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Abstract

Background: Accumulation of profibrotic myofibroblasts in fibroblastic foci (FF) is a crucial process for development of

fibrosis during idiopathic pulmonary fibrosis (IPF) pathogenesis, and transforming growth factor (TGF)-β plays a key

regulatory role in myofibroblast differentiation. Reactive oxygen species (ROS) has been proposed to be involved in the

mechanism for TGF-β-induced myofibroblast differentiation. Metformin is a biguanide antidiabetic medication and its

pharmacological action is mediated through the activation of AMP-activated protein kinase (AMPK), which regulates not

only energy homeostasis but also stress responses, including ROS. Therefore, we sought to investigate the inhibitory role

of metformin in lung fibrosis development via modulating TGF-β signaling.

Methods: TGF-β-induced myofibroblast differentiation in lung fibroblasts (LF) was used for in vitro models. The anti-

fibrotic role of metfromin was examined in a bleomycin (BLM)-induced lung fibrosis model.

Results: We found that TGF-β-induced myofibroblast differentiation was clearly inhibited by metformin treatment in

LF. Metformin-mediated activation of AMPK was responsible for inhibiting TGF-β-induced NOX4 expression. NOX4

knockdown and N-acetylcysteine (NAC) treatment illustrated that NOX4-derived ROS generation was critical for TGF-β-

induced SMAD phosphorylation and myofibroblast differentiation. BLM treatment induced development of lung

fibrosis with concomitantly enhanced NOX4 expression and SMAD phosphorylation, which was efficiently inhibited by

metformin. Increased NOX4 expression levels were also observed in FF of IPF lungs and LF isolated from IPF patients.

Conclusions: These findings suggest that metformin can be a promising anti-fibrotic modality of treatment for IPF

affected by TGF-β.
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Background

Accumulation of profibrotic myofibroblasts is a crucial

process for fibrotic remodeling in idiopathic pulmonary fi-

brosis (IPF) [1]. Among a variety of profibrotic cytokines,

transforming growth factor (TGF)-β has been widely impli-

cated in IPF pathogenesis through regulating myofibroblast

differentiation and proliferation [1]. Adenoviral transfer of

TGF-β1 to rat lung induces prolonged severe interstitial fi-

brosis characterized by extensive deposition of extracellular

matrix (ECM) proteins and accumulation of cells with a

myofibroblast phenotype [2]. Integrin αvβ6-mediated

physiological activation of TGF-β has been demonstrated

to be involved in lung fibrosis development at least partly

through epithelial-mesenchymal transition [3, 4]. With re-

spect to a clinical implication, the concentrations of TGF-

β1 in the bronchoalveolar lavage fluid (BALF) from IPF

cases were significantly higher than those from control

cases [5]. Hence, TGF-β is thought to play a crucial role in

orchestrating fibrosis development during IPF pathogenesis

and recent ongoing clinical trials have mainly focused on

inhibition of fibrotic mechanisms, including TGF-β [6].

TGF-β-mediated biological activities are regulated via

intracellular signaling pathways composed of canonical

SMADs and SMAD-independent non-canonical path-

ways, including mitogen activated protein (MAP) kinases

and phosphoinositide 3-kinase (PI3K) [7]. Reactive oxy-

gen species (ROS) modulate TGF-β-induced cell signal-

ing pathways via activating tyrosine kinases and

inactivating protein tyrosine phosphatases, and NADPH

oxidases (NOXes) are the major source of endogenous

ROS production [8]. Among seven isoforms of NOXes,

NOX4 has been shown to modulate TGF-β/SMAD-sig-

naling via intracellular ROS production [8]. In compari-

son to other isoforms, NOX4 is unique in that it is

constitutively active, thus its expression level is a major

point of regulation [9]. Increased expression levels of

NOX4 have been reported in IPF lung, including in

myofibroblasts in fibroblastic foci (FF), suggesting the

involvement of NOX4 in IPF pathogenesis through

modulating TGF-β-induced myofibroblast differentiation

[10, 11]. Recent papers also demonstrated potential

therapeutic implications for a low-molecular weight

NOX4 antagonist in prevention of bleomycin (BLM)-in-

duced lung fibrosis [12]. Accordingly, NOX4 has been

recognized to be a potential therapeutic target for IPF

associated with enhanced TGF-β signaling.

Metformin is a commonly prescribed biguanide antidi-

abetic medication used to lower blood glucose in type II

diabetes patients and also exhibits pleiotropic effects on

cellular biology [13]. Metformin has been shown to re-

duce TGF-β-induced ECM protein production in fibro-

blasts derived from nasal polyps [14]. Furthermore,

metformin prevented airway remodeling in mouse

models of bronchial asthma, suggesting a potential anti-

fibrotic property [15]. Accordingly, recent papers have

demonstrated metformin-mediated attenuation of bleo-

mycin (BLM) and gefitinib-induced lung fibrosis through

regulation of TGF-β signaling [16]. Pharmacological ac-

tion of metformin is mediated via the phosphorylation

of AMP-activated protein kinase (AMPK) [17], and

AMPK regulates not only intracellular energy balance

via lipid and glucose metabolism but also a wide array of

cell functions [18]. AMPK activation by metformin was

responsible for inhibiting TGF-β-induced collagen pro-

duction in mouse renal fibroblasts [19]. Furthermore,

AMPK has been demonstrated to negatively regulate

NOX4 expression in glomerular epithelial cells [20]. We

therefore examined the inhibitory mechanisms of met-

formin in TGF-β-induced myofibroblast differentiation

of lung fibroblasts (LF), and also evaluated the anti-

fibrotic role of metformin by using bleomycin (BLM)-in-

duced lung fibrosis mouse models in relation to AMPK

activation and NOX4 suppression.

Methods

Cell culture, antibodies, and reagents

Normal lung tissues were obtained from pneumonec-

tomy and lobectomy specimens from primary lung can-

cer. Informed consent was obtained from all surgical

participants as part of an approved ongoing research

protocol by the ethical committee of Jikei University

School of Medicine {#20-153 (5443)}. Lung fibroblasts

(LF) were isolated and characterized as previously de-

scribed [21]. Briefly, LF outgrown from lung fragments

were cultured in fibroblast growth media (DMEM with

10 % FCS and penicillin-streptomycin). LF were serially

passaged and used for experiments until passage 6. LF

demonstrated >95 % positive staining with anti-vimentin

antibodies, and <5 % positive staining with the anti-

cytokeratin antibody (Data not shown). Antibodies used

were rabbit anti-AMPKα (Cell Signaling Technology, #

2532), rabbit anti-phospho-AMPKα (T172) (Cell Signal-

ing Technology, # 2535), rabbit anti-NOX4 (Novus, #

NB110-58849), goat anti-type I collagen (Southern Bio-

tech, # 1310-01), mouse anti-α smooth muscle actin

(Sigma-Aldrich, # A2547), rabbit anti-SMAD2 (Cell Sig-

naling Technology, # 3122), rabbit anti-SMAD3 (Cell

Signaling Technology, # 9513), rabbit anti-phospho-

SMAD2 (Cell Signaling Technology, # 3101), rabbit anti-

phospho-SMAD3 (Cell Signaling Technology, # 8769),

rabbit anti- phospho-SMAD3 (phospho S423 + S425)

(Abcam, # 52903), and mouse anti-β-actin (Sigma-Aldrich,

# A5316). Metformin was provided from Sumitomo

Dainippon Pharma Co, Tokyo, Japan. Recombinant human

TGF-β1 (R&D Systems, # 100-B), N-acetylcysteine (NAC)

(Wako, # 017-05131), CM-H2DCFDA (Life Technologies,

# C6827), and bleomycin (Nippon Kayaku Co., Tokyo,

Japan) were purchased.
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siRNA and transfection

Small interfering RNA (siRNA) targeting AMPK (Applied

Biosystems Life Technologies, # 4392420, ID:S100 and

S102), NOX4 (QIAGEN, Hs_NOX4_6 FlexiTube siRNA, #

SI02642507 and Applied Biosystems Life Technologies, #

4392420, ID:27013), and negative control siRNAs (Applied

Biosystems Life Technologies, # AM4635 and # AM4641)

were purchased. Specific knockdowns of AMPK, and

NOX4 were validated using two different siRNA, respect-

ively. Transfections of LF were performed using the Neon®

Transfection System (Invitrogen Life Technologies, #

MPK5000), using matched optimized transfection kits

(Invitrogen Life Technologies, # MPK10096).

RNA isolation, polymerase chain reaction

RNA isolation, reverse transcription and Real-Time PCR

were performed using the SYBR green method as previ-

ously described [21]. The primers used were NOX4 sense

primer, 5’- CAGATGTTGGGGCTAGGATTG -3’; NOX4

antisense primer, 5’- GAGTGTTCGGCACATGGGTA

-3’; β-actin sense primer 5’-CATGTACGTTGCTATCC

AGGC -3’ β-actin antisense primer 5’-CTCCTTAATGT

CACGCACGAT -3’. These primer sets yielded PCR prod-

ucts of 96 bp and 250 bp for NOX4 and β-actin respect-

ively. Primer sequences were from Primer Bank (http://

pga.mgh.harvard.edu/primerbank.)

Measurement of ROS production

LF, at a density of 5 × 103 per well, were seeded in a 96-

well microplate (Thermo Fisher Scientific, # 237105).

CM-H2DCFDA was used to measure total cellular ROS

according to the manufacturer’s instructions. After

incubation with CM-H2DCFDA (10 μM) for 30 min at

37 °C, fluorescence of DCF was measured at an excita-

tion wavelength of 485 nm and an emission wavelength

of 535 nm by a fluorescence microplate reader (Infinite

F 200) (Tecan Japan, Kanagawa, Japan).

Western blotting

LF grown on 6-well culture plates were lysed in RIPA

buffer (Thermo Fisher Scientific, catalog # 89900)

with protease inhibitor cocktail (Roche Diagnostics, #

11697498001) and 1 mM sodium orthovanadate, or

lysed with Laemmli sample buffer. Western blotting

was performed as previously described [21, 22]. For

each experiment, equal amounts of total protein were

resolved by 7.5‐10 % SDS/PAGE. After SDS/PAGE,

proteins were transferred to polyvinylidene difluoride

(PVDF) membrane (Millipore, # ISEQ00010), and in-

cubation with specific primary antibody was per-

formed for 1 h at 37 °C, or 24 h at 4 °C. After

washing several times with PBST, the membrane was

incubated with Anti-rabbit IgG, HRP-linked secondary

antibody (Cell Signaling Technology, # 7074), Anti-

mouse IgG, HRP-linked secondary antibody, # 7076)

or Anti-goat IgG (H + I), HRP-linked secondary anti-

body (BETHYL, #A50-100P) followed by chemilumin-

escence detection (Thermo scientific, # 34080, and

BIO-RAD, # 1705061) with the LAS-4000 UVmini

system (Fujifilm, Tokyo, Japan) and ChemiDocTM

Touch Imaging System (BIO-RAD, California, USA).

Mouse models

C57BL/6J mice were purchased (CLEA Japan INC,

Tokyo, Japan) and were maintained in the animal

facility at the Jikei University School of Medicine. All

experimental procedures are approved by the Jikei

University School of Medicine Animal Care Commit-

tee (#25031). A dose of 3 U/kg bleomycin (Nippon

Kayaku Co., Tokyo, Japan) was intratracheally admin-

istered in 50 μL saline using MicroSprayer™ Aerosoli-

zer and a high pressure syringe (PennCentury,

Philadelphia, PA). Intraperitoneal dose of metformin

(300 mg/kg) were given from day 7 to day 20. On the

21th day the lungs were removed. The lungs were

fixed overnight in 10 % buffered formalin, embedded

in paraffin, and the sections are stained with

hematoxylin & eosin (HE).

Masson’s trichrome staining and immunohistochemistry

To evaluate the changes of collagen deposition in lungs,

Masson’s trichrome staining was performed as previ-

ously described [22]. Immunohistochemical staining was

performed as previously described with minor modifica-

tions on the paraffin-embedded lung tissues [21, 22]. N-

Histofine MOUSESTAIN KIT (Nichirei Biosciences Inc.,

# 414321) was used for immunohistochemical staining

of mouse lung sections.

Sircol soluble collagen assay

For quantitatively measuring collagen in mouse left

lungs, the Sircol soluble collagen assay was performed

according to the manufacturer’s instructions (Biocolor

Life Science Assay, # S100).

Statistics

Data are shown as the average (±SEM) taken from at

least three independent experiments. Student’s t-test was

used for comparison of two data sets, analysis of vari-

ance for multiple data sets. Tukey’s or Dunn’s test were

used for parametric and nonparametric data, respect-

ively, to find where the difference lay. Significance was

defined as p < 0.05. Statistical software used was Prism

v.5 (GraphPad Software, Inc., San Diego, CA).

Sato et al. Respiratory Research  (2016) 17:107 Page 3 of 12

http://pga.mgh.harvard.edu/primerbank
http://pga.mgh.harvard.edu/primerbank


Results

Metformin inhibits TGF-β-induced myofibroblast differen-

tiation via AMPK activation in LF

TGF-β induced myofibroblast differentiation is shown by

an increase in type I collagen and αSMA expression levels

in LF (Fig. 1a, b, c). Metformin suppressed myofibroblast

differentiation in a dose dependent manner and significant

reduction was observed at concentrations of 10 mM

(Fig. 1a). Hence, a metformin concentration of 10 mM

was chosen for further analysis of cell culturing models.

The pharmacological action of metformin is mainly medi-

ated through activation of AMPK [17]. Metformin-

induced AMPK activation was confirmed by detecting the

phosphorylated form of AMPK with concomitant sup-

pression of αSMA expression levels (Fig. 1b).

To elucidate the involvement of AMPK activation in

regulation of myofibroblast differentiation by metformin,

we employed siRNA-mediated AMPK knockdown.

AMPK knockdown clearly reduced the amount of phos-

phorylation of AMPK following metformin treatment. In

line with recent findings [16], inhibition of myofibroblast

differentiation by metformin was clearly abrogated by

AMPK knockdown, indicating that AMPK activation is

involved in this inhibition (Fig. 1c).

Fig. 1 Metformin inhibits myofibroblast differentiation through AMPK activation in LF. a Western blotting (WB) using anti-type I collagen, anti-α-

smooth muscle actin (SMA), and anti-β-actin of cell lysates from control (lane 1, 2), metformin (1 mM) (lane 3, 4), and metformin (10 mM) (lane 5,

6) treated LF. Metformin treatment was started 1 h before TGF-β (2 ng/ml) stimulation and protein samples were collected after 24 h treatment

with TGF-β. In the right panels are the average (±SEM) taken from three independent experiments shown as relative expression. Open bar is

control and filled bar is TGF-β treated. *p < 0.05. b WB using anti-phospho-AMPK, anti-αSMA, and anti-β-actin of cell lysates from control (lane 1,

2) and metformin (10 mM) (lane 3, 4) treated LF. Metformin treatment was started 1 h before TGF-β (2 ng/ml) stimulation and protein samples

were collected after 24 h treatment with TGF-β. In the right panels are the average (±SEM) taken from three independent experiments shown as

relative expression. Open bar is control and filled bar is TGF-β treated. *p < 0.05. c WB using anti-type I collagen, anti-αSMA, anti-phospho-AMPK,

and anti-β-actin of cell lysates from control siRNA (lane 1, 2, 3, 4) and AMPK siRNA (lane 5, 6, 7, 8) transfected LF. Metformin treatment was started

48 h post transfection and 1 h before TGF-β (2 ng/ml) stimulation. Protein samples were collected after 24 h treatment with TGF-β. The right

panels show the average (±SEM) of type I collagen and αSMA relative expression, which were taken from five to six independent experiments,

respectively. Open bar is control and filled bar is TGF-β treated. *p < 0.05
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NOX4 is involved in metformin-mediated inhibition of

myofibroblast differentiation in LF

Recent papers demonstrated a pivotal role for NOX4 in

TGF-β signaling and myofibroblast differentiation [11].

To elucidate the participation of NOX4 in metformin-

mediated regulation of myofibroblast differentiation, the

changes in NOX4 expression levels following TGF-β

treatment were evaluated in the presence or absence of

metformin. TGF-β significantly enhanced NOX4 expres-

sion at the protein level, which was significantly sup-

pressed by metformin (Fig. 2a). TGF-β also increased

NOX4 expression at the mRNA level, which peaked at

12 hr post-treatment (Fig. 2b left panel). Metformin

treatment subsequently showed efficient inhibition of

TGF-β-induced NOX4 mRNA (Fig. 2b right panel).

NOX4 siRNA was employed and efficient knockdown

was confirmed by western blotting (Fig. 2c). TGF-β-in-

duced myofibroblast differentiation was clearly inhibited

by NOX4 knockdown (Fig. 2c). To confirm the association

between AMPK and NOX4, the changes of expression

levels of NOX4 following metformin treatment were ex-

amined in the setting of AMPK knockdown. Metformin-

Fig. 2 Metformin-mediated AMPK activation is involved in suppression of TGF-β-induced NOX4 expression in LF. a WB using anti-NOX4, and anti-

β-actin of cell lysates from control (lane 1, 2) and metformin (lane 3, 4) treated LF. Metformin treatment was started 1 h before TGF-β (2 ng/ml)

stimulation and protein samples were collected after 24 h treatment with TGF-β. Lower panel is the average (±SEM) taken from three independent

experiments shown as relative expression. Open bar is control and filled bar is metformin treated. *p < 0.05. b Left panel: LF were treated with TGF-β

and mRNA samples were collected at indicated time points (n = 9). *p < 0.05. Right panel: LF were treated with TGF-β in the presence or absence of

metformin (10 mM) and mRNA samples were collected after 12 h treatment with TGF-β (n = 6). Open bar is control and filled bar is metformin treated.

Real time-PCR was performed using primers to NOX4 or β-actin, as a control. NOX4 expression was normalized to β-actin. Shown is the fold increase

(±SEM) relative to control treated cells. *p < 0.05. c WB using anti-NOX4, anti-type I collagen, anti-α-smooth muscle actin (SMA) and anti-β-actin of cell

lysates from control siRNA (lane 1, 2) and NOX4 siRNA (lane 3, 4) transfected LF. TGF-β (2 ng/ml) treatment was started 48 h post transfection. Protein

samples were collected after 24 h treatment with TGF-β. In the right panels are the average (±SEM) taken from four independent experiments shown

as relative expression. Open bar is control and filled bar is TGF-β treated. *p < 0.05. d WB using anti-phospho-AMPK, anti-NOX4, anti-type I collagen,

anti-αSMA, and anti-β-actin of cell lysates from control siRNA (lane 1, 2, 3, 4) and AMPK siRNA (lane 5, 6) transfected LF. Metformin treatment was

started 48 h post transfection and 1 h before TGF-β (2 ng/ml) stimulation, and protein samples were collected after 24 h treatment with TGF-β. In the

right panels are the average (±SEM) taken from five independent experiments shown as relative expression. Open bar is control and filled bar is TGF-β

treated. *p < 0.05
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mediated attenuation of NOX4 and αSMA expression

during TGF-β treatment was efficiently restored by

AMPK knockdown (Fig. 2d).

NOX4 has been implicated as both an upstream and a

downstream mediator of TGF-β-mediated SMAD signal-

ing [8]. NOX4 knockdown attenuated phosphorylation

of SMAD2 and SMAD3 30 min after TGF-β treatment

(Fig. 3a). In line with the NOX4 knockdown experi-

ments, metformin significantly suppressed both SMAD2

and SMAD3 phosphorylation 30 min after TGF-β treat-

ment (Fig. 3b).

NOX4-mediated ROS production is responsible for TGF-β-

induced myofibroblast differentiation in LF

NOX4-mediated hydrogen peroxide (H2O2) production

of redox pathway modulation has been implicated in

regulating TGF-β signaling [8], hence intracellular ROS

production was examined by means of the CM-

H2DCFDA assay. TGF-β treatment induced ROS pro-

duction, which was significantly reduced by metformin

treatment (Fig. 4a). Knockdown experiments confirmed

that NOX4 is mainly responsible for TGF-β-induced

ROS production (Fig. 4b). No significant additional in-

hibition of ROS production was observed by metformin

treatment in NOX4 knockdown LF (Fig. 4b). Involvement

of TGF-β-induced ROS production in SMAD signaling

and myofibroblast differentiation was also examined by

using N-acetylcysteine (NAC), a representative intra-

cellular antioxidant. NAC treatment significantly sup-

pressed TGF-β-induced SMAD2/3 phosphorylation

and myofibroblast differentiation at the concentration

of 10 mM (Fig. 4c).

Metformin attenuates bleomycin-induced lung fibrosis

development in mice

Next, mouse models of BLM-induced lung fibrosis

were used to examine the anti-fibrotic action of met-

formin via NOX4 modulation. To show a possible

clinical relevance for metformin in treatment of IPF,

intraperitoneal metformin injection was initiated on

day 7 following BLM treatment. In general, day 7 is

considered to be the beginning of the fibrotic phase

with concomitant resolution of acute inflammatory re-

action. Compared with control treated mice, BLM

treated mice showed significant body weight loss,

which was markedly recovered during metformin

treatment (Fig. 5a). Metformin treatment clearly and

significantly reduced lung fibrosis development at day

Fig. 3 Metformin and NOX4 regulate SMAD phosphorylation in LF. a WB using anti-phospho-SMAD2, anti-SMAD2, anti-phospho-SMAD3, anti-

SMAD3, and anti-β-actin of cell lysates from control siRNA (lane 1, 2) and NOX4 siRNA (lane 3, 4) transfected LF. TGF-β (2 ng/ml) treatment was

started 48 h post transfection. Protein samples were collected after 30 min treatment with TGF-β. In the right panels are the average (±SEM) taken

from three independent experiments shown as relative expression. Open bar is control and filled bar is TGF-β treated. *p < 0.05. b WB using anti-

phospho-SMAD2, anti-SMAD2, anti-phospho-SMAD3, anti-SMAD3, and anti-β-actin of cell lysates from control (lane 1, 2) and metformin (10 mM)

(lane 3, 4) treated LF. Metformin treatment was started 1 h before TGF-β (2 ng/ml) stimulation and protein samples were collected after 30 min

treatment with TGF-β. In the right panels are the average (±SEM) taken from three independent experiments shown as relative expression. Open

bar is control and filled bar is TGF-β treated. *p < 0.05
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Fig. 4 (See legend on next page.)
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21 by means of Masson trichrome staining and Sircol

collagen assay, respectively (Fig. 5b, c).

To elucidate participation of TGF-β signaling through

the NOX4-SMAD axis in the BLM-induced lung fibrosis

and in attenuation of fibrosis by metformin, lung sam-

ples at day 21 were examined by immunohistochemistry.

Compared with control treated lungs, increased NOX4,

p-SMAD3, and αSMA expression were clearly observed

in fibrotic lesions in BLM-treated lungs (Fig. 5d). Con-

sistent with the results of in vitro experiments, metfor-

min clearly suppressed NOX4, p-SMAD3, and αSMA

expression levels in BLM-treated lungs (Fig. 5d). In line

with recent reports, clinical implications for NOX4 in

IPF pathogenesis for Japanese patients were further con-

firmed by showing positive NOX4 staining in FF fibro-

blasts (Fig. 5e). In comparison to LF from normal lungs,

LF isolated from IPF lungs also showed increased NOX4

expression levels (Fig. 5f ).

Discussion

In the present study, we demonstrate that metformin-

mediated AMPK activation is involved in the mecha-

nisms for attenuation of TGF-β-induced myofibroblast

differentiation in LF through inhibiting NOX4 expres-

sion (Fig. 6). Metformin regulates TGF-β-induced NOX4

expression at the mRNA level and NOX4 is responsible

for TGF-β-induced endogenous ROS production in LF.

Metformin treatment with concomitant NOX4 knock-

down indicates that NOX4 is mainly involved in the

mechanisms for metformin-mediated ROS inhibition

during TGF-β treatment (Fig. 4b). Metformin reduces

the expression levels of NOX4, SMAD phosphorylation,

and αSMA with concomitant attenuation of lung fibrosis

in BLM treatment, suggesting that the anti-fibrotic

mechanism of metformin is mainly attributable to inhib-

ition of TGF-β-mediated myofibroblast differentiation.

In line with recent findings, increased NOX4 expression

levels are also observed in FF fibroblasts of IPF lungs

and LF isolated from IPF lungs [10, 11]. Accordingly we

speculate that metformin regulation of NOX4 expression

can be a promising anti-fibrotic modality of treatment

for fibrotic lung disorders affected by TGF-β. Although re-

cent papers also showed an anti-fibrotic role for metfor-

min in BLM-induced lung fibrosis models [16], efficient

inhibition of BLM-induced lung fibrosis by metformin ad-

ministration during the fibrotic phase in the present

study further sheds light on the potential clinical use-

fulness of metformin for the treatment of IPF with

ongoing fibrotic process.

Metformin exhibits pleiotropic mechanisms for cell pro-

tection, mainly through AMPK activation. In addition to

energy metabolism, AMPK has been shown to be involved

in the regulation of various cellular processes, including

proliferation, mitochondrial integrity, inflammatory re-

sponse, ER stress, and oxidative stress [18]. AMPK activa-

tion is recognized to have potential beneficial effects not

only on improving metabolic disorders but also on pre-

venting organ dysfunction during fibrosis development,

including pulmonary diseases [23]. AMPK activation has

been implicated in metformin-mediated effectiveness

against a variety of lung pathologies, including lung cancer,

bronchial asthma, tuberculosis, cigarette smoke-induced

lung damages, ventilator-induced lung injury, and lipo-

polysaccharide (LPS)-induced lung injury [13, 15, 24–27].

Furthermore, a recent paper demonstrated that TGF-β-

induced myofibroblast differentiation and BLM-induced

lung fibrosis were efficiently suppressed by metformin-

mediated AMPK activation [16]. In our present study, we

have further elucidated that AMPK-mediated NOX4 sup-

pression in particular is involved in metformin’s anti-

fibrotic mechanisms.

NOX4 has been implicated as both an upstream and

downstream mediator in TGF-β signaling [8]. In line

with the NOX4 knockdown experiment, we showed that

metformin significantly suppressed SMAD phosphoryl-

ation (Fig. 3) and ROS production at 30 min after TGF-β

treatment (data not shown), suggesting that metformin-

mediated ROS suppressing mechanisms, including NOX4

regulation, may participate in the inhibition of SMAD

phosphorylation during TGF-β treatment. We have also

(See figure on previous page.)

Fig. 4 NOX4-mediated ROS is involved in the mechanisms for SMAD phospholylation and myofibroblast differentiation in LF. a Fluorescence

intensity of CM-H2DCFDA staining for intracellular ROS production. After 24 h treatment with TGF-β, incubation with CM-H2DCFDA (10 μM) was

performed for 30 min, fluorescence of DCF was measured by a fluorescence microplate reader. The fluorescence level in the control treated cells

in the absence of metformin was designated as 1.0. Shown panels are the average (±SEM) taken from three independent experiments. *p < 0.05.

b Fluorescence intensity of CM-H2DCFDA staining for intracellular ROS production. Metformin treatment was started 48 h post-siRNA transfection

and 1 h before TGF-β (2 ng/ml) stimulation. After 30 min incubation with CM-H2DCFDA, fluorescence of DCF was measured by a fluorescence

microplate reader. The fluorescence level in the control siRNA transfected cells without TGF-β and metformin treatment was designated as 1.0.

Shown panels are the average (±SEM) taken from six independent experiments. *p < 0.05. c WB using anti-phospho-SMAD2, anti-SMAD2, anti-

phospho-SMAD3, anti-SMAD3, anti-type I collagen, anti-αSMA, and anti-β-actin of cell lysates from control (lane 1, 2), NAC (1 mM) (lane 3, 4), and

NAC (10 mM) (lane 5, 6) treated LF. NAC treatment was started 1 h before TGF-β (2 ng/ml) stimulation and protein samples were collected after

24 h treatment for type I collagen and anti-αSMA WB, but 30 min for SMAD WB. Shown panels are the average (±SEM) taken from three

independent experiments shown as relative expression. Open bar is control and filled bar is TGF-β treated. *p < 0.05 and **p < 0.001
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treated LF with hydrogen peroxide (100 μM) in the pres-

ence or absence of TGF-β. However no effect on SMAD

phosphorylation was demonstrated by hydrogen peroxide

(data not shown), indicating not only the different

role between NOX4-mediated ROS and extrinsic ROS

but also permissive role of ROS in regulating cell sig-

naling by TGF-β. TGF-β-induced NOX4 expression is

also dependent on SMAD signaling, suggesting the

existence of a self-amplifying loop of TGF-β signaling

and NOX4 expression [8]. Intriguingly, recent papers

showed that NOX4 is essential for not only myofibroblast

differentiation but also subsequent phenotypic alterations

to apoptosis resistance by accelerating cellular senescence

in LF, which is associated with prolonged ECM production

during IPF pathogenesis [11, 28]. Along with regulation of

the myofibroblast phenotype in LF, NOX4 has also been

implicated in the regulation of TGF-β-induced apoptosis

in epithelial cells. In the case of NOX4 deficiency, due to

loss of intrinsic ROS generation, TGF-β failed to induce

apoptosis in alveolar epithelial cells (AEC) [10, 29]. In-

crease in NOX4 expression levels was observed not only

in LF of actively fibrosing areas but also injured epithelial

cells in IPF lungs [12, 28]. Hence, apoptosis inhibition in

AEC by NOX4 suppression can also be a beneficial part of

metformin treatment during IPF. siRNA-meditated NOX4

knockdown and low-molecular-weight NOX4 antagonist

have been shown to efficiently attenuate BLM-induced

lung fibrosis [12], further supporting the notion that

metformin-mediated NOX4 suppression can be a reason-

able and promising IPF treatment.

Due to the relative paucity of inflammatory cell infiltra-

tion as well as the failure of anti-inflammatory and im-

munosuppressive modality of treatments, the aberrant

wound healing process of excessive myofibroblast accu-

mulation has been recognized to be an essential pathology

for IPF development [30]. Recently available medical treat-

ments showing significant reduction in the rate of decline

of forced vital capacity are mainly mediated through anti-

fibrotic mechanisms [31, 32]. Furthermore, the majority of

ongoing clinical trials for IPF treatment are based on the

mechanisms of fibrogenesis, including TGF-β [6]. In gen-

eral, discovery and development of new drugs are a diffi-

cult and time-consuming process with unpredictable

adverse events. Drug repositioning is a recently proposed

new drug discovery strategy whereby a library of approved

drugs is screened for new indications [33]. The advantages

of drug repositioning are decreased risks for unexpected

adverse effects and simplified clinical trials. Metformin is

widely used for type II diabetes patients in clinical settings

with acceptable adverse events [34]. Hence, our findings

of an anti-fibrotic property of metformin indicate that

metformin can, through drug repositioning, be an al-

ternative approach for IPF treatment. In comparison

to clinically achievable plasma metformin concentra-

tions, we used higher concentrations of metformin in

in vitro experiments. Previous reports showing anti-

fibrotic and anti-inflammatory properties also selected

(See figure on previous page.)

Fig. 5 Effect of metformin on bleomycin-induced lung fibrosis development in mice. a Body Wight (BW) changes after BLM treatment. BW at day

0 before treatment was designated as 1.0. *p < 0.05. b Photomicrographs of Masson trichrome and Hematoxylin-Eosin staining of mouse lungs at

day 21. Upper panels are low magnification view of Masson trichrome staining. Original magnification × 40. Middle panels are High magnification

view of Masson trichrome staining. Original magnification × 100. Lower panels are high magnification view of Hematoxylin-Eosin staining. Original

magnification × 100. c Shown in the panel is the average (±SEM) soluble collagen measurement from Sircol assay using control (n = 13), BLM-

treated (n = 18), and BLM-treated with subsequent metformin injection mouse lungs (n = 15) at day 21. Open bar is control, filled bar is BLM-

treated, and horizontal crosshatched bar is BLM-treated with subsequent metformin injection. *p < 0.05. d Immunohistochemical staining of

NOX4, p-SMAD3, αSMA in mouse lungs at day 21. Upper panels are high magnification view of NOX4 staining. Original magnification × 200.

Middle panels are High magnification view of p-SMAD3 staining. Original magnification × 400. Lower panels are high magnification view of αSMA

staining. Original magnification × 200. Bar = 100 μm e Immunohistochemical staining of NOX4 in human lungs. Upper panels are high magnification

view of normal lungs. Original magnification × 200. Lower panels are High magnification view of IPF lungs. Original magnification × 400. Bar = 100 μm

f WB using anti-NOX4, and anti-β-actin of cell lysates from normal LF (lane 1, 2, 3) and IPF LF (lane 4, 5, 6). Lower panel is the average (±SEM) taken

from three patients shown as relative expression. Open bar is normal LF and filled bar is IPF LF. *p < 0.05

Fig. 6 Hypothetical model of metformin-mediated inhibition of

myofibroblast differentiation. Metformin-mediated AMPK activation

is responsible for inhibiting NOX4 expression and ROS production, which

is at least partly involved in the mechanisms for attenuation of TGF-β-

induced SMAD phosphorylation and myofibroblast differentiation in

relation to fibroblastic foci formation in IPF pathogenesis

Sato et al. Respiratory Research  (2016) 17:107 Page 10 of 12



similar concentrations of metformin as used in our

experiments [15, 16, 35], suggesting that a higher

concentration is necessary to see the efficacy in

in vitro conditions. However, mice were treated with

300 mg/kg of metformin, which is estimated to be

comparable to a metformin dose of around 1500 mg/

day for a 60 kg human [15]. Although we selected in-

traperitoneal administration in our mouse models,

bioavailability of oral administration of metformin is

calculated as 50 to 60 % in humans. Hence we specu-

late that the currently used maximum metformin dose

for diabetes treatment (2250 mg/day in Japan) might

be sufficient to see the anti-fibrotic properties of met-

formin treatment during IPF, which should be evalu-

ated in future studies.

Conclusions

In summary, we elucidated that metformin, an AMPK ac-

tivator, attenuates lung fibrosis development by inhibiting

TGF-β signaling through NOX4 suppression. We consider

metformin to be a promising candidate agent for an anti-

fibrotic modality of treatment for IPF patients.
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