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Metformin abrogates Fusobacterium nucleatum-induced
chemoresistance in colorectal cancer by inhibiting miR-361-5p/
sonic hedgehog signaling-regulated stemness
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BACKGROUND: Chemotherapy resistance is the major cause of recurrence in patients with colorectal cancer (CRC). A previous
study found that Fusobacterium (F.) nucleatum promoted CRC chemoresistance. Additionally, metformin rescued F. nucleatum-
induced tumorigenicity of CRC. Here, we aimed to investigate whether metformin could revert F. nucleatum-induced
chemoresistance and explore the mechanism.
METHODS: The role of metformin in F. nucleatum-infected CRC cells was confirmed using cell counting kit 8 assays and CRC
xenograft mice. Stemness was identified by tumorsphere formation. Bioinformatic analyses were used to explore the regulatory
molecules involved in metformin and F. nucleatum-mediated regulation of the sonic hedgehog pathway.
RESULTS: We found that metformin abrogated F. nucleatum-promoted CRC resistance to chemotherapy. Furthermore, metformin
attenuated F. nucleatum-stimulated stemness by inhibiting sonic hedgehog signaling. Mechanistically, metformin diminished sonic
hedgehog signaling proteins by targeting the MYC/miR-361-5p cascade to reverse F. nucleatum-induced stemness, thereby
rescuing F. nucleatum-triggered chemoresistance in CRC.
CONCLUSIONS: Metformin acts on F. nucleatum-infected CRC via the MYC/miR-361-5p/sonic hedgehog pathway cascade,
subsequently reversing stemness and abolishing F. nucleatum-triggered chemoresistance. Our results identified metformin
intervention as a potential clinical treatment for patients with chemoresistant CRC with high amounts of F. nucleatum.
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BACKGROUND
Colorectal cancer (CRC) incidence and mortality remain high,
constituting a major public health burden [1]. Chemotherapy is
the most common treatment to reduce tumor growth and inhibit
tumor metastasis. 5-fluorouracil (5-Fu) and oxaliplatin are the first-
line chemotherapeutic drugs in the treatment of patients with
advanced CRC [2, 3]. However, CRC cells usually become resistant
to chemotherapeutic agents, leading to tumor recurrence. It has
been reported that more than 30% patients receiving surgery for
stage II and III colon cancer are resistant to 5-Fu-based adjuvant
chemotherapy within 8 years of follow-up [4]. Furthermore, about
50% of patients who were diagnosed with metastatic CRC were
resistant to 5-Fu-based chemotherapy and their 5-year survival
rate was lower than 15% [5]. Thus, it is necessary to determine the
molecular mechanisms of CRC chemoresistance and develop new
and effective strategies to improve chemosensitivity.
Chemoresistance of CRC is a complex process resulting from the

interplay between intrinsic and extrinsic factors, including gene

regulation, epigenetic modification, hypoxia, and the gut micro-
biota [6, 7]. Accumulating evidence indicates that the gut
microbiota profoundly influences the effect of chemotherapy
with three main outcomes: facilitation of drug efficacy; restraint
and compromise of anticancer effects; and mediation of toxicity
effects [8]. Some bacteria, such as Lactobacillus johnsonii, L.
murinus, and Bacteroidetes, promote chemotherapy efficacy [9, 10].
However, some bacteria, such as F. nucleatum, a well-known CRC
pathogenic factor, drive high chemoresistance [11–14]. Our
previous work demonstrated that an increased abundance of F.
nucleatum contributes to post-chemotherapy recurrence in
patients with CRC [15]. As such, this is an important clinical
consideration when evaluating conventional chemotherapeutic
treatment of patients with CRC with a high amount of F.
nucleatum. Therefore, a strategy capable of modulating the effects
of F. nucleatum in the management of CRC is highly desirable.
However, to date, the problem of CRC chemoresistance caused by
F. nucleatum has not been solved. Our previous work pinpointed
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that metformin could elicit an antitumor effect by restoring the
disordered intestinal microbiota and alleviating F. nucleatum-
induced colorectal tumorigenesis [16]. Metformin, which has been
used widely in type 2 diabetes (T2D) for more than 60 years, has
attracted interest in the prevention and treatment of various
cancers recently [17–20]. A phase II clinical trial reported a modest
efficacy profile of a combination of metformin and 5-Fu in patients
with refractory CRC [21]. These raised the possibility that
metformin might play a role in treating chemoresistance in
patients with CRC with high abundance of F. nucleatum. In the
current work, we aimed to determine whether and how
metformin affects F. nucleatum-induced CRC chemoresistance.
We found that metformin plays a critical role in abrogating F.
nucleatum-induced CRC chemoresistance in response to 5-Fu and
oxaliplatin through the MYC/miR-361-5p cascade, and subse-
quently suppression of sonic hedgehog signaling and CRC cell
stemness. Our approach might inspire a future combined
treatment comprising metformin with chemotherapeutic drugs
to managing recurrence in patients with CRC with high amounts
of F. nucleatum.

METHODS
Cell culture and treatment
Human CRC cell lines with different degrees of differentiation (HT-29, well
differentiated; HCT 116, moderately differentiated) were purchased from
the American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured in McCoy’5 A medium (GIBCO, Carlsbad, CA, USA) with 10% (vol/
vol) fetal bovine serum (FBS) (GIBCO) at 37 °C in a humidified 5% CO2

atmosphere. 1 mM metformin (Sigma-Aldrich, St. Louis, MO, USA) was used
to treat CRC cells for 24–72 h. F. nucleatum at a multiplicity of infection
(MOI) of 100 was used to treat CRC cells for 4 h. The miR-361-5p mimics
and miR-361-5p inhibitor were transfected into CRC cells using the
DharmaFECT transfection reagent (Thermo Fisher Scientific, Waltham, MA,
USA). The lentivirus control and lentiviral vectors expressing miR-361-5p
inhibitors were purchased from Shanghai OBiO medical biotechnology
company (Shanghai, China).

F. nucleatum culture
The F. nucleatum strain (ATCC 25586) was obtained from the ATCC. F.
nucleatum was cultured for 24 h at 37 °C under anaerobic conditions in
brain heart infusion (BHI) broth containing hemin, Vitamin K1, K2HPO4, and
L-Cysteine.

Mouse models
For the xenograft experiments, 4–5-week-old male Balb/c nude mice were
purchased from the Shanghai Model Organisms Center (Shanghai, China)
and housed in specific pathogen-free (SPF) conditions. HCT 116 cells
(5 × 106 or 2.5 × 106) with different treatments were suspended in 100 μl of
phosphate-buffered saline (PBS) and inoculated subcutaneously into the
right axilla of the mice to establish the CRC xenograft model. Six days after
subcutaneous injection, mice with xenograft tumors and no significant
differences in tumor load were divided into different groups (n= 5). F.
nucleatum (MOI= 100, 100 μl per mouse) were given by multipoint
intratumoral injection, twice per week for 2 weeks. Metformin (125mg/Kg)
was administered via gavage every day for two weeks. Chemotherapeutic
agents (FOX: 5-Fu 5mg/Kg +Oxaliplatin 6 mg/Kg) were administered by
intraperitoneal injection, twice per week for 2 weeks.
To explore the role of metformin in F. nucleatum-induced chemoresis-

tance in vivo, we designed seven groups: (i) Control group; (ii) Metformin
group; (iii) F. nucleatum group; (iv) FOX group; (v) FOX and metformin
group; (vi) FOX and F. nucleatum group; (vii) FOX, F. nucleatum, and
metformin group.
To explore whether metformin reversed F. nucleatum-mediated

chemoresistance via miR-361-5p, we generated stable miR-361-5p knock-
down HCT 116 cells by transducing lentiviruses expressing miR-361-5p
inhibitors. We designed four groups: (i) FOX group; (ii) FOX and F.
nucleatum group; (iii) FOX, F. nucleatum and metformin group; (iv) FOX, F.
nucleatum, metformin, and miR-361-5p inhibitor group.
The length and width of the tumors were measured every 2–3 days.

Tumor volume (mm3) was calculated as (length × width2) /2. If the tumor

volume exceeded 2000mm3, the mouse was killed for welfare reasons.
After 2 weeks, the mice were killed humanely and subcutaneous tumors
were collected for subsequent analysis of sonic hedgehog (SHH), GLI family
zinc finger 1 (GLI1), SRY box transcription factor 2 (SOX2) and Nanog
homeobox (NANOG) expression. Mouse experiments were conducted
according to the guidelines approved by the Institutional Animal Care and
Use Committee of Renji Hospital, School of Medicine, Shanghai Jiaotong
University.

RNA extraction and quantitative real-time PCR
Total RNA was extracted from HT-29 and HCT 116 cells using the Trizol
reagent (Takara, Shiga, Japan). For the analysis of mRNA and primary
microRNA (pri-miRNA), 1 μg of total RNA was reverse transcribed into first-
strand cDNA using a PrimeScript RT Reagent Kit (Takara). For the miRNAs,
500 ng of total RNA was reverse transcribed using Mir-X TM miRNA First-
Strand Synthesis Kit (Takara). The quantitative real-time PCR step was
conducted using TB Green Premix Ex Taq™ II (Takara) on an ABI
StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA). The relative gene expression was calculated using 2−ΔΔCt method
and expressed as the fold change [22]. ACTB (encoding β-actin) and U6
were used, respectively, as endogenous references for the mRNA, pri-
miRNA, and miRNA assays. The mRNA primers used in real-time PCR are
shown in Table 1. The miRNA primers and pri-miRNA primers were
purchased from GeneCopoeia (Rockville, MD, USA).

Western blotting
Proteins (60 μg) were separated using 8% or 12% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE), transferred onto polyviny-
lidene fluoride (PVDF) membranes (Bio-Rad, Hercules, CA, USA), and
incubated with primary antibodies overnight. The membranes were then
incubated with horseradish peroxidase (HRP)-conjugated secondary
antibodies (1:3000, KangChen, Shanghai, China) and the signals were
visualized using an enhanced luminescence (ECL) Kit (Thermo Fisher
Scientific). The following commercial antibodies were used: anti-SHH (Cell
Signaling Technology, Danvers, MA, USA), anti-GLI1 (Cell Signaling
Technology), anti-SOX2(Cell Signaling Technology), anti-NANOG (Cell
Signaling Technology), anti-MYC antibody (Abcam, Cambridge, UK) and
anti-β-actin (Cell Signaling Technology). All antibodies were used at a
dilution of 1:1000.

Tumorsphere formation assay
CRC cells were exposed to F. nucleatum (MOI= 100) for 4 h. Then, the
medium containing F. nucleatum was replaced with McCoy’5 A medium
supplemented with 10% FBS. After 24 h, HT-29 and HCT 116 cells were
seeded in low-adherent 96-well plates at a density of 400 cells per well in
serum-free tumorsphere medium with or without 1 mM metformin. The
tumorsphere medium consisted of Dulbecco’s Modified Eagle Medium/F12
(GIBCO) supplemented with necessary growth factors [23]. After a 4-day

Table 1. List of the RT-PCR primers used in this study.

Primer name Sequence (5’-3’)

GLI1 Forward GGGTGCCGGAAGTCATACTC

GLI1 Reverse GCTAGGATCTGTATAGCGTTTGG

SHH Forward CAGTGGACATCACCACGTCT

SHH Reverse CCGAGTTCTCTGCTTTCACC

SOX2 Forward TGGACAGTTACGCGCACAT

SOX2 Reverse CGAGTAGGACATGCTGTAGGT

NANOG Forward ATAACCTTGGCTGCCGTCTC

NANOG Reverse GATGCAGCAAATACGAGACCT

HES1 Forward TGAGCACAGACCCAAGTGTG

HES1 Reverse CCTCGGTATTAACGCCCTCG

TCF1 Forward TGCACATGCAGCTATACCCAG

TCF1 Reverse TGGTGGATTCTTGGTGCTTTTC

β-actin Forward CTGGGCCTCGTCGCCCACATA

β-actin Reverse CTGGGCCTCGTCGCCCACATA
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incubation, the tumorspheres were counted under a light microscope and
their size were quantified using Image J software (NIH, Bethesda, MD, USA).

Cell Counting Kit-8 (CCK-8) assay
CRC cells were seeded at 2500 cells per well into 96-well plates with
100 μl of medium. After attachment, HT-29 and HCT 116 cells were
treated with different interventions for 72 h. Then, 10 μl of CCK-8
solution (Dojindo, kumamoto, Japan) was added to each well at specific
times and the absorbance value at 450 nm was measured after 2 h of
incubation.

Data acquisition
For the analysis of cancer stem cell pathways, the data and sample
information of GSE102573, GSE90944, and GSE67342 were downloaded
from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/). GSE102573 comprises the expression profile of Caco-2 cells
infected with F. nucleatum or not. GSE90944 comprises RNA sequencing
(RNA-seq) data of HT-29 cells with or without F. nucleatum treatment.
GSE67342 comprises expression data of LoVo cells treated by metformin.
The single-sample gene set enrichment analysis (ssGSEA) score was
calculated using Gene Set Variation Analysis (GSVA) in the R package
with the chemical and genetic perturbations gene set collection
(MSigDB C2 CGP; 3358 gene sets available) [24]. Differential expression
analysis was conducted using the R package Limma and an adjusted
(Bonferroni–Holm method) two-tailed P < 0.05 was considered statisti-
cally significant.
For the analysis of metformin-regulated genes, we used the dataset

GSE67342, which includes gene expression of LoVo cells treated by
metformin. An adjusted P < 0.1 was considered statistically significant.

Dual luciferase assay
HT-29 and HCT 116 cells were co-transfected with 100 ng of the reporter
plasmids and 10 ng of the pRL-TK-Renilla-luciferase plasmids using the
FuGene transfection reagent (Promega, Madison, WI). At 6 h after
transfection, the medium was replaced and cells were treated with
metformin and/or F. nucleatum. At 72 h after transfection, dual luciferase
activities were estimated using a Dual-Luciferase Assay Kit (Promega)
according to the manufacturer’s instructions. Each transfection was
performed in four complex wells and repeated twice.

Statistical analysis
All data analyses were performed using GraphPad Prism version 7
(GraphPad Inc., La Jolla, CA, USA). Data are expressed as the mean ±
standard deviation (SD) or the mean ± standard error of the mean (SEM).
The differences between experimental groups were analyzed using an
unpaired t test. In the figures, asterisks denote statistical significance (n.s.,
not significant, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

RESULTS
Metformin abolishes F. nucleatum-induced chemoresistance
in vivo and in vitro
To explore the role of metformin in F. nucleatum-induced
chemoresistance, we initially verified metformin’s effect on CRC
cell proliferation. After treating CRC cells with different concentra-
tion of metformin, we observed that 500 μM and 1mM metformin
did not affect the proliferation of HT-29 cells (Fig. S1a) or HCT 116
cells (Fig. S1b). However, 5 mM and 10mM metformin inhibited
the proliferation in both CRC cell lines (Fig. S1a, b). Importantly,
1 mM metformin is approximately the physiological concentration
in the colon of patients taking this drug [25]. In addition, our
previous work demonstrated that an MOI of 100 of F. nucleatum
had no effect on CRC cell proliferation but could trigger CRC cell
chemoresistance [15]. Therefore, we chose 100 MOI of F.
nucleatum and 1mM metformin for subsequent experiments.
HT-29 and HCT 116 cells were pre-infected with F. nucleatum for
4 h and then treated with a gradient concentration of 5-Fu or
oxaliplatin in the presence of 1 mM metformin. In line with our
previous observations, F. nucleatum decreased the cytotoxicity of
5-Fu and oxaliplatin in HT-29 cells (Fig. 1a, b) and HCT 116 cells

(Fig. 1c, d), respectively, after 72 h. These results suggest that F.
nucleatum promotes chemoresistance of CRC cells. Interestingly,
metformin markedly enhanced the cytotoxicity of 5-Fu and
oxaliplatin in F. nucleatum-infected HT-29 cells (Fig. 1a, b) and
HCT 116 cells (Fig. 1c, d), but not in F. nucleatum-free HT-29 cells
and HCT 116 cells. Thus, metformin could abolish F. nucleatum-
induced CRC chemoresistance in vitro.
To further verify this conclusion, HCT 116 cells were inoculated

into Balb/c nude mice, followed by treatment with metformin
(125 mg/Kg/d), F. nucleatum, chemotherapeutic agents (FOX: 5-Fu
5mg/Kg + Oxaliplatin 6 mg/Kg) and other manipulations. We
observed comparable tumor growth (Fig. 1e), tumor volumes
(Fig. 1f), and tumor weights (Fig. 1g) in the control, metformin, and
F. nucleatum groups. As expected, tumor growth (Fig. 1e), tumor
volumes (Fig. 1f), and tumor weights (Fig. 1g) were significantly
decreased by FOX treatment, and this decrease was blocked by F.
nucleatum infection. These data further demonstrated that F.
nucleatum participated in CRC chemoresistance. Remarkably, Balb/
c nude mice treated with F. nucleatum plus 1 mM metformin
exhibited a better response to FOX, with impaired tumor growth,
reduced tumor volumes, and lower tumor weights, when
compared with the F. nucleatum plus FOX group (Fig. 1e–g).
Collectively, these data supported the view that metformin
reverses F. nucleatum-induced CRC chemoresistance.

Metformin attenuates F. nucleatum-induced chemoresistance
by inhibiting CRC cell stemness
We next explored the detailed mechanisms by which metformin
abolished F. nucleatum-induced CRC chemoresistance. Given the
crucial role of stemness in cancer chemoresistance [26], we
hypothesized that metformin might rescue F. nucleatum-induced
chemoresistance through inhibition of cancer stemness. To test
this assumption, we performed bioinformatic analysis to predict
the regulation of metformin and F. nucleatum in cancer stem cell
pathways. We collected the gene expression data for CRC cells
treated with metformin or F. nucleatum from GEO. Subsequently,
ssGSEA showed that F. nucleatum upregulated cancer stem cell
pathways, whereas metformin downregulated cancer stem cell
pathways (Fig. 2a). Based on this data, we speculated that
metformin might inhibit F. nucleatum-stimulated CRC stemness.
Consistently, the tumorsphere formation assay showed that F.
nucleatum increased the number and diameter of tumorspheres in
both HT-29 cells (Fig. 2b) and HCT 116 cells (Fig. 2c). By contrast,
metformin significantly inhibited the number and diameter of
tumorspheres in F. nuleatum-stimulated HT-29 cells (Fig. 2b) and
HCT 116 cells (Fig. 2c), but not in F. nuleatum-free cells.
In support of this data, we detected the expression of stemness

markers after metformin and F. nucleatum treatment. NANOG and
SOX2 are two important markers of stemness. F. nucleatum
enhanced the mRNA and protein expression levels of SOX2 and
NANOG in HT-29 and HCT 116 cells (Fig. 2d–f). Metformin
abolished F. nucleatum-induced upregulation of SOX2 and NANOG
at both the mRNA (Fig. 2d, e) and protein (Fig. 2f) levels. In line
with the above results, western blotting analysis also showed that
metformin downregulated F. nucleatum-stimulated SOX2 and
NANOG expression in FOX-treated subcutaneous xenograft mice
(Fig. 2g). Taken together, our data indicated that metformin
attenuates F. nucleatum-induced chemoresistance by inhibiting
CRC cell stemness.

Metformin rescues F. nucleatum-induced stemness by
inhibiting the sonic hedgehog pathway
We next examined how metformin rescued F. nucleatum-induced
stemness in CRC cells. Notch, Wnt/β-catenin, and sonic hedgehog
signaling pathways are known to play a decisive role in tumor
stemness via regulating SOX2 and NANOG expression [27]. We
hypothesized that Notch, Wnt/β-catenin, or sonic hedgehog
signaling pathways were involved in the recovery effect of
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metformin in F. nucleatum-induced stemness. To test this
hypothesis, we evaluated these three signaling pathways by
testing the expression of critical transcription factors individually,
including SHH (sonic hedgehog pathway), GLI1 (sonic hedgehog
pathway), Transcription factor 1 (TCF1) (Wnt pathway), and Hes
family BHLH transcription factor 1 (HES1) (Notch pathway). F.
nucleatum enhanced the mRNA expression of SHH, GLI1, TCF, and
HES1 in HT-29 cells (Fig. 3a and Fig. S2a) and HCT 116 cells (Fig. 3b
and Fig. S2b). This indicated F. nucleatum activates these three
pathways. To our surprise, metformin reduced the mRNA
expression of SHH and GLI1 in F. nucleatum-infected HT-29 cells
(Fig. 3a) and HCT 116 cells (Fig. 3b), but not in F. nucleatum-free
CRC cells. Consistently, western blotting also showed metformin
reduced SHH and GLI1 protein levels (Fig. 3c). By contrast,

metformin could not downregulate the expression of TCF1 and
HES1 in F. nucleatum-infected CRC cells (Fig. S2a, b). These data
implied that the sonic hedgehog pathway might be involved in
the metformin-mediated downregulation of F. nucleatum-induced
stemness. In accordance with these results, CRC xenograft mice
treated with FOX also showed that metformin diminished F.
nucleatum-stimulated SHH and GLI1 protein levels (Fig. 3d). These
data indicated that metformin inhibits F. nucleatum-induced
stemness by inhibiting the sonic hedgehog pathway.

MiR-361-5p inhibits the sonic hedgehog signaling pathway
and stemness
Next, we conducted luciferase assays to investigate the molecular
mechanism by which metformin and F. nucleatum control sonic
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hedgehog signaling. When the SHH ligand binds to Patched 1
(PTCH1) at the cell membrane, GLI1 is accumulated and activated.
GLI1 is the final transcriptional effector and its expression reflects
the activation of sonic hedgehog signaling [28]. Thus, we
constructed the recombinant luciferase reporter plasmid pGL3-
GLI1, containing the promoter region of GLI1 (− 979 to 33 nts)
[29]. Luciferase assays showed that both F. nucleatum and
metformin had no effect on the transcriptional activity of pGL3-
GLI1 in HCT 116 cells (Fig. S3a). This result suggests that the
regulation of GLI1 by metformin and F. nucleatum is not
dependent on the direct transcriptional modulation of the GLI1
promoter. Therefore, we sought to determine if metformin and F.
nucleatum regulated the GLI1 expression at the post-
transcriptional level.
MicroRNAs (miRNAs) are important post-transcriptional regula-

tors of gene expression [30]. We hypothesized that dysregulated
miRNAs might be involved in metformin- and F. nucleatum-
regulated GLI1. To test this hypothesis, we identified F. nucleatum-
related miRNAs from two studies [15, 31]. F. nucleatum appeared
to regulate 262 miRNAs significantly (Fig. 4a). Next, we used the
bioinformatic tool, TargetScan (http://www.targetscan.org) to
identify potential miRNAs that might regulate GLI1. Seventy-four
potential GLI1-regulatory miRNAs were found (Fig. 4a). After
overlapping these potential GLI1-regulatory miRNAs with the
262 F. nucleatum-related miRNAs, we identified six miRNAs (miR-
361-5p, miR-509-3-5p, miR-509-5p, miR-103b, miR-4496, and miR-
616-3p) that might regulate GLI1 (Fig. 4a).
We validated whether these six miRNAs are regulated by

metformin and F. nucleatum using real-time PCR. The results
showed that 1 mM metformin alone had no regulatory effect on
the six miRNAs (Fig. 4b, c and Fig. S3b, c). Interestingly, only miR-
361-5p was significantly downregulated by F. nucleatum and this
downregulation could be reverted by 1mM metformin in both HT-
29 (Fig. 4b) and HCT 116 cells (Fig. 4c). Although F. nucleatum
inhibited miR-616-3p expression, the decreased miR-616-3p
expression could not be rescued by 1mM metformin in either
CRC cell line (Fig. S3b, c). The other miRNAs were not significantly
regulated by either F. nucleatum or metformin (Fig. S3b, c). Thus,
these data implied that miR-361-5p might contribute to the

downregulation of sonic hedgehog signaling in response to 1mM
metformin in F. nucleatum-infected CRC cells.
We next examined whether miR-361-5p could suppress sonic

hedgehog signaling and stemness in CRC cells. Targetscan was
used to predict the binding site of miR-361-5p in the 3′
untranslated region (UTR) of GLI1. Position163–184 of the GLI1 3′
UTR was identified (Fig. 4d). To verify whether the 3′ UTR of GLI1
mRNA was a functional target of miR-361-5p, we performed dual
luciferase reporter gene assays. The 3′ UTR sequences of GLI1 (3′
UTR wild-type, WT) and the mutant 3′ UTR sequences of GLI1 (3′
UTR mutant, MUT) were cloned into a luciferase reporter vector,
separately (Fig. 4d). The dual luciferase assay demonstrated that
miR-361-5p mimics suppressed the luciferase activity and miR-
361-5p inhibitors elevated the luciferase activity in HCT 116 cells
transfected with the WT GLI1 reporter plasmid, but not with the
MUT reporter plasmid (Fig. 4e). These findings indicated that GLI1
is the specific target of miR-361-5p.
Then, to assess the function of miR-361-5p on the sonic

hedgehog pathway and stemness, we transfected miR-361-5p
mimics and inhibitors into HT-29 and HCT 116 cells, separately.
Overexpression of miR-361-5p decreased the expression levels of
SHH, GLI1, and NANOG at both the mRNA and protein level. By
contrast, inhibition of miR-361-5p increased the expression of
SHH, GLI1, and NANOG in HT-29 cells (Fig. 4f, g) and HCT 116 cells
(Fig. 4h, i). In addition, the number and size of tumorspheres were
reduced in the miR-361-5p overexpressing HT-29 (Fig. 4j and Fig.
S3d) and HCT 116 cells (Fig. 4k and Fig. S3e). Thus, these data
support the view that miR-361-5p suppresses the sonic hedgehog
pathway and subsequently inhibits CRC cell stemness.

Metformin reverts miR-361-5p in F. nucleatum-infected CRC
cells via inhibiting MYC
We next investigated the potential mechanisms responsible for
the upregulation of miR-361-5p by metformin in F. nucleatum-
infected cells. MiRNA genes are transcribed into primary miRNA
(pri-miRNA) transcripts; therefore, we first detected pri-miR-361
expression using real-time PCR. F. nucleatum inhibited the
expression of pri-miR-361 in HT-29 and HCT 116 cells (Fig. 5a, b).
Metformin increased the expression of pri-miR-361 in F.
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nucleatum-infected HT-29 and HCT 116 cells, but not in F.
nucleatum-free cells (Fig. 5a, b). These data indicated that
metformin and F. nucleatum might regulate the transcription of
miR-361-5p. To identify potential transcription factors of miR-361-

5p, we employed the TransmiR v2.0 database (http://
www.cuilab.cn/transmirwas) and predicted 48 transcription factors
that might govern the expression of miR-361-5p directly (Fig. 5c).
To explore metformin-regulated transcription factors, we analyzed
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microarray data to compare gene expression profiles of
metformin-treated LoVo cells and control. After application of
the filtering criterion (adjusted P < 0.1), a total of 560 down-
regulated genes and 292 upregulated genes were detected
(Fig. 5c). Four transcription factors (MYC, FOS, FOXF2, and JUN)
were identified after overlapping the 48 potential transcription
factors and the metformin-regulated genes (Fig. 5c). Among these
four transcription factor genes, MYC was the most significantly
downregulated gene by metformin and was well characterized to
bind to miRNA promoters directly [32].
To determine whether MYC contributed to the recovery effect

of metformin in F. nucleatum-inhibited miR-361-5p, we first
detected the expression of MYC in CRC cells treated with
metformin and F. nucleatum. The levels of the MYC transcript
(Fig. 5d, e) and protein (Fig. 5f) were enhanced in response to F.
nucleatum infection in HT-29 cells and HCT 116 cells. Metformin
reduced the levels of MYC mRNA (Fig. 5d, e) and protein (Fig. 5f) in
F. nucleatum-infected HT-29 cells and HCT 116 cells, but not in F.
nucleatum-free CRC cells. Moreover, metformin failed to upregu-
late pri-miR-361 and miR-361-5p when MYC was overexpressed in
F. nucleatum-infected HT-29 cells (Fig. 5g) and HCT 116 cells
(Fig. 5h). Collectively, the data suggested that metformin
decreases miR-361-5p transcription in F. nucleatum-infected cells
by inhibiting MYC.

Metformin reverses F. nucleatum-induced stemness and
chemoresistance via the miR-361-5p/ sonic hedgehog axis
To determine whether miR-361-5p regulates F. nucleatum-
mediated sonic hedgehog pathway and CRC stemness, miR-361-
5p mimics or inhibitors were transfected in F. nucleatum-treated
CRC cells. Western blotting analysis revealed that miR-361-5p
mimics decreased SHH, GLI1, and NANOG protein levels in HT-29
(Fig. 6a) and HCT 116 cells (Fig. 6b) cultured with F. nucleatum.
Consistent with these results, a loss-of-function study showed
miR-361-5p inhibitors increased the levels of SHH, GLI1, and
NANOG in HT-29 (Fig. 6a) and HCT 116 cells (Fig. 6b), which
presented the same effect as F. nucleatum. In addition, the number
and size of tumorspheres stimulated by F. nucleatum were
reduced in miR-361-5p overexpressing HT-29 cells (Fig. 6c) and
HCT 116 cells (Fig. 6d). Thus, these data supported the view that F.
nucleatum activates the sonic hedgehog signaling pathway and
CRC stemness via the selective loss of miR-361-5p.
To address whether metformin blocked F. nucleatum-stimulated

sonic hedgehog pathway and CRC stemness in a miR-361-5p-
dependent manner, miR-361-5p mimics or 1 mM metformin were
used to treat F. nucleatum-infected CRC cells. Similar to metformin,
the miR-361-5p mimics decreased the SHH, GLI1, and NANOG
levels stimulated by F. nucleatum in HT-29 cells (Fig. 6e) and HCT
116 cells (Fig. 6f). MiR-361-5p inhibitors abolished the inhibitory
effects of metformin on SHH, GLI1, and NANOG levels in F.
nucleatum-infected HT-29 cells (Fig. 6e) and HCT 116 cells (Fig. 6f).
Consistently, tumorsphere formation assays showed that the miR-
361-5p mimics repressed the number and size of tumorspheres in
F. nucleatum-infected HT-29 cells (Fig. 6g) and HCT 116 cells
(Fig. 6h). Besides, miR-361-5p inhibitors significantly blocked the

inhibitory effects of metformin on tumorsphere numbers in F.
nucleatum-stimulated cells (Fig. S3f).
To further assess whether metformin blocked F. nucleatum-

stimulated chemoresistance in a miR-361-5p-dependent manner,
we established stable miR-361-5p knockdown HCT 116 cells by
transducing lentiviruses expressing miR-361-5p inhibitors. We
then created subcutaneous tumor models via inoculation of the
stable miR-361-5p knockdown HCT 116 cells into nude mice,
followed by treatment with chemotherapeutic agents, F. nucle-
atum, and metformin. As expected, metformin reversed F.
nucleatum-induced chemoresistance in control HCT 116 cells
(Fig. 6i–k). However, the rescue effect of metformin in F.
nucleatum-stimulated chemoresistance was abrogated by the
miR-361-5p inhibitors in vivo, as shown by the lack of decrease in
tumor growth (Fig. 6i), tumor volumes (Fig. 6j), and tumor weights
(Fig. 6k). Altogether, we reasoned that metformin acts on F.
nucleatum-infected CRC via the MYC/miR-361-5p cascade, which
downregulates the sonic hedgehog signaling pathway, subse-
quently reversing CRC stemness and abolishing F. nucleatum-
triggered chemoresistance (Fig. S4).

DISCUSSION
Chemotherapeutic agents, such as 5-Fu and oxaliplatin, remain
the backbone of treatment for patients with CRC; however, the
development of chemoresistance is the major cause for treatment
failure. Cancer chemoresistance is a complex process and results
from the interplay between intrinsic and extrinsic factors. Tumors
with genetic and epigenetic alterations are critical for the CRC
chemotherapeutic response [6]. Recent studies also showed that
the gut microbiota controlled the response to chemotherapy by
modulating the tumor microenvironment [33]. F. nucleatum
abundance is associated with the properties of CRC, such as
tumorigenesis, development, metastasis, and recurrence [34].
Through a combination of bioinformatic analyses, biological
experiments, in vivo models, and clinical studies, we demon-
strated that abnormal proliferation of F. nucleatum led to CRC
chemoresistance and recurrence [15]. Given that broad spectrum
antibiotics have a negative effect on the healthy intestinal
microbiota, and no F. nucleatum-specific antimicrobial agent has
been discovered, chemoresistance caused by F. nucleatum
remains a thorny problem in the clinic [35]. Therefore, it is
necessary to develop a safe and effective approach to eliminate
chemoresistance caused by F. nucleatum.
Based on our previous work showing that metformin could

attenuate F. nucleatum-induced tumorigenesis [16], we further
explored the effect of metformin on F. nucleatum-induced
chemoresistance. To our surprise, metformin abrogated F.
nucleatum-induced CRC chemoresistance in CRC cells and
xenograft mice. However, how metformin affects F. nucleatum-
mediated chemoresistance was unknown. A distinct tumor cell
subpopulation with stemness, known as the cancer stem cell
population, exists in cancers, which mediates chemoresistance
and metastatic progression [36, 37]. The use of cancer stemness
inhibitors, such as napabucasin, can overcome chemoresistance in

Fig. 4 miR-361-5p inhibited the sonic hedgehog signaling pathway and stemness. a Schematic illustration of the target miRNA candidate
screening process. b, c Expression of miR-361-5p was quantified by real-time PCR in HT-29 (b) and HCT 116 cells (c). The cells were co-cultured
with F. nucleatum or treated with 1mM metformin for 24 h; unpaired t test. d The predicted binding sequences for miR-361-5p within the
human GLI1 3′ UTR. Seed sequences are highlighted. e Luciferase activity was measured in HCT 116 cells transfected with miR-316-5p mimics
or control mimics, miR-316-5p inhibitors or control inhibitors for 72 h. The luciferase reporters expressing wild-type or mutant human GLI1 3′
UTRs were used; unpaired t test. f, g Real-time PCR (f) and western blotting (g) were performed in HT-29 cells to detect the expression levels of
SHH, GLI1, and NANOG after transfection with miR-361-5p mimics or inhibitors for 48 h; unpaired t test. h, i Real-time PCR (h) and western
blotting (i) were performed in HCT 116 cells to detect the expression levels of SHH, GLI1, and NANOG after transfection with miR-361-5p
mimics or inhibitors for 48 h; unpaired t test. j, k Tumorspheres were observed by light microscopy in HT-29 (j) and HCT 116 (k) cells to detect
the tumorsphere formation capability after transfection with miR-361-5p mimics; the number of the tumorspheres were quantified in the right
panel. Scale bar, 400 μm; unpaired t test. n.s., P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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human cancers [38–40]. Emerging evidence supports the view
that bacterial infections, such as Enterococcus faecalis, nonpatho-
genic E. coli, and Enterotoxigenic Bacteroides fragilis, might
stimulate cancer cell stemness via upregulated expression of
stemness markers [41–43]. Our bioinformatic studies demon-
strated that a stemness-related pathway is enriched in the
modulation of metformin and F. nucleatum in CRC cells. Indeed,
the effect of metformin depends on the specific regulation of
stemness in F. nucleatum-infected CRC cells. Accordingly, metfor-
min decreased the expression of stemness-related proteins, SOX2
and NANOG, and inhibited tumorsphere formation in CRC cells co-

cultured with F. nucleatum. Thus, we concluded that metformin
attenuates F. nucleatum-induced chemoresistance by inhibiting
stemness in CRC cells. These data might explain why metformin
recovers chemosensitivity in F. nucleatum-infected CRC cells and
xenograft mice.
We dissected the mechanisms by which metformin regulates F.

nucleatum-induced stemness in CRC cells. Aberrant activity of the
sonic hedgehog pathway has been linked to stem cell self-renewal
and chemoresistance in variety of solid neoplasms [44]. We
demonstrated that sonic hedgehog signaling is a bridge connect-
ing metformin- and F. nucleatum-modulated stemness and
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chemoresistance. Metformin abolishes F. nucleatum-stimulated
stemness and subsequently chemoresistance by selectively
suppressing sonic hedgehog signaling. Furthermore, metformin
and F. nucleatum do not affect the transcription of GLI1, which

encodes the key effector of the sonic hedgehog pathway. Given
that miRNAs are critical post transcriptional regulators [30], our
bioinformatic and functional studies revealed miR-361-5p targets
GLI1 and inhibits sonic hedgehog signaling and stemness. In
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addition, metformin reverses F. nucleatum-stimulated stemness,
sonic hedgehog signaling and chemoresistance in a miR-361-5p-
dependent manner. In line with this notion, we found that
metformin decreases miR-361-5p transcripts in F. nucleatum-
infected cells by downregulating MYC expression. Our data
suggested that metformin reverses F. nucleatum-induced stem-
ness by inhibiting the MYC/miR-361-5p/sonic hedgehog signaling
axis, and then biologically and mechanistically reverting CRC
chemoresistance induced by F. nucleatum.
In addition to its biological importance, our work might be

relevant in the clinical management of patients with CRC. The
abundance of F. nucleatum is associated with the risk of CRC
chemoresistance and recurrence; therefore, combining conven-
tional chemotherapeutic regimens with metformin might be an
effective strategy to reverse CRC chemoresistance in patients with
high amounts of F. nucleatum. Our results highlighted the need for
a clinical trial of metformin as a potential treatment in
Fusobacterium-associated CRC chemoresistance. Furthermore, an
important question raised by our data is whether metformin
directly affects F. nucleatum. It has been reported that metformin
exerts its hypoglycemic benefits partly through alteration of the
abundance of certain members of the gut microbiota, such as
Bacteroides fragilis and Akkermansia muciniphila [45–48]. Research-
ers also found that metformin could regulate microbial folate and
methionine metabolism, which is required for bacterial growth
[46, 49]. These provide the possibility that patients with CRC might
benefit from the direct modulation of metformin on F. nucleatum.
In addition to the details of the mechanisms by which metformin
affects F. nucleatum-induced host responses, we will explore the
direct effect of metformin on F. nucleatum colonization and
dissemination in a future study.
Our results provide a foundation for the metformin–gut

microbiota–host response network in CRC. This network regula-
tion mode might be a direction for meaningful basic and
translational medicine research in the future.

DATA AVAILABILITY
Previously published data sets were available in GEO under accession code
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