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Abstract Metformin has been widely used as a first-line anti-diabetic medicine for the treatment of type 2
diabetes (T2D). As a drug that primarily targets the liver, metformin suppresses hepatic glucose production
(HGP), serving as the main mechanism by which metformin improves hyperglycemia of T2D. Biochemically,
metformin suppresses gluconeogenesis and stimulates glycolysis. Metformin also inhibits glycogenolysis, which is a
pathway that critically contributes to elevated HGP. While generating beneficial effects on hyperglycemia,
metformin also improves insulin resistance and corrects dyslipidemia in patients with T2D. These beneficial effects
of metformin implicate a role for metformin in managing non-alcoholic fatty liver disease. As supported by the
results from both human and animal studies, metformin improves hepatic steatosis and suppresses liver
inflammation. Mechanistically, the beneficial effects of metformin on hepatic aspects are mediated through both
adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. In
addition, metformin is generally safe and may also benefit patients with other chronic liver diseases.
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Introduction

Metformin is the most widely used first-line therapy for
type 2 diabetes (T2D), and has numerous effects on human
metabolism such as improvements in endothelial dysfunc-
tion, hemostasis and oxidative stress, insulin resistance,
lipid profiles, and fat redistribution [1]. Recent advances
reveal that metformin, in addition to its glucose-lowering
action, is promising for specifically targeting metabolic
differences between normal and abnormal metabolic
signaling. Due to its insulin-sensitizing effect, metformin
also is used for insulin resistance-related diseases such as
non-alcoholic fatty liver disease (NAFLD) [2,3] and
polycystic ovary syndrome (PCOS) [4].
Metformin exerts its metabolism-regulatory effects

primarily on the liver, which plays a central role in
controlling carbohydrate, lipid, and protein metabolism.
Organic cation transporters (OCTs) of the SLC22 family
play a pivotal role in the distribution and clearance of

metformin. In support of this, OCTs mediate the intestinal
absorption, hepatic uptake, and renal excretion of
metformin [5]. Three OCT isoforms have been identified,
and the expression of OCT1 and OCT2 is highly restricted
to the liver and kidney, respectively; whereas OCT3 is
more widely distributed [6]. The hepatic uptake of
metformin is primarily mediated by OCT1(SLC22A1)
and OCT3(SLC22A3), which are expressed on the
basolateral membrane of hepatocytes [7]. Metformin has
a preferential distribution in hepatocytes because of the
high cellular uptake via the liver-enriched OCT1 [8]. In
terms of improving hyperglycemia, metformin acts
primarily through decreasing the expression of hepatic
gluconeogenic enzymes, phosphoenolpyruvate carboxyki-
nase (PEPCK) and glucose-6-phosphatase (G6Pase),
thereby reducing hepatic glucose production (HGP). The
molecular mechanisms underlying metformin actions
appear to be complex and remain a topic of much debate.
However, there is a general agreement that metformin
administration results in activation of adenosine monopho-
sphate-activated protein kinase (AMPK) in the liver, which
in turn likely leads to a number of the pharmacologic
effects of metformin including improvement of glucose
and lipid metabolism [9]. Additionally, increasing
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evidence suggests that metformin also acts via AMPK-
independent mechanisms.
In this review, we focus on the hepatic aspects to

describe the mechanisms of action (MOA) underlying
metformin therapy for T2D and NAFLD. Furthermore, we
compare metformin with other anti-diabetic agents and
insulin sensitizers. Lastly, we summarize the few known
side effects associated with metformin application. The
knowledge gained from dissecting the principal mechan-
isms by which metformin generates beneficial effects can
provide new inspiration for the prevention and/or cure of
diabetes mellitus.

Metformin and diabetes

T2D is a major health problem associated with excess
mortality and morbidity. Vascular complications are one of
the most serious consequences of this disease. It has been
shown that tight glycemic control contributes to reduction
of the incidence of diabetes-associated complications. For
this purpose, metformin is the first-line oral anti-diabetic
drug for T2D recommended by international organizations
with proven efficacy and cost-effectiveness [10–12]. This
recommendation is based on the results of the UK
Prospective Diabetes Study (UKPDS), a landmark clinical
study, and several other clinical trials. The UKPDS

reported that intensive glucose control with metformin
appears to decrease the risk of diabetes-related endpoints
and death in overweight diabetic patients, and is associated
with less weight gain and fewer hypoglycemic attacks
when compared with insulin and sulphonylureas [13].
Since then, much evidence demonstrates that metformin
produces beneficial effects on glucose and lipid metabo-
lism, and exhibits an excellent therapeutic index and a
good safety profile with long-term treatment. In addition,
metformin is generally considered weight-neutral with
long-term use and does not increase the risk of hypogly-
cemia. Treatment with metformin limits myocardial
infarction (MI) size in rodents [14,15], and also shows
modest benefits on the risk of MI in humans [10]. This
section documents the different MOA of metformin for the
treatment of T2D. The main mechanisms underlying the
anti-diabetic actions of metformin also are summarized in
Fig. 1.

Metabolic reprogramming

Increased HGP is a major cause of hyperglycemia in T2D.
In contrast, reducing HGP accounts for, at least in part, the
effects of anti-diabetic agents on lowering blood glucose
levels. Metformin decreases HGP primarily through
inhibiting gluconeogenesis [16]. Depending on nutritional
status, metformin also has been shown to improve

Fig. 1 MOA: metformin for type 2 diabetes. Metformin targets hepatocytes and acts through both AMPK-dependent and AMPK-independent
pathways to suppress hepatic glucose production (HGP), thereby improving hyperglycemia of type 2 diabetes. Metformin also inhibits hepatic
lipogensis and stimulates liver fatty acid oxidation, thereby correcting dyslipidemia and improving insulin resistance. See text for details.
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hyperglycemia by decreasing hepatic glycogenolysis in the
fasted states [17] and by increasing both glycolysis and
glycogenesis in the fed state [18]. As additional evidence,
the results from microarray analyses of global gene
expression in the livers of obese diabetic db/db mice that
were administered with a single dose of metformin (400
mg/kg) for 2 h show that metformin significantly alters the
expression of genes involved in both glycolysis and
gluconeogenesis [19]. A mechanistic study further indi-
cates roles for metformin in increasing ser-436 phosphor-
ylation of CREB binding protein (CBP) and in disrupting
the formation of a complex among CBP, CREB, and the
target of rapamycin-C2 (TORC2). This appears to account
for the effect of metformin on suppressing the expression
of gluconeogenic enzymes such as PEPCK and G6Pase via
decreasing PPARγ-coactivator-1-α (PGC-1α) activities
[20]. Consistent with the glucose-lowering effect of
metformin, treatment with metformin stimulates glycolytic
flux by increasing the activities of key glycolytic enzymes
hexokinase (HKII) and 6-phosphofructo-1-kinase (PFK1)
in diabetic mice [21].
AMPK is considered a sensor of energy metabolism by

“sensing” the cellular AMP:ATP ratio [22]. When
activated, AMPK switches cells from an anabolic to a
catabolic state, shutting down the ATP-consuming syn-
thetic pathways and restoring energy balance. As a major
intracellular energy sensor, AMPK is recognized as an
important target for metabolic disorders such as T2D and
liver diseases. Because of this, the glucose-lowering effect
of metformin has been previously attributed to the
activation of liver AMPK. As supporting evidence, genetic
ablation of liver kinase B1 (LKB-1), which is upstream of
AMPK, eliminates the ability of metformin to activate
AMPK in vivo and results in hyperglycemia, as well as
increased expression of genes for gluconeogenic enzymes
[23]. As mentioned above, AMPK activity is important to
the glucose-lowering effect of metformin. However, there
also is increasing evidence indicating that metformin does
not act directly on either LKB1 or AMPK. For example,
mice lacking both AMPK catalytic subunits in the liver
display blood glucose levels comparable with those of
wild-type mice [24]. Of significance, the repression of
G6Pase expression in response to metformin treatment is
preserved in mouse primary hepatocytes in which AMPK
or LKB1 had been depleted [24]. These findings, along
with others, strongly suggest that metformin inhibits
hepatic gluconeogenesis by decreasing hepatic energy
state (reduction in intracellular ATP content) in an LKB1-
and AMPK-independent manner [24–26]. Indeed, the
primary site of metformin action appears to be the
respiratory chain complex I, and the AMPK-activating
effect of metformin is likely a consequence of metformin
actions on the mitochondria [27]. Regardless of AMPK
activation and the consequences of AMPK activation,
inhibiting cellular respiration decreases gluconeogenesis in

the liver [28]. Also, the AMP:ATP ratio may be crucial for
the control of glycolytic activity; as ATP is a substrate of
glucokinase. In fact, in response to metformin treatment,
the cellular levels of ATP are decreased whereas the AMP
levels in livers of fasted rats are increased [29]. Also, there
is accumulating evidence suggesting that the AMPK/p70
ribosomal S6 kinase-1 (S6K1) pathway is of critical
importance in fuel energy metabolism. Enhancing AMPK
activity by pharmacologic agents has been shown to inhibit
the mTORC1/S6K1 pathway in hepatocytes [30], whose
role in the regulation of hepatic glucose production
remains to be defined. S6K1 is a serine kinase downstream
in the insulin signaling pathway that directly phosphor-
ylates IRS-1 on multiple serine residues and serves to
inhibit insulin signaling [16,31,32]. Metformin treatment is
associated with the suppression of S6K activation. This
could be one mechanism explaining the insulin sensitizing
effect of metformin, thereby indirectly contributing to
improvement of glucose homeostasis.
Recent studies support several novel alternative path-

ways that are likely involved in the control of glucose
homeostasis by metformin. For example, metformin
inhibits AMP deaminase (AMPD) activity [33]. Knock-
down of AMPD obviated metformin stimulation of
glucose transport [33]. Thus, metformin likely increases
AMP through inhibition of AMPD [33]. In addition,
metformin treatment results in the accumulation of AMP
and related nucleotides. This, in turn, inhibits adenylate
cyclase, reduces the levels of cyclic AMP and protein
kinase A (PKA) activity, abrogates the phosphorylation of
critical protein targets of PKA, and blocks glucagon-
dependent glucose output from hepatocytes [34]. To be
noted, metformin treatment also improves liver lipid
metabolism [35]. Given the role of hepatic fat deposition
in bringing about insulin resistance, improving hepatic
lipid metabolism may contribute to the overall beneficial
effects of metformin independent of metformin actions on
HGP. The beneficial effects of metformin on hepatic lipid
metabolism are further discussed below.

Oxidative stress and antioxidant reserve

It is now well accepted that hyperglycemia increases
reactive oxygen species (ROS) production, which con-
tributes to the development of diabetic complications.
Excessive deposition of lipids (in particular saturated fatty
acid-enriched lipids) in the liver also enhances the risk of
T2D, and further increases the generation of oxidative
stress. In a human study, long-term metformin treatment
increases antioxidant enzymatic activities and serum
glutathione levels, thereby improving the antioxidant
status [36]. Additionally, metformin treatment significantly
reduces advanced oxidation protein products (AOPP) and
advanced glycation end products (AGEs) [37]. These
effects of metformin are thought to not only contribute to
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metformin actions on improving glucose metabolic home-
ostasis, but also account for metformin actions on reducing
diabetic complications. Although the antioxidant proper-
ties of metformin are not fully characterized, results from
both in vitro and in vivo studies suggest that metformin can
scavenge ROS [38–40]. For example, metformin decreases
ROS production in response to high glucose (HG) in
HepG2 cells [41].

Regulation of circadian clock

Dysregulation of circadian clock functions is increasingly
shown to underlie, at least in part, the development of
insulin resistance and T2D. Based on the results of a recent
study, it is proposed that metformin causes a dramatic shift
in the circadian phase in the peripheral tissue in an AMPK-
dependent manner [42]. In support of this, metformin-
induced AMPK activation promotes the phosphorylation
of Ser386 on casein kinase 1 (CK1), one of the key
circadian regulators. This enhances the CK1-mediated
phosphorylation of Period 2 (Per2), leading to the
degradation of Per2 and ultimately the shortening of the
period length in Rat-1 fibroblasts. Interestingly, assessment
of circadian expression of the core clock and metabolic
genes in the peripheral tissue reveals that metformin has
tissue-specific effects. For example, metformin causes
circadian phase advances in the liver and phase delays in
the muscle in clock and metabolic genes and/or protein
expression [43]. Also, the expressions of the core circadian
components CLOCK and BMAL1 and AMPK activity are
decreased in white adipose tissue of db/db and HFD-fed
mice. Further, in response to metformin treatment, AMPK
activity is increased in adipose tissue of db/db mice, which
is accompanied with increased circadian component
expression and a phenotypic shift away from lipid
accretion [44]. However, the extent to which regulation
of circadian clocks contributes to metformin actions
remains to be determined.

Alteration of autophagy

Defective autophagic pathways have been implicated in
the pathophysiology of T2D. Autophagy activity and the
expression of some key autophagy genes are suppressed in
the presence of insulin resistance and hyperinsulinemia
[45]. Also, hepatic autophagy is found to regulate fat
deposition and insulin resistance, the latter two events
usually form a vicious cycle during the development of
T2D and NAFLD. As supporting evidence, the insulin-
sensitizing effect of metformin is associated with induction
of autophagy in diabetic mice [35]. Further, metformin
treatment recovers autophagy in ethanol-treated hepato-
cytes via AMPK/mTOR-mediated signaling [46].
Although these findings suggest that metformin is capable

of altering autophagy, further investigations are required to
clarify the underlying mechanisms.

Metformin and NAFLD

Non-alcoholic fatty liver disease (NAFLD) is a clinical
manifestation which encompasses the whole spectrum of
liver diseases including hepatic steatosis, non-alcoholic
steatohepatitis (NASH), and cirrhosis without significant
alcohol consumption [47]. While simple steatosis is
generally considered as histologically benign, it could
progress to NASH during overt liver necroinflammation,
and could eventually progress to cirrhosis, liver failure and
liver cancer [47,48]. The estimated prevalence of NAFLD
ranges from 6% to 35% with a median of 20% worldwide
in the general population [47,49]. It is reported that NASH
is becoming a more common cause for liver transplantation
in the United States, and is on the path of becoming the
most common [50].
Although the pathogenesis of NAFLD is not fully

understood, NAFLD could be represented by a “two hits”
model that was first proposed by Day and James [51]. The
first “hit” requires the production of hepatic steatosis.
Factors that contribute to hepatic steatosis include
increased hepatic de novo lipogenesis, decreased hepatic
β-oxidation, increased free fatty acid supply from adipose,
and decreased very-low density lipoprotein (VLDL)
triglyceride output [48,52,53]. The second “hit” requires
a source of oxidative stress capable of initiating significant
lipid peroxidation, leading to histological damage [51];
though nowadays, there is more and more evidence
showing that the second “hit” could be promoted by a
chronic proinflammatory environment induced by obesity-
related adipose tissue dysfunction and obesity-induced
insulin resistance. This is important, as adipose dysfunc-
tion is a critical source of adipocytokines such as
interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)
that could promote liver inflammation (NASH) [54].
However, the sequence of these “two hits” has been
challenged in the sense that inflammation could precede
hepatic steatosis and the metabolic events present in
NAFLD are suggested to occur in a parallel rather than a
consecutive manner. In addition, emerging evidence
suggests that there are multiple factors contributing to
NAFLD concurrently. These factors that lead to liver
inflammation include gut-derived mediators, adipose-
derived mediators, and endoplasmic reticulum stress.
Therefore, a “multiple parallel hits” concept might be a
more precise reflection of the current knowledge of
NAFLD [48].
At present, there has yet to be a standard treatment for

managing NAFLD. Since NAFLD is a hepatic manifesta-
tion that is highly prevalent in obese and type 2 diabetic
individuals [49,55], suggested approaches in managing
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NAFLD aim at improving insulin sensitivity, and include
metformin treatment. There is numerous evidence showing
beneficial effects of metformin on improving NAFLD
phenotypes through improving hepatic steatosis and
suppressing liver inflammation. Overall, the main mechan-
isms underlying the beneficial effects of metformin on
NAFLD are discussed below and summarized in Fig. 2.

Improvement of hepatic steatosis

Much evidence suggests that the main molecular mediator
on which metformin acts to improve NAFLD is AMPK
[35,52,56,57]. Interestingly, AMPK was originally dis-
covered by its ability to inhibit fatty acid synthesis [58] and
cholesterol synthesis [59] through decreasing activities of
acetyl-CoA carboxylase (ACC) and HMG-CoA reductase,
respectively. Metformin is able to activate AMPK, leading
to the activation of downstream cascades, which results in
improved hepatic lipid metabolism and decreased steatosis
levels [35,60,61]. For example, treatment of ob/ob mice
with metformin showed a marked decrease in liver size and
hepatic steatosis level [62]. Also, both rat hepatocytes
[9,56] and human HepG2 cultures [63] metformin
treatment leads to a decrease in hepatic acetyl-coA
carboxylase (ACC) activation dependent on hepatic
AMPK activation, as well as an increase in hepatic fatty
acid oxidation (FAO). Furthermore, concurrent treatment
with metformin and an AMPK inhibitor brings about an
increase in ACC activity, along with attenuated metformin
actions on suppressing hepatic lipogenesis and on increas-
ing FAO [9]. These findings demonstrate a critical role for
AMPK in mediating metformin actions. In addition,
AMPK is known to interact with sterol regulatory element
binding protein 1-c (SREBP 1-c), a transcription factor
known to induce the expression of target lipogenic genes
including fatty acid synthase (FAS) [9,64]. This explains,
at least in part, how metformin improves hepatic steatosis.

Consistently, metformin treatment significantly decreases
the hepatic mRNA expressions for SREBP-1c and FAS,
and concurrently increases AMPK activation [9,56].

Suppression of liver inflammation

As mentioned above, simple steatosis is a more benign
form of NAFLD whereas NASH is the more severe form.
Whether hepatic steatosis precedes NASH or NASH
precedes hepatic steatosis, liver inflammation is a key
factor that leads to histological damage and the progression
of NASH, leading to terminal liver diseases such as
cirrhosis, hepatocellular carcinoma, and liver failure. This
involves a complex interaction that includes cross-talk
among residing hepatic populations and extrahepatic
systems. In other words, liver inflammation could originate
from several sources such as hepatocyte inflammatory
responses, macrophage/Kupffer cell proinflammatory acti-
vation, and/or adipose tissue inflammation [56,65–69].
Here, we focus on the levels of hepatocytes and Kupffer
cells, the inflammatory factors that could contribute to
inflammatory damage, as evidenced in NASH, and the
beneficial effects of metformin in this aspect.
In hepatocytes, fat deposition is sufficient to trigger

inflammatory responses. In particular, hepatic exposure to
excess free fatty acids (FFAs) is able to trigger inflamma-
tory pathways such as c-jun N-terminal protein kinase 1
(JNK) and nuclear factor-κB (NF-κB) which increase the
production of proinflammatory cytokines such as inter-
leukin-8 (IL-8), and induces hepatocyte apoptosis, another
characteristic of NASH. Kupffer cells are liver-specific
macrophages that reside in the liver sinusoids and
constitute approximately 20% of the liver non-parenchy-
mal cells [70]. Much evidence suggests that Kupffer cells
are critical in the pathogenesis of NAFLD [71–73]. For
example, Kupffer cell ablation in methionine-choline
deficient (MCD) mice shows a decrease in toll-like

Fig. 2 MOA: metformin for NAFLD. In hepatocytes, metformin suppresses lipogenesis and stimulates fatty acid oxidation, thereby decreasing
hepatocyte production of palmitate. This improves hepatic steatosis and, in turn, decreases fat deposition-associated macrophage (Kupffer cell)
proinflammatory activation. In both hepatocytes and macrophages, metformin inhibits inflammatory signaling to suppress the production of
proinflammatory cytokines. This contributes to suppression of liver inflammation. See text for details.
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receptor-4 (TLR-4) and TNF-α mRNA expressions,
followed by attenuation of histological appearance of
hepatic steatosis, inflammation, and necrosis [73]. Given
this, metformin action on suppression of liver inflamma-
tion [57] appears to be attributable to the effects of
metformin on decreasing hepatocyte and macrophage
inflammatory responses.
The results of a recent study show that metformin has a

direct effect on inhibiting hepatocyte and macrophage
inflammatory responses in both rat hepatoma H4IIE cells
and bone marrow-derived macrophages (BMDMs),
respectively [56]. This study is paramount first by
providing evidence that metformin ameliorates liver
inflammation in obese mice. The subsequent experiments
using H4IIE cells and BMDMs show that metformin
treatment suppresses the inflammatory responses, evi-
denced by blunted JNK1 and NF-κB signaling under the
stimulation of lipopolysaccharide (LPS). In addition,
metformin treatment markedly decreases the effect of
LPS on stimulating mRNA expression levels of IL-1β, IL-
6, and TNF-α in BMDMs. To be noted, AMPK signaling in
hepatocytes is markedly increased within the same study.
This suggests a potential link between hepatocyte AMPK
and liver inflammation given that AMPK has been widely
discussed as an upstream inhibitor of the inflammatory NF-
κB cascade [74]. Thus, metformin has a direct effect on
suppressing hepatocyte and macrophage inflammatory
responses during the pathology of liver inflammation, as
evidenced in NAFLD. However, the extent to which
metformin action on hepatocytes versus macrophages/
Kupffer cells contributes to suppression of liver inflamma-
tion during NAFLD remains to be determined. Also, it is
worth noting that AMPK activation may not directly
mediate metformin actions [35]; although much evidence
shows that metformin actions on NAFLD are highly
associated with AMPK signaling. Instead, the probable
target of metformin is inhibiting the respiratory chain
complex I of liver mitochondria [27,75], leading to the
inhibition of ATP synthesis and causing a rise in the AMP:
ATP ratio and thus, the activation of AMPK.

Clinical implications of metformin on NAFLD

Numerous clinical studies have investigated the effective-
ness of metformin on patients with NAFLD and NASH
[76–86]. The majority of the studies show that metformin
improves biochemical and metabolic parameters of
NAFLD, but not liver histology. For example, a recent
meta-analysis [87] indicates that metformin improves
insulin sensitivity of metformin-treated patients with
hepatic steatosis, but not in NASH patients, based on
HOMA-IR assessment. Also, metformin improves aspar-
tate aminotransferase (AST) and alanine aminotransferase
(ALT) levels in NASH patients. In contrast, metformin
treatment does not significantly improve liver histological

variables for steatosis, inflammation, hepatocellular bal-
looning, and fibrosis. These results are consistent with
other published systematic studies [88–90]. Based on these
studies, the American Association for the Study of Liver
Diseases (AASLD) practice guideline does not recommend
metformin as a specific treatment for NASH [47].
However, considering that the beneficial effects of
metformin on insulin resistance are well-established, and
that NAFLD relates closely to insulin resistance, metfor-
min may therefore be used for the management of NAFLD/
NASH with concurrent diabetes or insulin resistance. Due
to the limited number of large clinical trials and the
heterogeneity of available data, more randomized con-
trolled trials with larger sample sizes and a longer follow-
up duration need to be conducted to address the optimum
dosage and duration of therapy to achieve sustainable
effects of metformin.

Metformin versus other agents

It is clear that metformin brings about beneficial effects
largely by targeting the liver. In this section, metformin is
compared with other agents that have similar effects on
metabolic diseases such as insulin resistance and NAFLD.
These agents include thiazolidinediones (TZDs) and
berberine.

Metformin vs. TZDs

TZDs, a structural class of compounds, are ligands of the
peroxisome proliferator-activated receptor (PPAR) γ,
which is intricately involved in insulin signaling [91].
TZDs are considered as the first drugs that directly target
insulin resistance [91] and have been widely used as
efficacious diabetes preventive and therapeutic pharmaco-
logical agents for more than a decade [92,93]. TZDs
decrease insulin resistance and hyperglycemia by improv-
ing hepatic and peripheral tissue utilization of glucose [91].
It is reported that TZDs also have multiple effects on
insulin secretion, lipid metabolism, body fat distribution,
adipose tissue function, hepatic steatosis, vascular
endothelial function, microalbuminuria, hypertension,
inflammation, and the pro-coagulant profile [91,94,95].
Rosiglitazone, pioglitazone, and troglitazone are members
of the TZDs class [96]. Currently, rosiglitazone and
pioglitazone are available in the United States whereas
troglitazone was withdrawn from the market in the
beginning of this century because of its drug-induced
liver injury [91]. The European Medicines Agency (EMA)
suspended the market authorization of rosiglitazone in
2010, and the United States Food and Drug Administration
(FDA) restricts its use, due to its possible association with
an increased risk of ischemic heart disease [97]. As for
pioglitazone, the Government of India suddenly suspended
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it though no definitive cause and effect association was
shown with any of the adverse events namely bladder
cancer, anemia, fractures and heart failure [98]. Moreover,
the concerns on its possible adverse effects are increasing
and the agent is becoming more and more controversial
[94,99]. Overall, it is thought that the current TZDs are
first-generation, non-specific activators of PPAR γ, which
may be the key point for TZDs resulting in a wide array of
deleterious side effects and why there is currently a
limitation on their use. The development of highly targeted
selective PPAR γ modulators and dual PPAR γ/α agonists
might be new cues for their present dilemma [100].
Metformin has been widely used to lower blood glucose

of patients with T2D by improving insulin sensitivity,
which is similar to pioglitazone. However, metformin is
reported to mainly improve the ability of insulin to
stimulate glucose uptake in muscle and suppress HGP
[101], through its involvement with mitochondria and
AMP-activated protein kinase, not PPARγ. In addition to
its efficacy at lowering glucose levels, metformin is widely
considered to produce mild weight loss and delay or
prevent diabetes [102]. It has only a minimal risk of
hypoglycemia and causes lactic acidosis very rarely,
although it is more commonly associated with gastro-
intestinal side effects [103]. Many studies support the
efficacy and safety of metformin even during pregnancy
with respect to immediate pregnancy outcomes [104].
Therefore, metformin used for diabetes treatment and
prevention is deemed safe and well tolerated and, unlike
TZDs, is not encumbered by weight gain or potential
hepatotoxicity [102,105].

Metformin vs. berberine

Due to the potential side effects of current pharmacothera-
pies for metabolic syndrome, many research efforts are
increasingly focusing on exploring the healing potential of
natural products. Berberine is an alkaloid of the proto-
berberine type, and is present in an array of plants such as
Coptis chinensis [106,107]. It is reported that this plant has
been used for medicinal purposes for more than 2500 years
in Ayurvedic and Chinese medicine [108]. Traditionally,
berberine is used as an antimicrobial and antiprotozoal
agent, which has been employed in Chinese medicine for
many decades [107]. Currently, berberine is an over-the-
counter pharmaceutical item in China for microbial
diarrhea treatment and sold in the US as a dietary
supplement [109]. Remarkably, berberine has been
recently shown to exhibit multiple biological activities
including antimalarial, anti-HIV, antifungal, immunoregu-
latory, anti-inflammatory, antitumor, anti-depression, anti-
obesity, anti-diabetic, anti-hyperlipidemia and cholesterol-
lowering effects [106,109].
Although, the exact mechanisms of berberine effects

remain poorly understood, AMPK [110], PPAR γ [111],

PKC [112], glucagon-like peptide 2 [113], antioxidant and
anti-inflammatory activities [114], increased insulin recep-
tor expression [115], and 11β-hydroxysteroid dehydrogen-
ase [108] are likely involved in the underlying beneficial
effects of berberine. Additionally, it is hypothesized that
modulating gut microbiota may be another anti-diabetic
mechanism for berberine actions [116].
Recent studies have revealed novel pharmacological

properties and therapeutic applications of berberine,
mainly concerning metabolic diseases, such as obesity
and T2D [107]. It is demonstrated by the existing evidence
that berberine appears to be beneficial for treating
hyperglycemia in T2D and exhibits efficacy comparable
with that of conventional oral hypoglycemic agents such as
metformin [117]. In fact, beneficial effects of berberine in
experimentally-induced diabetic animals are likely
mediated by improved glucose homeostasis, increased in
insulin expression and pancreatic β-cells regeneration, as
well as decreased in lipid peroxidation [118]. Further, there
is evidence that berberine is able to inhibit hepatic
gluconeogenesis and increase glycolysis in diabetic rats
[119,120]. It seems that berberine and metformin possess
similar effects in regulating AMPK activation as well. In
one study, Turner et al. reported that the efficacy of
berberine on glucose metabolism is achieved by activation
of AMPK and improvement in insulin action through
inhibiting the mitochondrial respiratory complex I [121].
In the same study, they also found that treatment with
dihydroberberine, a more biologically active form of
berberine, is able to decrease liver triglyceride content. In
fact, there is evidence that berberine is able to decrease
lipogenesis and increase lipid oxidation in the liver.
However, the evidence of berberine for treating T2D
should be cautiously interpreted due to the lack of high
quality clinical trials. Large and well-designed randomized
controlled trials should be performed and it may be a little
early to recommend berberine for routine clinical use
against T2D [117]. Although having a botanical back-
ground similar to berberine, metformin, in contrast, has
been used for the therapeutic management of T2D for
several decades and was approved by the United States
Food and Drug Administration (FDA) in 1995 after many
years of use in Europe [104,122]. It has now been
recommended as the first-line drug in oral diabetes
treatment for several years [123,124].

Additional aspects

Metformin is usually well tolerated. However, transient
mild gastrointestinal adverse effects such as nausea,
vomiting, abdominal pain, flatulence, and diarrhea are
common, especially during the initiation of metformin
therapy [125,126]. Although gastrointestinal intolerance
often happens, metformin-induced hepatotoxicity is rare.
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Metformin does not appear to cause or exacerbate liver
injury and indeed, may be beneficial in patients with
NAFLD, chronic hepatitis B and C viral infection.

Metformin-related hepatotoxicity

Metformin does not undergo hepatic metabolism (no
metabolites have been identified in humans) or biliary
excretion. Thus, metformin is considered safe from a
hepatic standpoint [8,127,128]. Minor enzyme elevations
have been reported to occur during metformin therapy in
less than 1% of patients. Clinically, metformin-induced
hepatotoxicity is very rare, with less than 20 cases having
been described in the literature despite widespread use of
metformin for several decades. When it occurred, liver
injury usually appeared after 1 to 8 weeks [129], of
metformin therapy, typically with symptoms of nausea,
vomiting, weakness and fatigue followed by jaundice, with
marked elevations in serum liver transaminases and
intrahepatic cholestasis [130,131]. The mechanisms of
metformin-induced hepatotoxicity are unknown, and
appear to be direct, idiosyncratic, or a drug-drug interac-
tion leading to acute hepatocellular and/or cholestatic
jaundice. Reports suggest that metformin can induce acute
portal and parenchymal inflammation [132]. There has
been no reported specific treatment for metformin-
associated hepatotoxicity. However, after discontinuation
of metformin, symptoms resolve rapidly and liver enzymes
return to normal values within a few weeks [132].

Metformin treatment for patients with viral hepatitis

Metformin may actually be beneficial for some forms of
liver diseases, such as NAFLD, chronic hepatitis B and C
viral infection. NAFLD frequently presents mild transa-
minase elevations, but these kinds of preexisting serum
enzyme abnormalities should not be considered a contra-
indication to metformin use [133]. Because metformin is
not considered intrinsically hepatotoxic, withholding
metformin from patients with abnormal transaminases, or
routinely monitoring transaminases before or during
metformin treatment, is also not supported. A recent
review shows that metformin may provide benefits in the
treatment of viral hepatitis C, and in reducing the risk of
hepatocellular carcinoma (HCC) in patients with T2D and
hepatic C virus (HCV) [134]. In particular, metformin
treatment reduces hepatitis C virus (HCV)-related insulin
resistance [134]. Additionally, metformin treatment inhi-
bits hepatitis B virus (HBV) protein production and
replication in human hepatoma cells [135]. These results
suggest that metformin also provides benefits in the
treatment of viral hepatitis B. However, further investiga-
tions are needed to validate the beneficial effects of
metformin treatment in patients with viral hepatitis.

Metformin treatment for patients with hepatocellular
carcinoma

Metformin has also emerged as an agent with the potential
to protect against cancer. Several recent studies show that
metformin treatment of diabetes is associated with a
reduced risk of HCC [136–138]. In addition, metformin
use is associated with lower cancer-related mortality.
However, the mechanisms underlying the protective
potential of metformin are not well understood. Several
reports indicate that the anti-cancer effects are mediated
mainly through the LKB1-AMPK pathway [139]. In tumor
suppressor phosphatase and tensin homolog-deleted on
chromosome 10 (PTEN) knockout mice, metformin
induces the activation of the LKB1-AMPK pathway,
inhibits mTOR signaling, and significantly delays tumor
onset [139]. Similarly, it has been demonstrated that
AMPK activation by metformin induces p53-dependent
autophagy [140]. Metformin is selectively toxic to p53-
deficient cells, which provides a potential mechanism for
the reduced incidence of tumors [140]. Additionally, recent
evidence suggests that metformin also exerts anti-cancer
effects through AMPK independent pathways. For exam-
ple, metformin prevents liver tumorigenesis by inhibiting
lipid synthesis in the liver without increasing AMPK
activation [137]. Although further investigations are
needed, there is no doubt that metformin can benefit
patients with HCC.

Metformin application and lactic acidosis

Although circumstantial evidence shows that treatment
with metformin may be linked to lactic acidosis, no causal
relation has been proven. The pathogenesis of metformin-
associated lactic acidosis is not completely understood.
Lactate levels in the blood result from the balance between
production and clearance. It is thought that metformin
increases the levels of lactate through two potential
mechanisms. First, metformin binds mitochondrial mem-
brane and inhibits complex I of the respiratory chain,
thereby inhibiting oxidative metabolism, which results in a
shift toward anaerobic metabolism and potentially aug-
ments lactate production [141]. Second, metformin
suppresses HGP from lactate, functionally decreasing
lactate clearance [142]. However, metformin, unlike the
earlier biguanide (phenformin), actually has poor adher-
ence to the mitochondrial membrane [143] and is thought
to enhance glucose oxidation without substantially affect-
ing fasting lactate production in peripheral tissue [144].
Thus, metformin has a much lower risk of lactic acidosis
than phenformin. In fact, a substantial meta-analysis of
randomized controlled trials, which included 36 893
patients, concludes that treatment with metformin is not
associated with an increased risk of lactic acidosis. Also,
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there is no difference in the levels of lactate between
metformin and placebo or other treated groups [145]. A
recent study reported that diabetics on metformin have a
25-fold increased risk for hyperlactacidemia at the
emergency room. However, metformin shows no apparent
increase in the risk for lactic acidosis [146].
The incidence of metformin-associated lactic acidosis

(MALA) is rare. The estimated rate of MALA is 2 to 9
cases per 100 000 person-years [147]. Although metformin
is considered safe, it still carries a warning for use in
patients with serious hepatic disease because of an
increased risk of lactic acidosis. MALA has rarely been
reported to cause mortality without other precipitating
factors: predominantly renal or liver failure, congestive
heart failure, pulmonary disease, peripheral vascular
disease, or age older than 65, as these conditions may
increase the risk of tissue anoxia and therefore the
development of lactic acidosis. Literature evidence of
liver disease being associated with MALA is largely
represented by case reports [148]. Most such patients had
cirrhosis [149] and/or chronic or excessive alcohol intake
[150]. Patients with cirrhosis, particularly those with
encephalopathy, may have arterial hypoxemia, which
increases the risk of developing lactic acidosis [149,151].
For this reason, identifying patients with cirrhosis and
particularly those with encephalopathy before initiating
metformin seems prudent.
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