciudad Real ES1857A Ciudad Real (38.993900, −3.937800) –
Cuenca ES1858A Cuenca (40.061900, −2.129700) –
Cáceres ES1997A Plasencia (40.077780, −6.147220) –
Cádiz ES1593A San Fernando (36.460590, −6.203070) ES1479A Avda. Marconi (36.506020, −6.268570)
Córdoba ES1799A Lepanto (37.892610, −4.762340) ES2047A Avda. Al-Nasir (37.892600, −4.780100)
Fuerteventura ES1978A Casa Palacio-Puerto del Rosario (28.498380,

−13.860830)
–

Gipuzkoa – ES1494A Ategorrieta (43.322000, −1.960700)
Girona – ES1999A Girona (Escola de Música) (41.976386, 2.816547)
Gran Canaria ES1919A Parque de San Juan-Telde (28.003645, −15.411851) ES1573A Mercado Central (28.133732, −15.432823)
Granada ES1973A Ciudad Deportiva (37.135560, −3.619250) ES1560A Granada – Norte (37.196100, −3.612660)
Guadalajara ES1536A Azuqueca de Henares (40.571000, −3.264600) –
Huelva – ES1340A Pozo Dulce (37.253360, −6.935140)
Huesca ES2041A Monzón Centro (41.916140, 0.191101) ES1417A Huesca (42.136110, −0.403890)
Jaén ES1656A Ronda del Valle (37.782550, −3.781570) –
La Rioja ES1602A La Cigüeña (42.464000, −2.428000) –
León ES1988A León 4 (42.575278, −5.566389) ES1161A Barrio Pinilla (42.603889, −5.587222)
Lleida – ES1225A Lleida (Irurita – Pius Xii) (41.615795, 0.615726)
Lugo – ES1905A Lugo-Fingoy (42.997900, −7.550900)
Madrid ES1941A Ensanche de Vallecas (40.372778, −3.611944) ES1938A Castellana (40.439722, −3.690278)
Mallorca ES1604A Bellver (39.563320, 2.620550) ES1610A Foners (39.570080, 2.655830)
Menorca ES1828A Ciutadella de Menorca (40.009440, 3.856480) –
Murcia ES1921A Mompean (37.603056, −0.975278) ES1633A San Basilio (37.993611, −1.144722)
Málaga ES1751A El Atabal (36.729560, −4.465530) ES2031A Avenida Juan Xxiii (36.707300, −4.446000)
Navarra ES1472A Iturrama (42.807220, −1.651390) ES1740A Plaza de la Cruz (42.812220, −1.640000)
Ourense – ES1096A Gomez Franqueira (42.353000, −7.877900)
Pontevedra – ES1137A Arenal (42.219000, −8.742100)
Salamanca ES1889A Salamanca 6 (40.960833, −5.639722) ES1618A Salamanca 5 (40.979167, −5.665278)
Segovia – ES1967A Segovia 2 (40.955556, −4.110556)
Sevilla ES1425A Principes (37.375250, −6.005580) ES0817A La Ranilla (37.384250, −5.959620)
Soria – ES1643A Soria (41.766667, −2.466667)
Tarragona ES1666A Tarragona (Parc de la Ciutat) (41.117388, 1.241650) ES1124A Tarragona (Sant Salvador) (41.159450, 1.239704)
Tenerife ES1975A Depósito Tristán-Santa Cruz de Tenerife (28.458160,

−16.278776)
–

Teruel ES1421A Teruel (40.336390, −1.106670) –
Toledo ES1818A Toledo2 (39.868100, −4.020800) –
Valencia/València ES1885A València-Politècnic (39.480300, −0.336400) ES1239A València-Pista De Silla (39.456111, −0.375833)
Valladolid – ES1631A Arco De Ladrillo Ii (41.645556, −4.730278)
Zamora – ES1927A Zamora 2 (41.509722, −5.746389)
Zaragoza ES1641A Renovales (41.635280, −0.893610) ES1418A Alagón (41.762780, −1.143330)
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Table C2. Performance of the ML predictions of NO2 mixing ratios. Results are shown for both the reference experiment EXP2020 and for
the ensemble of past experiments (EXP2016−2019).

Experiments Dataset Period of the year Type of station MB (ppbv), RMSE (ppbv), PCC N

nMB (%) nRMSE (%)

EXP2020 Training 1 Jan–31 Dec Urban background 0.0 (0 %) 1.8 (19 %) 0.96 36371
Traffic −0.0 (−0 %) 2.5 (19 %) 0.95 36 612

Any −0.0 (−0 %) 2.2 (19 %) 0.96 72 983

Test 1 Jan–13 Mar Urban background 0.3 (2 %) 3.5 (31 %) 0.85 2343
Traffic 0.9 (6 %) 4.0 (27 %) 0.85 2445

Any 0.6 (4 %) 3.8 (29 %) 0.86 4788

EXP2016−2019 Training 1 Jan–31 Dec Urban background 0.0 (0 %) 1.9 (20 %) 0.95 146 237
Traffic 0.0 (0 %) 2.5 (17 %) 0.95 151 372

Any 0.0 (0 %) 2.2 (18 %) 0.96 297 609

Test 1 Jan–13 Mar Urban background 0.2 (2 %) 3.7 (32 %) 0.84 9437
14 Mar–23 Apr Urban background 0.5 (6 %) 3.6 (41 %) 0.75 5408
1 Jan–23 Apr Urban background 0.3 (3 %) 3.6 (35 %) 0.83 14845
1 Jan–13 Mar Traffic 0.1 (0 %) 4.3 (25 %) 0.85 9741
14 Mar–23 Apr Traffic 0.4 (3 %) 4.4 (33 %) 0.78 5689
1 Jan–23 Apr Traffic 0.2 (1 %) 4.3 (28 %) 0.83 15 430
1 Jan–13 Mar Any 0.1 (1 %) 4.0 (28 %) 0.86 19 178
14 Mar–23 Apr Any 0.5 (4 %) 4.0 (37 %) 0.80 11 097
1 Jan–23 Apr Any 0.2 (2 %) 4.0 (31 %) 0.85 30 275
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