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Abstract 

Metformin, a biguanide drug, is the most commonly used first‑line medication for type 2 diabetes mellites due to 
its outstanding glucose‑lowering ability. After oral administration of 1 g, metformin peaked plasma concentration 
of approximately 20–30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. 
Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, 
apart from AMPK‑dependent mechanism, also including several AMPK‑independent mechanisms, such as restoring 
of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, 
such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repur‑
pose this old drug and further explored the possible indications and adverse effects of metformin. Through investigat‑
ing with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti‑obesity, 
metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID‑19, 
however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 defi‑
ciency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies 
is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these 
disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical 
evidence of metformin and discusses its therapeutic potential and clinical safety.
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Introduction
Metformin, derivated from biguanide, is able to effec-
tively lower plasma glucose level by inhibiting hepatic 
gluconeogenesis (HGP) and improving insulin-resist-
ance with high cost-effectiveness, but nearly has no 
hypoglycemia side effects [1, 2]. Therefore, since it was 
synthesized in the 1920s, metformin has been the recom-
mended first-line medication for type 2 diabetes mellites 

(T2DM) [3]. Metformin is not metabolized and is elimi-
nated unchanged through renal excretion, and this drug 
is widely distributed into various organs, including intes-
tinal, liver, kidney, brain and so on. After oral administra-
tion, metformin is first absorbed in the intestine, which is 
mediated by plasma membrane monoamine transporter 
(PMAT) or organic cation transporter 3 (OCT3) on the 
luminal side of enterocytes [4, 5]. Then, metformin leaves 
the enterocytes and is transferred into the portal vein 
through OCT1 on the basolateral membrane. Next, met-
formin is delivered to the liver and absorbed via OCT1/
OCT3, which is expressed on the basolateral membrane 
of hepatocytes [6, 7], and is excreted from the liver to the 
circulation via multidrug and toxin extrusion 1(MATE1) 
[8]. Last, metformin in the circulation is absorbed into 
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renal epithelial cells, which is mediated by OCT2 on the 
basolateral membrane in the renal tubules [9], and fur-
ther eliminated into urine through MATE1 and MATE2-
K on the apical membrane of the renal proximal tubule 
cells [10, 11] (Fig. 1).

Accordingly, following oral dosing of 1  g metformin, 
a prescribed dose for T2DM treatment in the clinic, 
the plasma concentrations of metformin are between 
20–30  μM, and the concentrations of metformin in the 
portal vein are roughly estimated to be threefold higher. 
Therefore, following a therapeutic dose, the hepatic 
exposure to metformin ranges from 60–90  μM [12]. To 
explore the clinically relevant doses of metformin in pre-
clinical studies, Madiraju et  al. compared the hepatic 
exposures in rats following different oral ingestions 
of metformin, and he found that the hepatic exposure 

to metformin (approximately 50–100  μM) is similar 
between oral ingestions of 50–100  mg/kg metformin in 
rats and oral ingestions of 1  g metformin in humans. 
And the oral dosing of ≥ 250  mg/kg metformin results 
in > 1 mM hepatic exposure to metformin [13, 14].

Recently, researchers have further explored the under-
lying mechanisms of action mediated by metformin. One 
of the most studies mechanisms is the activation of AMP-
activated protein kinase (AMPK) [15, 16], a key regulator 
of various pathways involved in glucose, lipid and energy 
metabolism. For example, the blockade of AMPK signal-
ing significantly influences the efficiency of metformin 
for T2DM and atherosclerosis [17, 18]. Besides, met-
formin also plays roles in changing the pathogenesis of 
diseases by restoring redox balance, affecting mitochon-
drial function, activating protein phosphatase 2 (PP2A), 

Fig. 1 Pharmacokinetics of Metformin. Following oral dosing of 1 g metformin, the uptake of metformin in intestinal, liver and kidney is mediated 
by PMAT/OCT3, OCT1/3 and OCT2, respectively, and the excretion of metformin in intestinal, liver and kidney is mediated by OCT1, MATE1 and 
MATE1/2, respectively. The plasma concentrations of metformin are between 20–30 μM, and the concentrations of metformin in the portal vein are 
60–90 μM
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releasing fibroblast growth factor 21(FGF21) and so on 
[19–23]. Moreover, metformin even enables the modula-
tion of gut microbiota [24, 25].

Due to the board mechanisms of action, despite of 
T2DM, new applications of this old drug have been 
investigated, such as decreasing cardiovascular events 
and anti-obesity [26–29]. In addition, evidence is accu-
mulating that metformin also has potential benefits 
for cancer [30–32], neurodegenerative disease [33, 34], 
metabolic syndrome [35, 36], polycystic ovary syndrome 
(PCOS) [37–39], aging [40–42], coronavirus disease 2019 
(COVID-19) [43–45]and so on. However, metformin 
also results in some adverse effects, such as gastrointes-
tinal complaints, lactic acidosis, vitamin B12 deficiency 
and neurodegenerative disease [46–48]. Recently, it has 
even been reported that metformin treatment during the 
sperm development increased the risk of birth defects in 
offspring [49].

However, compared to clinical concentration for treat-
ing T2DM patients, much higher metformin concentra-
tions are widely used in beforementioned studies. Hence, 
although multiple pharmacological effects and clinical 
evidences have been reported, the mechanisms of action 
and new applications of this most commonly antidiabetic 

drug remains only partially elucidated and controversial, 
especially the metformin dosage in researches, its clinical 
use is now still limited to diabetic patients. Here, we will 
summarize and analyze recent research developments 
on the mechanism of action and clinical evidence of 
metformin, helping to better understand and repurpose 
metformin.

Mechanism of action
Metformin is reported to have a number of targets, 
the first and studied most is AMPK-signaling. Then, 
researchers found metformin can still affect cells in the 
absence of AMPK through targeting redox states, mito-
chondria, and some other signaling, such as FGF21, 
PP2A, and mTOR. Furthermore, metformin also mod-
ulates the gut microbiome to indirectly regulate the 
human homeostasis. In this part, we will first discuss 
these mechanisms of action mediated by metformin.

Metfromin exerts its effect in an AMPK‑dependent manner
Numerous literatures have demonstrated that metformin 
exerts its effect through AMPK activation (Fig. 2). AMPK 
is a heterotrimeric complex, consisting of the α cata-
lytic subunit, scaffold protein β subunit and regulatory 

Fig. 2 AMPK‑dependent mechanism of action mediated by metformin treatment. Depending on AMPK activation, metformin exerts its effects by 
regulating Glp1r/Pka pathway, mTOR/autophagy pathway, NLRP3, eNOS, STAT3,COX‑2, iNOS, Smad3, FOX3, IRS, GCRP and PD‑L1 and ACE2 signals



Page 4 of 32Du et al. Molecular Biomedicine            (2022) 3:41 

γ noncatalytic subunit [50]. The activation of AMPK is 
initiated by the binding of adenosine monophosphate 
(AMP) to the γ-subunit, which can lead to structural 
changes in AMPK and then induce the phosphoryla-
tion of the α subunit at  Thr172. Based on this mechanism, 
metformin may mediate AMPK activation by increasing 
the AMP/ATP (adenosine triphosphate). Interestingly, 
it has been reported that metformin could also directly 
bind to the γ subunit of AMPK, however, it is still unclear 
that whether this interaction between metformin and 
the γ-subunit can directly activate AMPK, such as AMP 
[51]. In addition, following glucose starvation, low-dose 
metformin (5–30 μM) also could activate AMPK through 
binding with the presenilin enhancer (PEN2) to inhibit 
the lysosomal proton v-ATPase, while the phosphoryla-
tion of AMPK could be suppressed by imidazole propi-
onate, a microbial metabolite, via activating the p38g/
AKT (also known as protein kinase B or PKB) pathway 
[52, 53].

Because of its role in the reduction of acetyl-CoA car-
boxylase (ACC) activity and lipogenic enzymes and the 
induction of fatty acid oxidation, AMPK is reported to 
be as a key regulator in lipid and glucose metabolism 
[54]. Furthermore, AMPK is also involved in a num-
ber of pathways, such as mammalian target of rapa-
mycin complex1(mTORC1) signaling, peroxisome 
proliferator-activated receptor γ coactivator 1 (PGC-1) 
signaling and signal transducer and activator of tran-
scription 3 (STAT3) signaling [55–57]. Consequently, 
the various effects of AMPK may be partly responsible 
for metformin’s the wide effects on homeostasis and dis-
eases. As a classical antidiabetic drug, metformin was 
discovered to lower plasma glucose levels by reducing 
hepatic glucose production (HGP) and alleviating insulin 
resistance. Cao et al. reported that 80 μM metformin, a 
therapeutic metformin concentration in the portal vein, 
is enough to decrease glucose production and the mRNA 
levels of glucose-6-phosphatase catalytic (G6pc) and 
phosphoenolpyruvate carboxykinase 1 (Pck1) in primary 
hepatocytes in an AMPK-dependent way [58]. Further-
more, Frank et al. demonstrated that a clinically relevant 
dose of metformin treatment (50  mg/kg) in rats could 
initiate the AMPK- glucagon like peptide 1 receptor 
(Glp1r)- protein kinase A (PKA) pathway in the duode-
nal mucosa, and then enhance the HGP inhibitory effect 
of metformin depending on the gut-brain-liver neuronal 
network [59, 60]. Besides, pharmacological metformin 
concentration (75  μM) treatment of hepatocytes was 
reported to improve mitochondrial respiratory activ-
ity and increase ATP levels by increasing mitochondrial 
oxidative enzymes and promoting mitochondrial fis-
sion through AMPK/mitochondrial fission factor (Mff) 
signaling. As it has been widely accepted that impaired 

mitochondrial respiratory activity is a key inducer for the 
development of insulin resistance, it is reasonable that a 
pharmacological dose of metformin can improve insulin 
resistance by activating AMPK [61].

Apart from benefits for T2DM, metformin is also 
able to improve cardiovascular diseases through reduc-
ing cardiovascular end points, not just because of its 
glucose-lowering effect. The role of AMPK in this met-
formin-mediated cardiovascular protective action has 
been elucidated in number of literatures. After treating 
streptozotocin-induced diabetic cardiomyopathy (DCM) 
mice with 200  mg/kg metformin and high glucose-
treated cardiomyocytes with 2 mM metformin, Fan et al. 
found that metformin improves autophagy and then alle-
viates the pyroptosis in DCM by inhibiting the AMPK/
mTOR pathway [62]. This AMPK/mTOR-mediated inhi-
bition of autophagy also drives neuroprotection against 
focal cerebral ischemia after acute preconditioning with 
a subtherapeutic dose of metformin (10 mg/kg, i.p.) [63]. 
Moreover, by activating the AMPK/mTOR pathway, met-
formin is a potential therapeutic for other neurological 
diseases, such as Parkinson’s disease (PD) and Hunting-
ton’s disease, through enhancing neuronal bioenergetics, 
protecting nerve repair and reducing toxin protein aggre-
gates [64].

Moreover, metformin is also reported to be benefi-
cial for patients with inflammatory diseases. Metformin 
inhibits the inflammatory response through activat-
ing the AMPK/ NLR family pyrin domain containing 
3(NLRP3) or AMPK/ endothelial nitric oxide synthase 
(eNOS) pathway, thus protecting the myocardial from 
ischemia–reperfusion [65, 66]. In addition, the antiather-
osclerosis role of metformin has also been documented, 
relying on AMPK activation. A therapeutic dose of met-
formin (100  mg/kg) inhibits monocyte-to-macrophage 
differentiation and proinflammatory cytokine production 
via sequentially decreasing STAT3 phosphorylation and 
attenuating Angiotensin (Ang)-II-induced atheromatous 
plaque formation and aortic aneurysm in an atheroscle-
rosis mice model [17]. Researches have also pointed out 
that T2DM-linked neurodegenerative disease (ND), such 
as Alzheimer’s disease (AD), is related to advanced gly-
cosylation end product (AGE)-caused neuronal impair-
ment via the inflammatory response, and metformin 
(1 mM) could rescue this inflammation-induced impair-
ment through upregulating of ACC and inhibitory kappa 
B kinase (IKK), accompanied by restoring inducible nitric 
oxide synthase (iNOS) and cyclooxygenase-2(COX-2) 
in an AMPK-dependent way [67]. As metformin plays 
its cardiovascular protective and neuroprotective roles 
by exerting an inflammatory inhibitory effect, research-
ers have further investigated the role of metformin in 
inflammatory diseases. By utilizing a partial medical 
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meniscectomy (DMM) model, Chen et  al. found that 
metformin (205  mg/kg) inhibits cartilage degradation 
and limits osteoarthritis development and progression in 
an AMPK-dependent way [68]. Besides, it has also been 
illustrated that with the activation of AMPK, metformin 
(10 mM) reduces transforming growth factor beta (TGF-
β)-induced renal fibroblast collagen type I production via 
inhibiting Smad3-driven connective tissue growth factor 
(CTGF) expression, and this mechanism may provide a 
potential role for metformin in the treatment of chronic 
kidney disease (CKD) through suppressing renal intersti-
tial fibrosis [69].

Accordingly, the AMPK-dependent effect of metformin 
has been implied to be beneficial for many other patho-
geneses, such as cancer [70]. For the critical role of cancer 
stem/initiating cells in tumorigenesis and cancer devel-
opment, researchers explored whether metformin affects 
cancer initiating cells, and found that metformin (1 mM) 
activates hexaribonucleotide-binding  protein  3(FOX3) 
via AMPK activation, which is sufficient to promote the 
differentiation of glioma-initiating cells into nontumori-
genic cells [71]. Moreover, growing evidences have indi-
cated that metformin has direct therapeutic potential 
for cancers, whether as a sole drug or in combination 
with other regimens. AMPK activation by metformin 
(up to10 mM for cells and 300  mg/kg for mice models) 
induces autophagy through inhibiting mTOR signaling 
or the immune response, and thus downregulates pro-
grammed death-ligand 1 (PD-L1) expression in a variety 
of cancer types, such as lymphoma, breast cancer, pan-
creatic cancer, non-small cell lung cancer, eventually, the 
growth or metastasis of cancer cells is inhibited [72–76]. 
It has also been demonstrated that following activation 
of AMPK, metformin (5 mM for cells and 250 mg/kg for 
mice models) inhibits pancreatic cancer growth by dis-
rupting the insulin receptor signaling (IRS) or G protein 
coupled receptor systems (GPCRs) [77–79]. Moreover, 
metformin (100 μM-10 mM for cells and 300–500 mg/kg 
for mice models) also amplifies its therapeutic effects and 
enhances cancer patient survival beneficial in an AMPK-
dependent way when combined with radiotherapy or 
chemotherapy [80, 81].

As AMPK is widely expressed in the ovary and tes-
tes, so the role of metformin, an AMPK activator, in 
the reproductive system has also attracted much inter-
est from researchers. The results showed that through 
activating AMPK-cyclic AMP (cAMP) signaling, met-
formin (10  mM) has a positive effect on polycystic 
ovary syndrome (PCOS), a disease associated with 
reproductive and metabolic abnormalities, by inhibiting 
steroidogenic enzymes and decreasing androstenedi-
one production [82–85]. To add, it is well documented 
that the inhibition of testicular AMPK is an important 

contributor to the impairment of spermatogenesis and 
steroidogenesis, so there is reason to believe that in the 
patients with T2DM or other metabolic disorders, met-
formin’s restorative role in male reproductive dysfunc-
tion is mainly through normalizing of AMPK in testes 
[86–89].

Coronavirus disease 2019 (COVID-19), a currently 
leading threat to public health and the economy, is 
caused by severe acute respiratory syndrome corona-
virus-2 (SARS-CoV-2). The SARS-CoV-2 has strong 
binding affinity to the angiotensin covering enzyme 
2(ACE2) receptor of pneumocystis and enterocytes, 
which is essential for virus entry into cells and leads to 
its rapid spread throughout the world [90]. On the other 
hand, ACE2 signaling protects against from COVID-19 
complications by regulating the renin–angiotensin–
aldosterone system (RAAS) to exert antihypertensive 
and anti-inflammatory effects [91–93]. Zhang et  al. 
demonstrated that the activation of AMPK could cause 
the Ser-680 phosphorylation of ACE2, thus resulting 
in inhibiting of the binding of ACE2-viral spike pro-
tein, extending the half-life and increasing stability of 
ACE2 [94, 95]. Taken together, the possible molecular 
basis for the beneficial role of metformin in COVID-
19 complications is also associated with metformin-
mediated AMPK activation. However, the underlying 
mechanisms and theoretical potential for metformin as 
a treatment for COVID-19 need to be further investi-
gated and confirmed.

However, AMPK activation may also lead adverse 
effects on homeostasis or disease. Researches have 
suggested that AMPK signaling, simulated by mater-
nal hyperglycemia-induced embryo oxidative stress, 
could disrupt embryonic gene expression, so it may 
cause neural tube defects. To confirm this hypoth-
esis, Loeken and his colleagues investigated whether 
AMPK activator metformin has a similar adverse effect 
on embryos, however, the results indicated that due to 
the lack of the metformin transporters, MATE1 and 
OCT3, metformin (120  mg/kg) has no influence on 
AMPK activation in embryos, and did not cause con-
sequent neural tube defects during pregnancy [96]. 
In Other researches, the evidence implied that an 
over-dose (2  mM) of metformin indeed has adverse 
effects; for example, AMPK activation inhibits MIN6 
pancreatic β cells proliferation and promotes apop-
tosis in  vitro, which is the underlying mechanism of 
metformin-induced acute pancreatitis in patients with 
renal insufficiency [97]. Overactivation of AMPK by 
metformin (100 μM -1 mM) also inhibits axon growth, 
impairs neuronal polarization, and even dendritic spine 
loss, which is related to the early stage of AD [98, 99] 
(Table 1).
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Table 1 Dosages of metformin in In vitro and In vivo experiments

Mechanisms Model Dose Route of 
Administration

Duration/Frequency Reference

AMPK signaling Mice 50 mg/kg Oral 6 weeks [58]

Cells 80 μM 4 weeks

Rats 50 mg/kg [59]

Cells 75 μM [61]

Mice 200 mg/kg Oral 8 weeks [62]

Cardiomyocytes 2 mM 24 h

Rats 10 mg/kg i.p [63]

Mice 100 mg/kg Oral 6 weeks [17]

THP‑1 cells 2 mM 24 h

hNSCs 1 mM [67]

Rats 205 mg/kg Oral 6 and 12 weeks [68]

Fibroblasts 10 mM [69]

Cells 1 mM [71]

Mice 300 mg/kg Oral 2 weeks [72]

Cells 10 mM 24 h

Mice 250 mg/kg i.p 24–36 days [78]

Cells 5 mM

Mice 300–500 mg/kg Oral 21 days [80, 81]

Cells 0.1–10 mM

Cells 10 mM [85]

Cells 2 mM [97]

Neurons 0.1–1 mM [98, 99]

Redox state Rats 50 mg/kg i.v [14]

Cells 1–10 mM [100–104]

Rats 300 mg/kg Oral 30 days/4 weeks [105, 106]

Cells 10 mM [107]

T cells 0.1 mM [42]

Mice 150 mg/kg Oral 4 days [108]

Cells 1 mM

Mitochondria Cells  ≥ 250 μM [109]

Mice 500 mg/kg Oral [110]

Hepatocytes 125 μM

Mice 250 mg/kg Oral 10 weeks [111]

Mice 500 mg/kg Oral 2 weeks [20, 112]

Cells 1 mM

Cells 500 μM [113]

Cells 0.05–2 mM [114, 115]

Worm 50 μM [116]

Fibroblasts 500 μM [117]

Gut microbiome Mice 200 mg/kg Oral 1 week [24, 118]

Mice 100 mg/kg Oral 11 weeks [119]

Mice 250 mg/kg Oral 16 weeks [25]

Mice 250 mg/kg Oral 2 months [120]

Cells 50 mM [121]

FBP1 Mice 250 mg/kg Oral 2 h [122]

PP2A Cells 0.5 mM [123]

Mice 200 mg/kg Oral 4 weeks [124]

FGF21 Mice 10/50 mg/kg Oral 14 weeks [125]

SIRT1 T cells 5 mM [126]
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Metformin exerts its effect in an AMPK‑independent 
manner
Metformin exerts its effects by restoring redox balance
In addition to AMPK-dependent manner, it has also been 
reported that metformin elicits pleiotropic effects in an 
AMPK-independent way, such as restoring the cellular 
redox balance (Fig.  3a). Redox homeostasis is a balance 
between reactive oxygen species (ROS) and the antioxi-
dant system, which is involved in diverse biological and 
pathological processes, such as metabolism, aging and 
cancer [130, 131]. Madiraju et al. uncovered that although 
chronic metformin treatment increased the phospho-
rylation of AMPK, acute metformin treatment does not 
lead to the activation of AMPK, it failed to increase the 
phosphorylation of ACC, a generally accepted signal for 
AMPK activation. The antihyperglycemic effect of met-
formin (50 mg/kg) is achieved by increasing the cytosolic 
redox state and decreasing the mitochondrial redox state, 
as determined by the ratio of NADH to  NAD+, thus the 
G2PD activity and glycerophosphate dehydrogenase are 
inhibited, which results in blockade of lactate and glyc-
erol entry into glucose, eventually, HGP is limited [13, 
14]. Additionally, substantial evidence indicated that the 
remodeling redox status of metformin is relevant to dif-
ferent types of cancer. The apoptosis of acute myeloid 
leukemia (AML) cells is observed after treatment with 
metformin, which is mediated by reducing ROS via 
downregulation of oxidative phosphorylation (OXPHOS) 
[100]. The proliferation of pancreatic cells and osteo-
sarcoma is also inhibited by metformin-mediated ROS 
downregulation [101, 102]. Moreover, metformin also 
enhances the sensitivity of esophageal squamous cell 
carcinoma and colorectal cancer to cisplatin in a redox-
dependent way [103, 104]. Of note, the concentrations of 
metformin used in these cancer researches ranged from 1 
to 10 mM, and they were all much higher than the clini-
cally relevant metformin dose.

Besides, the significance of redox homeostasis on aging 
may offer an explanation for the metformin’s role in 
aging. Studies with erythrocytes confirmed the hypoth-
esis that metformin could maintain redox homeostasis 
by reducing aging-related oxidative stress and strength-
ening antioxidant machinery to improve heme func-
tion [105–107]. In healthy older people, the ROS in 

 CD4+ T cells could produce a Th17 inflammation pro-
file, however, Bharath and his colleagues indicated that 
by increasing autophagy and improving mitochondrial 
function, the metformin(100  μM)-restored redox bal-
ance is able to alleviate this inflammation profile [42]. 
Furthermore, some severity and fatality cases of COVID-
19, a currently pandemic disease, are likely relevant to 
elevated IL-6 levels [132], Previous studies revealed that 
the reduction of ROS by metformin(1 mM for cells and 
150 mg/kg for mice models) is capable of inhibiting cal-
cium release-activated channels(CRAC)-mediated  Ca2+ 
release from the endoplasmic reticulum, consecutively, 
inhibiting interleukin 6(IL-6) release [108, 133]. Based on 
these results, the impediment of ROS/Ca2+/IL-6 pathway 
may be another explanation for the beneficial role of met-
formin in COVID-19 (Table 1).

Metformin exerts its effects in a mitochondria‑dependent 
way
Since it was mentioned in 1950, it has been generally 
accepted that metformin has an inhibitory effect on mito-
chondrial biological function (Fig.  3b), based on con-
vincing data from various cellular models, including rat, 
mouse and human hepatocytes [134]. The major func-
tion of mitochondria is producing ATP through oxidative 
phosphorylation, which is mediated by respiratory chain 
complex I. It has been reported that as a noncompetitive 
inhibitor, metformin enables binding to the Cys39-con-
taining matrix loop of the mitochondrial complex I subu-
nit ND3, however, data from bovine heart mitochondria 
indicated that the metformin is only a weaker inhibitor 
of complex I with an IC50 value of 19.4 ± 1.4 mM [135].

As the gluconeogenesis is highly dependent on energy 
production, consuming six ATP molecules per one glu-
cose molecule synthesized, the metformin-mediated 
inhibition of mitochondrial biological function, which 
further results in a decrease in cellular ATP production, 
which may be another mechanism for its role in HGP 
reduction. With an AMPKα1/2 knockout mice model, 
Foretz et  al. found that high-dose (≥ 250  μM) met-
formin treatment still inhibits HGP by decreasing ATP 
and increasing AMP [109]. In addition, by suppressing 
the mitochondrial electron transport chain, metformin 

Table 1 (continued)

Mechanisms Model Dose Route of 
Administration

Duration/Frequency Reference

mTORC1/AKT Fibroblasts 10 mM [127]

Mice 200 mg/kg Oral 17 days [128]

Cells 4 mM [129]
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upregulates the ratio of AMP to ATP, and the increased 
AMP subsequently inhibits adenylate cyclase to abro-
gate cAMP production, which further lowers PKA and 
fructose-2,6-bisphosphate1. These metformin-induced 
events eventually lead to a decrease in HGP. They fur-
ther confirmed that in the AMPK-deficient mice and 
hepatocytes, metformin is still able to block the cAMP 

accumulation [110]. Apart from its effect on glucose 
metabolism, the effect of metformin on mitochondria is 
also plays a role in lipid metabolism. By increasing the 
biogenesis of mitochondria in brown adipose tissue, a 
tissue with a vast number of mitochondria, metformin 
(250  mg/kg) suppresses fatty acid uptake and promotes 
thermogenesis, exerting anti-obesity effects [111].

Fig. 3 AMPK‑independent mechanisms of action mediated by metformin treatment. a Metformin‑induced restoration of redox balance. b 
Metformin‑induced changes in mitochondria. c Metformin‑induced modulation of gut microbiome. d metformin‑induced regulation of signals, 
including FBP1, PP2A, FGF21, SIRT1 and mTOR
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Besides its role in energy metabolism, metformin also 
affects cancer by regulating mitochondrial biogenesis. 
Dan et  al. found that AMPK signaling changes could 
not fully explain the anticancer effect of metformin, 
and NAD + /NADH homeostasis and aspartate are also 
involved. As NAD + /NADH homeostasis and aspartate 
biosynthesis were previously reported to be critical for 
cancer cell proliferation, they indicated that metformin 
(1  mM for cells and 500  mg/kg for mice models) could 
suppress the proliferation of cancer cells by inducing 
the loss of NAD + /NADH homeostasis and downregu-
lating aspartate biosynthesis levels through inhibiting 
mitochondrial complex I, which is also called NADH 
dehydrogenase [20, 112]. Moreover, the suppression of 
mitochondrial complex I by metformin (500  μM) also 
results in the enhanced glycolysis and a reduced citric 
acid cycle; subsequently, the cancer cells become ener-
getically inefficient and their proliferation is inhibited 
[113].

Accordingly, mitochondria also participate in many 
other protective actions of metformin. In AMPK-defi-
cient mice, the metformin treatment could still reduce 
infract size following ischemia reperfusion in an AKT-
dependent way. This cardioprotective effect of metformin 
(0.05–2  mM) is executed by inhibiting mitochondrial 
complex I, consecutively, suppressing the attenuation of 
mitochondrial permeability pore (mPTP) opening [114, 
115]. Besides, by utilizing a PD worm model established 
by knocking down bcat-1, a recent research reported 
that PD-like features are closely correlated with “mito-
chondrial hyperactivity”, and metformin(50  μM) could 
improve neuronal activity and motor function by reduc-
ing this “mitochondrial hyperactivity” [116]. Further-
more, it is well known that mitochondrial function can 
be affected by its morphology and that metformin can 
affect the morphology of mitochondria [136]. Increas-
ing evidence suggests that mitochondrial abnormali-
ties might be a key contributor to the generation of the 
Down syndrome(DS) phenotype, and some chromosome 
21(Has21) genes also affect mitochondrial function and 
morphology [137–140]. Lucio et  al. pointed out that 
metformin(500 μM) corrects the mitochondrial dysfunc-
tions of human fibroblasts from DS foeti by restoring the 
mitochondria to a branched and elongated tubular mor-
phology in a PGC-1-dependent way, thus, metformin 
presented a promising role in improving DS-associated 
pathologies [117].

However, the inhibition of mitochondrial complex I 
or G3P dehydrogenase by metformin blocks pyruvate 
carboxylase and promotes glycolysis, resulting in an 
increase in lactate production and a decrease in lactate 
metabolism. Therefore, if the patient has chronic kidney 
disease, which may impair the metformin excretion, and 

circulatory dysfunction and chronic liver disease, which 
may impair lactate clearance, metformin treatment 
increases the risk of lactic acidosis, a low-incidence but 
serious adverse effect of metformin [141, 142] (Table 1).

Metformin exerts its effects via the modulation of gut 
microbiome
Notably, the bioavailability of metformin in the gut is 
300 times higher than that in the plasma. Accumulating 
evidence from preclinical studies has uncovered the role 
of metformin in gut microbiome modulation, including 
increasing the proportion of parts of the microbiome, 
such as A. muciniphila, Bacteroides, Butyricimonas, 
Megasphaera, and Prevotella, and decreasing the propor-
tion of parts of the microbiome such as Anaerotruncus, 
Lactococcus, and Parabacteroides [143, 144]. Indeed, 
substantial data have demonstrated that gut microbiome 
dysbiosis puts contribution to various diseases, such as 
glucose metabolism, cancer, aging, and even acquired 
immunodeficiency syndrome(AIDS) [145–148], and 
increasing evidence indicated that the modulatory action 
of metformin on the gut microbiome is another mecha-
nism that accounting for the pleiotropic effects of this 
drug (Fig. 3c).

According to previous studies, there is four gut micro-
biome-involved mechanisms exerting metformin’s 
glucose-lowering effects: (1) Increasing glucagon-like 
peptide-1(GLP-1) release. Pretreatment with metformin 
(200  mg/kg) recoveried the Lactobacillu abundance 
in the upper intestine and prompted sodium-glucose 
cotransporter-1 (SGLT1) sensing, a critical negative 
signal for glucose absorption in the upper intestine, 
which caused the increased GLP-1 secretion, eventually 
lowering HGP [24, 149–152]. (2) Promotion of short-
chain fatty acids (SCFAs) production. SCFAs, including 
butyrate, acetate, propionate and lactate, execute pro-
tective roles against insulin resistance by multiple path-
ways, such as G protein-coupled receptors -41(GPR-41) 
and GPR-43 [153, 154]. Metformin (200  mg/kg) could 
upregulate the levels of SCFAs by increasing the abun-
dance of the SCFA-producing gut microbiome, such 
as Butyricimonas spp, Allobaculum [118, 155, 156]. (3) 
Reducing gut permeability. The association of glucose 
metabolism and gut permeability has been clarified in 
several studies, and increased gut permeability results in 
insulin resistance through increasing the lipopolysaccha-
ride (LPS) levels and causing chronic inflammation [157, 
158]. According to previous data, metformin is capable 
of increasing the proportion of A. muciniphila in the gut 
which could reduce the gut permeability by stimulat-
ing mucin production or tight-junction protein expres-
sion [119, 159–161]. (4) Modulating inflammation. As 
the close relationships between glucose metabolism and 
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inflammation have been studied, a hypothesis attracted 
researchers’ interest that metformin might elicit glucose-
lowering effect through modulating inflammation in a 
gut microbiome-dependent way. Lee and his colleagues 
have shown that metformin treatment (250  mg/kg) 
increases abundance of Bacteroides and Butyricimonas in 
the gut, and then inhibits IL-6 levels or IL-1β expression, 
which are negative contributors to lowering the glucose 
process [25].

In terms of the effect on modulating gut microbiome, 
the most studied cancer type influenced by metformin 
is colorectal cancer [162]. In summary, the underlying 
mechanisms, which is mainly regulated by gut microbi-
ome or its catabolite and metabolite, could be divided 
into four categories: (1) suppressing inflammation 
through Toll-like receptors 1(TLR1)/TLR4 pathway, or 
pro-inflammatory cytokinc, such as IL-6, IL-17a, IL-18 
[163]; (2) increasing anticarcinogenic metabolites, such 
as SCFAs, or decreasing carcinogenic metabolites, such 
as hydrogen sulphide [164]; (3) inhibiting genotoxins 
production, such as B.frigilis toxin, CDT [24, 165]; (4) 
regulating not only innate immune by P38 map kinase-1 
(PMK-1)/P38, receptor for advanced glycation endprod-
ucts (RAGE) ligands pathway and cytokines, such as 
interferon–γ (IFN-γ) of natural killer (NK) cells, IL-12 
of dendritic cells [166–168], but also adaptive immune 
by T cells infiltration [169, 170]. Of note, the metformin 
doses used in these studies are all much higher. Besides, 
with the Lox-Stop-Lox Kras G12D/ + mice model, Eibl 
et al. confirmed that metformin ( approximately 200 mg/
kg) is able to reduce the incidence of pancreatic ductal 
adenocarcinoma by changing the duodenal microbiome 
in the mice models treated with high-fat diet [120]. Fur-
thermore, as there has been convincing evidence that 
the immune checkpoint inhibitors (ICI) therapy and 
metformin exposure both increase the abundance of A. 
muciniphila and Bifidobacterium spp in the mice models 
and humans [171, 172], it is plausible to speculate that 
metformin-mediated modulation of the gut microbiome 
is capable of improving effectiveness of immunotherapy 
on cancers, which has been confirmed by a large number 
of prospective and retrospective studies [173–176].

Accordingly, the gut microbiome is closely associated 
with human life span, and gut microbiome dysbiosis 
plays an important role in aging development via affect-
ing multiple processes [177–179]. For instance, the data 
from studying the African killifish model showed that the 
natural gut microbiome from young individuals has a life-
extended impact on vertebrate models through inducing 
long-lasting systemic advantages. Hematopoietic devel-
opment and terminal myeloid differentiation are also 
regulated by microbiome-inducible inflammation. Lucas 
et al. found that the percentage of resident T cells in the 

secondary lymphoid organ, which increases with age, 
is affected by gut microbiome [121, 180, 181]. As men-
tioned above, metformin has a profound influence on gut 
microbial composition and metabolism, taken together, 
it is plausible that the action of metformin in improving 
aging-related pathology and extending life span is rel-
evant to its modulatory action on gut microbiome. This 
hypothesis is also consistent with the research conducted 
by Cabreiro and his colleagues with the C.elegans mod-
els, who presented that metformin (50 mM) can specifi-
cally prolong the life span of C.elegans by inhibiting the 
microbial folate cycle and reducing methionine [121]. 
Besides, as the increased gut permeability is also linked 
with inflammation in older adults, a risk factor for aging-
related morbidities and mortalities, Yadav et al. found the 
metformin-regulated (100 mg/kg) gut microbiome has a 
protective role in aging by decreasing gut permeability 
and inflammation [119] (Table 1).

Noteworthy, studies have found a role of the gut 
microbiome modulated by metformin in inhibiting 
human immunodeficiency virus (HIV)-related inflam-
mation [182]. The underlying mechanisms involved in 
the activation of tryptophan pathway are mediated by 
influencing tryptophan-catabolizing bacteria, and the 
improvement of the gut epithelial barrier mediated by 
Akkermansia muciniphila or other SCFA producing 
bacteria [183, 184].

Metformin exerts its effects by regulating several other 
signals
In addition to above mentioned mechanisms of action, 
studies have reported several other signaling which also 
affected by metformin, including FB1, PP2A, FGF21, 
SIRT1 and mTOR (Fig.  3d). Generally accepted as a 
rate-controlling enzyme in gluconeogenesis, fructose-
1,6-bisphosphatase 1(FBP1) is able to catalyze the 
irreversible hydrolysis of fructose-1,6-bisphosphate 
(F-1,6-P2) to fructose- 6-phosphate (F6P), which can 
be inhibited by AMP and F-2,6-P2. In a mice model 
with a point mutation in FBP1, Roger and his colleagues 
uncovered that the glucose-lowering effect of metformin 
(250  mg/kg) is blunted, even though it still leads to the 
activation of AMPK. They concluded that FBP1 is a key 
regulator for the HGP inhibition of metformin, but does 
not depend on AMPK activation [122].

As high-glucose simulates cardiomyocyte apoptosis, 
metformin(500  μM) can exert its cardioprotective role 
by activating PP2A, thus reducing ROS production and 
inhibiting the proinflammatory response [123]. Further-
more, with the intermittent fasting model, Minucci and 
his colleagues found that the combination of hypogly-
cemia and metformin (200  mg/kg) could inhibit tumor 
growth by activating PP2A, a tumor suppressor, in the 
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absence of AMPK. Mechanistically, metformin activates 
the PP2A-GSK3β-MCL-1 pathway by inhibiting cancer-
ous Inhibitor Of PP2A (CIP2A), a PP2A inhibitor, and 
hypoglycemia upregulates the B56δ, a PP2A regulatory 
subunit, eventually, the active PP2A-B56δ has higher 
affinity for GSK3β [124].

It has been well accepted that fibroblast growth fac-
tor 21 (FGF21) is a critical regulator of glucose and 
lipid metabolism. Consistent with its function, some 
studies have found that the anti-obesity effects and glu-
cose-lowering effects of metformin are also exerted by 
FGF21. Metformin suppresses adipocyte differentiation 
by increasing FGF21 expression in the liver and white 
adipocytes in an AMPK-independent way, thus elicit-
ing its therapeutic effect on T2DM, obesity and fatty 
liver [125, 185].

Sirtuin 1 (SIRT1), an NAD + -dependent deacety-
lase, leads to an anti-inflammatory effect by suppressing 
NF-κB signaling through deacetylation of its p65 subu-
nit. Song et  al. showed that the SIRT1 can be activated 
in an AMPK-dependent manner [186]. It has been shown 
that metformin ameliorates inflammation of circulat-
ing peripheral blood mononuclear cells in patients with 
carotid artery atherosclerosis by inducing SIRT1 [187, 
188]. In addition, the anticancer effect of metformin may 
also be relevant to SIRT1, as the metformin-induced 
SIRT1 is able to reduce the Th17 population and IL-17 
levels in tumors by deacetylating STAT3 [126].

By utilizing an AMPKα1/α2 double-knockout MEF 
model, Kalender et  al. discovered that the inhibition of 
mTORC1 by metformin is independent of AMPK, but 
in a Rag GTPase-dependent manner [127]. Additionally, 
in the AMPK-deficient MEFs, it was reported that met-
formin inhibited phosphorylation of RTKs and AKT/
mTOR way [128]. Metformin suppresses the prolifera-
tion of the AMPK-deleted glioma by activating mTOR 
signaling [189]. Besides, metformin is reported to reduce 
the anticancer efficiency of cisplatin in an AKT-depend-
ent manner, but not an AMPK-dependent manner, as 
metformin failed to further increase cisplatin-induced 
AMPK activation [129] (Table1).

Clinical study
Based on the various of underlying mechanisms, through 
which metformin can affect some diseases, including 
diabetes mellitus, cardiovascular diseases, neurodegen-
erative diseases, reproductive disease, aging, cancer and 
COVID-19, researches considered that metfomin is pos-
sible to have therapeutic potential for these disease in the 
chilic, so they further conducted serious clinical studies 
and analyzed the outcomes of these diseases when treat-
ment with or without metformin to explore the possibil-
ity for repurposing this old drug (Fig. 4).

Clinical efficacy of metformin
Diabetes mellitus
Metformin monotherapy effectively improves blood 
glucose control and lipid concentration in patients with 
T2DM and was approved in the USA in 1994 [190]. Since 
then, metformin has been widely used as a first-line oral 
glucose-lowering medication for the management of 
T2DM in the clinic [2]. Accumulating studies and clini-
cal trials demonstrate that metformin-based regimens 
are effective in the curation of T2DM [191]. Recent evi-
dence indicated that the regimen of metformin in com-
bination with other antihyperglycemic drugs, including 
troglitazone, dipeptidyl peptidase 4 (DPP4) inhibitors, 
glibenclamide, insulin, glucagon-like peptide 1 (GLP1) 
receptor agonists, and sodium-dependent glucose trans-
porters 2 (SGLT2) inhibitors, presents a better thera-
peutic effect on controlling plasma glucose levels than 
metformin alone. So, compared to using metformin 
alone, the combined use of metformin and glibencla-
mide exhibited a better glucose-lowering effect [192]. For 
instance, in a 16-week, randomized,double-blind study, 
the data showed that the fasting plasma glucose(FPG) 
is signicficantly lower in the metformin/ glibenclamide 
group (9.4  mmol/l, 2.5  mg/500  mg) than in metformin 
alone group (13.0  mmol/l, 500  mg [193]. Similarly, the 
combination of metformin with troglitazone reduced 
the production of endogenous glucose and promoted the 
metabolism of peripheral glucose, consequently, present-
ing better control of the plasma glucose level in T2DM 
patients [194]. Moreover, adding metformin to insulin 
therapy was reported to have better therapeutic effi-
ciency for T2DM patients [195]. Although the efficiency 
of the combination strategy on glucose-lowering is evi-
dent by these studies, more studies, especially on the side 
effects, should be conducted (Table 2).

Cardiovascular diseases
In 1988, the randomized UK Prospective Diabetes 
Study (UKPDS) trial with 1704 type 2 diabetes patients 
confirmed that metformin has cardiovascular protec-
tive effects. After a median follow-up of 10.7 years, this 
study confirmed that metformin treatment significantly 
reduces the risk of cardiovascular events in newly 
diagnosed T2DM patients compared to conventional 
therapy (diet control), and a 39% reduction in the risk 
of myocardial infarction was reported (P = 0.01) [196]. 
The follow-up for 10 years of the UKPDS intervention 
study found that the metformin has continuous car-
diovascular benefits and reduces the risk of myocardial 
infarction by 33% (P = 0.005) [197]. Another rand-
omized trial of 304 patients with T2DM demonstrated 
that there were a significantly fewer cardiovascular 
events for metformin than for sulfonylurea after 5 years 
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of treatment [198]. A study by Larsen et.al showed 
that 3  months of metformin treatment (target dose of 
1000 mg bid) in diabetic chronic heart failure patients 
with reduced ejection fraction (HFrEF) patients sig-
nificantly reduced myocardial oxygen uptake by 17% 
(P = 0.01). Moreover, patients with higher plasma 
concentrations of metformin (> 1268  ng/ml) had bet-
ter myocardial efficiency [199]. Recently, a large-scale 
clinical endpoint study of metformin for patients 
with chronic heart failure-Danish Heart Failure Study 
(DANHEART) is ongoing. This is a multicenter, ran-
domized, double-blind, placebo-controlled study of 
1500 patients with T2DM and heart failure. The dose of 
metformin was 2000 mg/d (1000 mg/d when eGFR was 
35–60 ml/min/1.73  m2), and the follow-up period was 
expected to be 4 years. The primary endpoint is a com-
posite of death, hospitalization for worsening heart fail-
ure, acute myocardial infarction or stroke. The results 
are expected to be published in 2023 [200]. Although, a 
large number of studies supported the improved clini-
cal outcomes of patients with heart failure treated with 
metformin, especially HFpEF, it is not yet enough for 
the approval of metformin in treating heart failure, we 
believe its effect and mechanism deserve further explo-
ration (Table 2).

Neurodegenerative diseases
Neurodegenerative diseases (ND) mainly include Alz-
heimer’s disease (AD) and Parkinson’s disease (PD). 
Accordingly, neurodegenerative diseases are charac-
terized by misfolded and aggregated proteins in neu-
rons, such as mutated α-conucleoprotein, tau protein, 
β-amyloid and Huntington’s protein. These proteins are 
toxic to neurons because of their role in changing neu-
ronal connectivity and plasticity and even activating of 
cell death signaling pathways. Besides, it is well docu-
mented that aging is a main risk factor for neurodegen-
erative diseases [226].

The effects of metformin on ND are controversial, and 
in this part, we focused on the beneficial effects. Cur-
rently, preclinical and clinical evidence mostly reveals 
that metformin seems to be a prime candidate for a 
clinical trial that aims to target AD. A meta-analysis 
described that metformin reduced the risk for developing 
AD in patients with T2DM [201]. Similarly, a prospec-
tive observational study found that metformin improves 
cognitive performance in elderly patients with diabetes 
[202]. Regarding PD, a retrospective study revealed that 
metformin can reduce the risk of PD in T2DM patients 
in a Taiwanese population [227]. Overall, current evi-
dence mostly supports that metformin improvs cognitive 

Fig. 4 Summary of metformin in different diseases and the major related mechanism. Based on its mechanisms, metformin has potential beneficial 
for diabetes mellitus, cancer, neurodegenerative disease, aging, cardiovascular disease, reproductive disease, COVID‑19, and even Down syndrome 
and AIDS, however, it is also companied with some adverse effect, including gastrointestinal complaints, vitamin B12 deficiency, lactic acidosis, 
offspring impairment and neurodegenerative disease
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performance and decreases the risk of AD, preventing 
AD (Table 2).

Reproductive disease
Worldwide, approximately 5–20% of reproductive-aged 
women worldwide are affected by PCOS worldwide, and 
most of them is characterized by hyperandrogenism, 
ovulatory dysfunction, insulin resistance and so on [228]. 
Researchers found that metformin treatment improved 
the pregnancy rate probabilities for women with PCOS 
[229, 230]. A randomized, double-blinded, placebo-con-
trolled trial (PregMet2) showed a lower rate of miscar-
riage and preterm birth of women with PCOS treated 
with metformin (OR = 0.50, 95% CI, 0.22–1.08; p = 0.08), 
and no significant serious adverse events in either moth-
ers or offspring were considered drug-related [203]. Also, 
several systemic studies have suggested that metformin 
improved assisted reproductive technique outcomes by 
lowering the rate of ovarian hyperstimulation syndrome 
(OHSS) during the treatment of PCOS [231, 232], how-
ever, a randomized placebo-controlled trial concluded 
that a short-term of metformin use did not reduce OHSS 
in a gonadotropin-releasing hormone antagonist cycle 
for patients with PCOS (p = 0.66) [204].

In addition, metformin can reduce the secretion of 
antiangiogenic factors from the placenta in a dose-
dependent manner and mitigate endothelial dysfunc-
tion, thereby potentially promoting vasodilation in whole 
maternal omental blood vessels in patients with preec-
lampsia. A randomized controlled trial that included 357 
obese pregnant women reported that using metformin 
during gestation can prevent preeclampsia (OR = 0.17, 
95% CI 0.10–0.41) [205]. Another trial including 180 
women with preterm preeclampsia showed that the 
median prolongation of gestation in the metformin 
group was 17.5 days compared with 7.9 days in the pla-
cebo group [206]. Despite its effects on the female repro-
ductive system, metformin is also presented to improve 
semen parameters in obese males [233] (Table 2).

Aging
Although aging is an inevitable process for lives, 
researchers never stop exploring the mystery of aging 
and continue to devote themselves to extend lifespan. 
Given its anti-inflammation and restoration of redox bal-
ance effects, metformin was chosen to be investigated 
for its effect on the aging improvement. Some epide-
miological studies have described that metformin can 
delay aging and reduce all-cause mortality in age-related 
diseases. Importantly, existing evidence has shown that 
metformin could extend life and health spans by acting 
as a geroprotective agent in diabetic patients and non-
diabetic patients [234]. Besides, a randomized crossover 

trial has revealed that metformin affects both metabolic 
and nonmetabolic processes associated with aging in the 
70-year-old participants [235]. Recently, an observational 
study demonstrated that metformin improves the overall 
survival of older diabetic patients compared with con-
trols without diabetes [236]. It is also speculated that the 
glucose-lowering effects of metformin are a contributor 
to reduced risks of aging-related diseases, and thereby 
extending lifespan [237]. Of note, the randomized clini-
cal trials, TAME (Targeting Aging with Metformin) and 
MILES (Metformin In Longevity Study), are investigat-
ing the potential of metformin as an anti-aging drug. To 
date, the results from MILES suggested that although 
metformin is possibly involved in antiaging transcrip-
tional changes, its protective role in those subjects free 
of diseases remains controversial [238].The TAME trial 
proposed blood-based biomarkers of underlying biologic 
aging hallmarks: IL-6, TNFα-receptor I or II, C-reactive 
protein (CRP), growth differentiation factor15 (GDF15), 
insulin, IGF1, cystatin C, N-terminal  pro  brain  natriu-
retic peptide (NT-proBNP), and hemoglobin A1c. Future 
trials to discover and validate future biomarkers were 
warranted [239] (Table 2).

Cancer
Based on the mechanisms of action, the clinical stud-
ies on the role of metformin on cancer, a fatal threat to 
humans, is continues increasing. Epidemiological stud-
ies have indicated that metformin can decrease the risk 
of developing cancer and reduce the cancer-related mor-
tality. A series of clinical trials evaluating the anticancer 
effects of metformin in various solid cancers of different 
stages are ongoing. In these trials, metformin is used as 
a monotherapy, or in combination with chemotherapy, 
radiotherapy and immunotherapy. These trials mainly 
investigated the effects of metformin on survival out-
comes, and the evalution marker includs overall survival 
(OS), progression free survival (PFS), and recurrence free 
survival, pathological response rate, and cancer prolif-
eration markers. Also, limited trials have evaluated the 
maximum tolerance of metformin in specific tumors. 
Published data from these completed clinical trials 
showed promising results.

Several studies have estimated the role of metformin 
in the cancer prevention. Compared with the con-
trol group, the risk of adenomas was 0.60 (95% CI 0.39, 
0.92) in individuals with a history of colorectal adenoma 
treated with a low dose of metformin (250  mg/day) for 
1  year [240, 241]. While a similar population was given 
metformin at an escalating dose, from 500 to 2000  mg/
day for 12  weeks, there was no significant difference in 
the primary endpoint and pS6K levels [242]. Metformin 
also displayed the consistent results in the prevention of 
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endometrial cancer. Among patients with endometrioid 
endometrial cancer, administration of 850  mg/day met-
formin resulted in decreased cell proliferation (an 11.75% 
reduction in Ki-67, P = 0.008) [243, 244]. Besides, meta-
bolic disorders, including obesity and T2DM, are related 
to the high risk and poor survival of pancreatic ductal 
adenocarcinoma (PDAC) [245, 246].Most epidemiologic 
studies have found that metformin treatment reduces the 
incidence of in PDAC patients with T2DM [247]. Taken 
together, the correlation between metformin treatment 
and cancer prevention indicates that cancer may benefit 
from metformin through the effect of metofmrin on the 
high risk factors of cancer (T2DM, obesity, etc.).

Besides, completed trials have demonstrated the role 
of metformin monotherapy before surgery [248]. In 
metformin-treated patients with breast cancer, Ki67 
and homeostatic model assessment (HOMA)) were 
significantly reduced, and TdT-mediated dUTP nick 
end labeling (TUNEL) levels were also increased in the 
metformin-treated group [249]. Interestingly, TUNEL 
staining is higher in cancer patients without insulin 
resistance, while individuals who have insulin resistance 
show converse results [250]. Importantly, the estima-
tion of the pAMPK change may depend on the cancer 
type. In breast cancer, pAMPK (P = 0.04) is significantly 
upregulated and pAKT is downregulated (P = 0.043). 
Ki67 and cleaved caspase-3 (P = 0.044) were obviously 
decreased compared with the control group [251]. Con-
versely, another phase-II trial found that pAMPK, pS6, 
pAKT, p-4E-BP-1 and ER expression were reduced after 
metformin treatment [243]. In prostate cancer, pAMPK 
showed no difference between the arm group and the 
experimental group with metformin monotherapy [252]. 
These biomarker changes revealed that metformin exerts 
anticancer effects in pleiotropic pathways.

Given the proposed preclinical data of metformin and 
cytotoxic reagents, the combination of chemotherapy 
and metformin has also been explored in clinical trials. 
Metformin in combination with established cytotoxic 
chemotherapy accounts for the majority of ongoing 
clinical trials of cancer treatment [253]. The results of 
in combination of metformin with anticancer agents are 
expected. As a adjuvant agent, metformin benefits the 
CSS (HR 0.58, CI 0.39–0.86) and OS (HR 0.69, CI 0.58–
0.83) of patients with colorectal cancer. A meta-analysis 
has suggested that metformin, as a useful adjuvant agent, 
benefits the survival of patients with prostate cancer, 
particularly those after radical radiotherapy, however, in 
breast and urothelial cancer, no significant benefits were 
observed [254–256]. Meanwhile, in the adjuvant setting, 
a phase I study exhibited that metformin combined with 
chemotherapy had a lower rate of defined dose-limiting 
toxicities (DLTs) (6.1%) compared to those who received 

only chemotherapy (7.8%). AMPK phosphorylation 
increased by 4–6 folds, 46% showed stable disease and 
28% of the patients who had quantifiable tumor markers 
showed favorable changes [207]. The other randomized, 
phase 2 clinical trial evaluated the efficacy of doxoru-
bicin and cyclophosphamide versus chemotherapy alone 
plus metformin in nondiabetic patients with metastatic 
breast cancer. Moreover, it is found that insulin-resistant 
patients with HER2-negative metastatic breast cancer 
(HOMA ≥ 2.5) have significantly shorter PFS than those 
without insulin resistance. Metformin as a potential 
chemotherapeutic drug or effective adjuvant agent exerts 
an affordable, well-tolerated, and beneficial anticancer 
effects. However, another phase 2 trial showed that met-
formin showed no significant effect on RR, PFS or OS of 
chemotherapy plus metformin versus placebo in non-
diabetic patients with metastatic breast cancer [208]. The 
inconsistent responses to adjuvant metformin therapy is 
attributed to the insulin status of patients with cancer. 
This suggests that the positive potential of metformin as 
a chemotherapeutic drug depends on the patients’ status 
and the simultaneous management of diabetes and can-
cer is necessary.

The impacts of metformin also vary by the tumor 
stage. Metformin decreased cancer-specific mortality 
rates and prolonged the survival of localized resectable 
PDAC patients with T2DM [257, 258].In contrast, a dou-
ble-blind, randomized study of patients with advanced 
PDAC did not benefit from metformin when combined 
with gemcitabine and erlotinib [259]. Two meta-analy-
ses described that metformin prolonged the survival of 
patients with local disease but not those with metastatic 
PDAC [260, 261]. Metformin had contradictory results in 
the survival outcome of cancer patients in the local and 
metastatic stages, indicating the importance of the cancer 
stage in the studies of metformin for cancer treatment.

Collectively, the existing studies showed inconsist-
ent marker expression and survival outcomes with met-
formin use as an anticancer agent in different settings. 
Variation in study design and potential bias, especially 
time-dependent confounders affected by previous treat-
ment, make it complex to explain the different results 
[262]. Besides, there is no enough evidence to analyze 
the impact of metformin dose and duration. Future ran-
domized, controlled trials to elevate the dose and dura-
tion and the efficacy of metformin anticancer agents as 
are warranted.

Furthermore, considering the immunomodulatory 
properties of metformin, metformin has been combined 
with immunotherapy, in particular programmed death-1 
(PD-1)/ PD-L1 immune checkpoint inhibitors [263]. A 
phase II clinical trial showed that low-dose metformin 
treatment (250 mg/day) to reprograms and activates the 
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tumor immune microenvironment and may be a suitable 
immune response modifier for patients with esophageal 
squamous cell carcinoma [209]. An active tumor immune 
microenvironment is the foundation for checkpoint 
inhibitors to enhance the immune response. A study of 
40 patients with solid tumors suggested that the com-
bination of nivolumab and metformin is safe. Adverse 
events (AEs) occurred in 75% of patients (mainly fatigue, 
pruritus, rash, and asthenia). Grade 3 AEs occurred in 
only 20% of cases; no grade 4 AEs were observed. There is 
a statistically significant correlation between higher doses 
of metformin (> 1,000 mg daily) and longer PFS and OS 
[210]. Overall, low-dose metformin treatment is a toler-
ated and efficacious pretreatment/combination option 
to boost the effectiveness of checkpoint inhibitors. How-
ever, both patients with and without diabetes and tumors 
are heterogeneous.

Therefore, it might be rational to elevate the anticancer 
activity of metformin and survival outcomes according to 
the insulin resistance status and various stages of cancer 
of participants in future clinical trials. Further investiga-
tions on a possible synergistic effect of checkpoint inhibi-
tors and metformin are recommended (Table 2).

COVID‑19
Since it was first reported in 2019, the COVID-19 has 
spread throughout the world. According to data from 
World Health Organization COVID-19 dashboard on 
August 28, 2022, the cumulative number of cases is 
596,873,121, including 6,459,684 deaths, so it is urgent 
to develop effective preventive and therapeutic meth-
ods. Apart from developing new drugs, researchers 
are also engaging in repurposing the old drugs to treat 
COVID-19. As discussed above, based on its effects on 
multiple pathogeneses, it is reasonable to speculate that 
metformin has therapeutic potential in COVID-19 treat-
ment, and clinical data also support this hypothesis. 
Retrospective studies reported a significant metformin 
treatment-associated reduction in COVID-19 infection-
related mortality in patients with T2DM [211–213]. A 
meta-analysis study, including 32 cohort studies with 
2,916,231 diabetic COVID-19 patients, showed that met-
formin is significantly relevant to lower mortality with a 
pooled adjusted odds ratio (OR) of 0.78 (95% CI, 0.69–
0.88) [264].

Moreover, clinical trials are also undergoing to reaf-
firm the beneficial effect of metformin on COVID-19 
patients. Data from ClinicalTrials.gov [as of August 
28, 2022; primary search keyword (condition/disease): 
COVID-19; secondary search keyword (other terms): 
metformin] exhibited only 3 clinical trials that are inves-
tigating the role of metformin in COVID-19 treatment. 
Among these, COVID-OUT, a phase 3, randomized, 

double-blind, placebo-controlled trial, has reported 
its result and showed that compared with the primary 
composite endpoint (hypoxemia, emergency depart-
ment visit, hospitalization, or death) in nonhospitalized 
patients with COVID-19 between 663 patients receiving 
metformin and 660 patients not receiving metformin, the 
adjusted OR was 0.84 (95% CI, 0.66–1.09; P = 0.19), and 
there was no significant benefit for COVID-19-related 
primary events. However, through further analysis, it 
indicated that metformin has the potential to prevent the 
more severe components, including emergency depart-
ment visits, hospitalization or death, as the adjusted OR 
was 0.58 (95% CI, 0.35–0.94) [214].

Adverse effects of metformin
Besides efficacy and benefits, the safety of a drug needs 
to be fully considered. Due to its pleiotropic mechanism 
of action, metformin is not only beneficial to various dis-
eases, conversely, it also results in several adverse effects, 
including gastrointestinal complaints, vitamin B12 defi-
ciency, lactic acidosis, offspring impairment, and neu-
rodegenerative diseases. When the patients are treated 
with metformin, clinicians need to closely monitor these 
adverse effects, especially those with fatal and irrevers-
ible harm. Generally, the most common adverse effect 
caused by metformin treatment is gastrointestinal com-
plaints, which occurr in 2–63% of T2DM patients, and 
the complaints are diarrhea, nausea/vomiting, abdomi-
nal pain, flatulence, retching, dysgeusia. Although severe 
symptoms may lead to discontinuation in 5%-10% of 
metformin users [141, 265], the harm of gastrointestinal 
complaints is usually not fatal and irreversible, so we will 
mainly review the other adverse effects here (Table 2).

Vitamin B12 deficiency
Since it was first reported in 1969 [266], metformin-
related vitamin B12 deficiency is prevalent in T2DM 
patients, the reported incidence varies from 5 to 40% 
[267–269]and decreased serum vitamin B12 levels vary 
from 14 to 30% [270, 271] in different studies. To date, 
although the mechanism by which metformin causes 
vitamin B12 deficiency is still unclear, clinical data have 
provided largely significant related-factors about the 
metformin-induced vitamin B12 deficiency. Ting et  al. 
conducted a nested case–control study and found that 
the risk of vitamin B12 deficiency is dependent on the 
dose and duration of metformin use, for each 1 g/d met-
formin dose, the OR for developing vitamin B12 defi-
ciency increased by 2.88 (95% CI, 2.15–3.87; P < 0.001). 
Compared with those receiving metformin for less 
than 3  years, among those using metformin for 3  years 
or more, the adjusted OR was 2.39 (95% CI, 1.46–3.91; 
P = 0.001) [215]. A hypothesis speculated that the 
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mechanism responsible for metformin-mediated vitamin 
B12 deficiency is that metformin interferes with the cal-
cium-dependent ileal membrane, which is responsible for 
the absorption of vitamin B12. Thus, Bauman et al. inves-
tigated the effect of calcium use on metformin-induced 
vitamin B12 deficiency, and the results confirmed that 
oral calcium supplementation reverses the decreased 
metformin-induced serum vitamin B12 level [272].

In addition, for the clinical manifestations of vitamin 
B12 deficiency mainly presenting as neurological and 
hematological symptoms, researchers further inves-
tigated the link between vitamin B12 deficiency and 
anemia or neuropathy. Regarding anemia, the RCTs, A 
Diabetes Outcome Progression Trial (ADOPT; n = 3,967) 
and UK Prospective Diabetes Study (UKPDS; n = 1,473), 
and an observational study, Genetics of Diabetes Audit 
and Research in Tayside Scotland (GoDARTS) popula-
tion (n = 3,485), all give a similar result that the met-
formin-induced vitamin B12 deficiency is relevant to 
a higher risk of anemia [216]. Regarding to neuropathy, 
based on the severity of peripheral neuropathy (using the 
Toronto Clinical Scoring System (TCSS)) in both met-
formin users and non-metformin users, Singh et al. found 
an association of clinical neuropathy with metformin in 
T2DM patients (5.72 ± 2.04 in the metformin-exposed 
group versus 4.62 ± 2.12 in the metformin-unexposed 
group, P = 0.0064) [217]. Consequently, it is prudent to 
monitor vitamin B12 levels in metformin users, espe-
cially those with anemia or neuropathy manifestations. 
Because vitamin B12-caused neuropathy may be arrested 
with vitamin B12 or calcium supplementation, but dia-
betic neuropathy cannot (Table 2).

Lactic acidosis
According to clinical data, the lactate concentrations 
were 0.34 mmol/L higher in patients receiving metformin 
treatment [273], so metformin may increase the risk of 
lactic acidosis, especially in patients with kidney, liver 
and heart comorbidities. Interestingly, a recent retro-
spective study in a cohort of 1213 hospitalized diabetic 
COVID-19 patients displayed that metformin treatment 
is significantly relevant to a higher incidence of aci-
dosis, especially in cases with severe COVID-19 com-
plications [218]. Metformin-associated lactic acidosis 
(MALA), diagnosed by blood pH < 7.35, arterial lactate 
level > 5.0 mmol/L and metformin level > 5 mg/L [274], is 
an extremely rare event with an estimated incidence ≤ 10 
events per 100,000 patients. However, its associated-
mortality rates are up to 30–50% [46, 275], and a meta-
analysis encompassing 177 patients with MALA from 
44 studies showed an overall mortality of 36.2% (95% CI, 
29.6–43.94%) with a median pH of 7.02 mmol/l and lac-
tate of 14.45 mmol/l [276].

For this reason, a significant number of T2DM patients, 
who have a higher risk of MALA, were deprived of the 
benefits of metformin, but there is a debate in terms of 
the use of metformin in these patients.

Several studies have pointed out that the metformin 
would not increase the risk of MALA even in patients 
with eGFR 30–45 ml/min/1.73/m2, so FDA 2016 relaxed 
the renal restriction of metformin, recommending not to 
start using metformin if the eGFR is < 45 ml/min/1.73/m2 
(CKD stage 3a) and not to continue using metformin if 
the eGFR is < 30  ml/min/1.73/m2 (CKD stage 3b) [277–
279]. Over the years, new studies have reaffirmed the 
metformin safety in CKD patients with an eGFR ≥ 30 ml/
min/1.73/m2. A community-based cohort study of 75,413 
T2DM patients in the Geisinger health system showed 
that metformin treatment is only relevant to increased 
risk of MALA when the eGFR is < 30  ml/min/1.73/m2 
(adjusted HR = 2.07, 95% CI, 1.33–3.22), and the results 
can be replicated by analyzing 67,578 new metformin 
users from 350 private US health systems [280]. A ret-
rospective nested case‒control study in 2020 reported 
a consistent conclusion, by analyzing data from 320,882 
diabetic CKD patients from the national VA Corporate 
Data Warehouse. Metformin exposure prior 3 months in 
patients with CKD stage 3a to 5 was associated with an 
elevated adjusted hazard of MALA (HR = 3.09, 95% CI 
2.19–4.35 in CKD stage 3a; HR = 3.34, 95% CI 1.95–5.72 
in CKD stage 3b; HR = 7.87, 95% CI 3.51–17.61 in CKD 
stage 4&5), but no association was evident in patients 
with CKD stage 1 or 2 (HR = 1.05, 95% CI 0.71–1.57) 
[219].

Although there have been a number of studies support-
ing the criteria of metformin use in CKD patients, further 
studies that test the precise criteria of tolerability and 
effectiveness of metformin in heart failure and chronic 
liver disease, even COVID-19, are still needed (Table 2).

Offspring impairment
Studies considering the long-term effects of metformin 
use during or before pregnancy in offspring demon-
strated conflicting results. Despite of the reported ben-
efits, several studies also found that metformin may 
cause offspring impairment. Two randomized trials con-
sidered 4- to 9-year-old metformin-exposed children of 
mothers with gestational diabetes (GDM) or PCOS to 
acquire some long-term metabolic programming effects 
such as higher BMI and increased prevalence of over-
weight or obesity [220, 221].On the other hand, a study 
including 1,996 children exposed to metformin during 
the fetal period and 1,932 treated with insulin showed no 
differences in either child growth or neurodevelopment 
between both the groups [222]. Consequently, the role 
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of metformin-exposure to pregnant women in offspring 
need to be further confirmed.

Although it has been reported that metformin is able 
to reduce serum testosterone levels [281], but in March 
2022, Eisenberg and his colleagues proposed a surpris-
ing result regarding of the deleterious effect of metformin 
on offspring: preconception metformin treatment in 
fathers is associated with an elevated risk for major birth 
defects, particularly genital birth defects in boys. In this 
nationwide prospective registry-based cohort study, data 
from newborns and parents (1997–2016) through Den-
mark were collected, by analyzing sex and frequencies of 
major birth defects in offspring whose fathers used met-
formin during the development of fertilizing sperm. This 
research indicated that offspring exposed to metformin 
(n = 1451) had an increased birth defect frequency 
(aOR = 1.40, 95% CI, 1.08–1.82). For metformin-exposed 
offspring, genital birth defects were increased compared 
with the cohort (0.90% vs. 0.24%; aOR = 3.39, 95% CI, 
1.82- 6.30), and more than 99% of genital birth defects 
occur in boys [49]. This is the first study to suggest that 
metformin use in fathers may be linked to birth defects; 
however, it is not sufficient to make any clinical changes 
to offer new medication advice for men with T2DM of 
reproductive age. More clinical studies are warranted to 
confirm these results, and further preclinical research is 
needed to explore the underlying mechanism of this phe-
nomenon (Table 2).

Neurodegenerative disease
Although researches have shown a beneficial effect of 
metformin on ND, including AD and PD, the role of met-
formin in ND is still quite controversial, given some pre-
clinical or clinical studies have reported that long-term 
metformin use may increase the risk of ND. In preclinical 
studies, when the C57BL/L mice received chronic met-
formin treatment, they exhibited impaired spatial mem-
ory and visual acuity, which indicated that metformin 
may have deleterious effects on the central nervous sys-
tem [282]. Angela et  al. further showed that metformin 
treatment causes enhanced gliosis in the ApoE-/- mice, a 
mice model of tauopathy that is usually used to study ND, 
and increases tau phosphorylation, resulting in elevated 
lipogenesis to aggravate the neurodegenerative process 
[283]. Moreover, some clinical studies further reaffirmed 
that metformin treatment is positively associated with 
ND. Regarding AD, scholars have reported that when 
the duration of metformin use is less than 3  years, the 
metformin may increase the risk of AD. A nested case‒
control study of cases with diabetes diagnosed ≥ 3 years 
before AD diagnosis (n = 7552) and controls who received 
metformin (n = 14,528) at least once is conducted by 
Sluggett et al., the results showed that taking metformin 

1–3 years increases AD risk [223]. Also, by studying data 
from 70,860 persons from the United Kingdom–based 
General Practice Research Database (GPRD), Imfeld 
et  al. found that long-term users of metformin (≥ 60 
prescriptions) had an increased risk of developing AD, 
compared to other antidiabetic drug users and nonusers 
(adjusted OR = 1.71, 95% CI, 1.12–2.60) [224]. Regarding 
PD, similar result was also observed. A cohort study by 
using Taiwan’s National Health Insurance Research Data-
base to collect data from 4651 metformin users and an 
equal number of non-metformin users was performed by 
Kuan et al., through 12-year follow-up, and they pointed 
out that the metformin cohort presented a higher risk of 
PD than the non-metformin cohort (HR = 2.27, 95% CI, 
1.68–3.07) [284]. Recently, a meta-analysis including 19 
studies with 285,966 participants also supported that 
compared to non-metformin users or glitazone users, 
metformin monotherapy exhibits a significantly elevated 
risk of PD (OR = 1.66, 95% CI, 1.14–2.42) [34].

Furthermore, to explore the factors related to the 
adverse effect of metformin on ND, Moore et  al. 
recruited participants from the Primary Research in 
Memory (PRIME) clinics study, the Australian Imaging, 
Biomarkers and Lifestyle (AIBL) study of aging and the 
Barwon region of southeastern Australia, they suggested 
that this phenomenon is possibly associated with another 
adverse effect of metformin, vitamin B12 deficiency. For 
this reason, a low serum vitamin B12 level (< 250 ρmol/L) 
is associated with ND, and taking vitamin B12 and cal-
cium [225] which could promote vitamin B12 absorp-
tion supplements may alleviate metformin-associated 
ND outcomes [285]. Considering the controversial role 
of metformin in NDs, it is recommended to monitor the 
ND complications of T2DM patients when treated with 
metformin, and the serum vitamin B12 level could be a 
candidate biomarker (Table 2).

Conclusion
After being used in T2DM treatment for more than 
50  years, metformin, an old drug with magic effects, 
has attracted much interest in recent years because of 
its potential for repurposing. Metformin exerts various 
effects through pleiotropic mechanisms of action, includ-
ing AMPK-dependent mechanism and AMPK-independ-
ent mechanism. Based on these diverse mechanisms, 
metformin has various influences on types of tissue 
including, but not limited, liver, gut, adipose, heart, vas-
cular, brain, ovary, semen and even cancers.

The most involved mechanism of metformin’s action 
is AMPK activation. Emerging evidence has indicated 
that AMPK is not only a key effector of glucose and 
lipid metabolism, but involved in the regulation of vari-
ous pathway, including: (1)Glp1r/Pka pathway and 
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mitochondria, reducing HGP and improving insulin 
resistance; (2) mTOR/autophagy pathway, driving the car-
diovascular protection and neuroprotection; (3)NLRP3, 
eNOS, STAT3, COX-2, iNOS or Smad3 pathways, medi-
ating anti-inflammation; (4) FOX3, IRS, GCRP and 
PD-L1, executing anticancer; (5)cAMP pathway, improv-
ing reproductive system; (6)ACE2, probably protecting 
against COVID-19. Recently, researchers found when in 
the absence of AMPK, metformin is still able to exert its 
effect by restoring redox balance, affecting mitochondrial 
function, modulating gut microbiome and regulating sev-
eral other signals. The investigation of these mechanisms 
has led us to further move toward understanding the role 
of metformin’s protective actions, for example, inhibiting 
HGP and cancers, anti-obesity, improving complications 
of COVID-19 and Down syndrome, cardioprotection and 
neuroprotection. It is worth mentioning that studies have 
pointed out by restoring the redox balance, metformin is 
able to improve aging via alleviating the related inflam-
mation. What about other aspects of pharmacogenetics 
of metformin? The evidence summarized in this review 
suggests that due to its importance for human health, 
the gut microbiome is partly responsible for the ben-
eficial effect of metformin. Through modulating the gut 
microbiome, which results in increased GLP-1 release 
and SCFAs production, reduced gut permeability, sup-
pressed inflammation, decreased genotoxins produc-
tion, and an improved immune system, metformin exerts 
glucose-lowering, anticancer, antiaging, and even anti-
HIV effects. However, besides its beneficial roles, met-
formin also has some adverse effects, and the underlying 
mechanism is still unclear. Accordingly, the activation of 
AMPK may participate in the deleterious process of met-
formin, such as acute pancreatitis and AD. The promo-
tion of glycolysis by metformin also increased the risk for 
lactic acidosis through increasing lactate production and 
decreasing lactate metabolism.

Under these circumstances, the roles of metformin in 
human homeostasis and disease are reaffirmed from a 
clinical standpoint. Consistent with the mechanism of 
metformin discussed above, the researches, whether 
observation studies or RCT studies, we reviewed here 
suggested that metformin has therapeutic poten-
tial for T2DM, cancer, cardiovascular disease, aging, 
COVID-19. However, clinical data also showed some 
adverse effects associated with metformin treatment, 
such as gastrointestinal complaints, vitamin B12 defi-
ciency and lactic acidosis. Of note, the most interest-
ing aspect of metformin is its controversial role in the 
reproductive system and nervous system. Regarding 
reproductive system, it is suggested that metformin is 
not only improves PCOS in reproductive aged women, 
but also increase the risk of birth defects via affecting 

the development of sperm. Regarding nervous system, 
clinical and preclinical evidences have confirmed the 
protective role of metformin in both AD and PD; on 
the other hand, some clinical studies have presented 
that metformin treatment may be a contributor to 
the cognitive impairment, and may be involved in the 
development of AD and PD. We considered that these 
different influences of metformin may be caused by the 
features of disease itself and the treatment duration of 
metformin.

However, despite the extensive preclinical and clinical 
data highlighting the potential therapeutic effect on  an 
enormous spectrum of diseases, including T2DM, car-
diovascular diseases, neurodegenerative diseases, repro-
ductive disease, aging, cancer and COVID-19, for now, 
metformin is approved only for T2DM treatment in the 
clinic. We supposed that it is related to the metformin 
dose used in most researches, which is always much 
higher than its clinically relevant dose, and the debate 
about this huge dosage gap between plasma concentra-
tions in the clinic and supraphysiological conditions is 
ongoing. According to the recommended dose, the chini-
cally relevant dose of metformin is 50–100 μM for cells 
and 50–100 mg/kg for mice models. However, the doses 
of metformin used in most studies are more than 500 μM 
for in vitro researches or 250 mg/kg for in vivo researches 
(Table  1). Besides, the different dose of metformin also 
may lead to controversial effects; for example, in terms 
of mitochondria, a low-dose of metformin (75  μM) 
improves mitochondrial respiration through AMPK-
mediated mitochondrial fission, in contrast, a high-dose 
of metformin (no less than 5  mM) inhibits mitochon-
drial respiration chain complex I. Therefore, the dose of 
metformin used in studies is critical for investigating its 
mechanism and it repurpose it in other indications.

Hence, to repurpose the metformin, in-depth mecha-
nisms of action and more clinical evidence remain to be 
elucidated. Additionally, considering that in most diseases, 
only supra-pharmacologic doses of metformin work, 
which is possible to cause serious adverse effects and even 
toxicities, the application of metformin in other indica-
tions should be more prudent and further researches are 
needed to establish safer criteria for metformin use.
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