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Metformin is the most widely prescribed drug to treat patients with type II diabetes, for

whom retrospective studies suggest that metformin may have anticancer properties.

However, in experiments performed with isolated cells, authors have reported both

pro- and anti-apoptotic effects of metformin. The exact molecular mechanism of action

of metformin remains partly unknown despite its use for over 60 years and more

than 17,000 articles in PubMed. Among the various widely recognized or recently

proposed targets, it has been reported consistently that metformin is capable of inhibiting

mitochondrial respiratory chain Complex I. Since most of the effects of metformin

have been replicated by other inhibitors of Complex I, it has been suggested that

the mechanism of action of metformin involved the inhibition of Complex I. However,

compared to conventional Complex I inhibitors, the metformin-induced inhibition of

Complex I has unique characteristics. Among these, the most original one is that the

concentrations of metformin required to inhibit Complex I are lower in intact cells than

in isolated mitochondria. Experiments with isolated mitochondria or Complex I were

generally performed using millimolar concentrations of metformin, while plasma levels

remain in the micromolar range in both human and animal studies, highlighting that

metformin concentration is an important issue. In order to explain the effects in animals

based on observations in cells and mitochondria, some authors proposed a direct effect

of the drug on Complex I involving an accumulation of metformin inside the mitochondria

while others proposed an indirect effect (the drug no longer having to diffuse into the

mitochondria). This brief review attempts to: gather arguments for and against each

hypothesis concerning the mechanism by which metformin inhibits Complex I and to

highlight remaining questions about the toxicity mechanism of metformin for certain

cancer cells.
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INTRODUCTION

Metformin is a drug with pleiotropic effects. It takes part in glucose homeostasis, mainly by
inhibiting liver glucose production (1). It also modifies the production of reactive oxygen species
and affects cell death processes (2, 3). Most of these effects have been traced to the inhibition
of mitochondrial respiratory chain Complex I for two main reasons: First, over the past 20
years, different laboratories have reproducibly observed that metformin inhibits mitochondrial
respiratory chain Complex I (4–20). Second, these pleiotropic effects have been reproduced by well
identified Complex I inhibitors [gluconeogenesis (21, 22), cell death (18, 23–28)].
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However, the mechanism by which metformin affects the
activity of Complex I remains debated. In order to clarify
whether the different conclusions found in the literature may
be due to methodological differences, this review compares
results obtained in vivo or with intact cells, to results obtained
with isolated mitochondria or isolated Complex I. In this last
case, authors tend to assume that metformin accumulates in
mitochondria, here we will discuss evidence supporting or not
this assumption. Finally, since pro- and anti-apoptotic effects of
metformin are observed in intact cells, we will examine the role of
metformin concentrations as a potential cause of these conflicting
observations.

METFORMIN PHARMACOKINETICS

Metformin is a hydrophilic compound charged positively at
physiological pH. Its hydrophilicity limits its permeability
through lipid membranes. Metformin enters and leaves cells by
the presence of several transporters including Organic Cation
Transporters (OCTs) andmultidrug and toxin extrusion (MATE)
transporters (29). This leads to a steady-state concentration
of metformin inside cells, depending on both the amount
and activity of such transporters as well as metformin plasma
concentration.

The pharmacological inhibition or the genetic ablation of
OCTs reduce the distribution of metformin to the liver, small
intestine and kidney (30–32) while the overexpression of OCT1
in HEK293 and CHO cells increases metformin uptake (30, 33).
The pharmacological inhibition or the genetic ablation ofMATE1
cause hepatic and kidney accumulation of metformin (32, 34).
In humans, the genomic variations of metformin transporters
can affect its pharmacokinetics (concentration, clearance, volume
of distribution) (35, 36) suggesting that such genomic variations
affect metformin concentration in tissues.

Whether the activities of the metformin transporters (i.e., the
metformin concentration in tissues) affect the metabolic effects
of metformin is not systematically reported in the literature. On
the one hand, metformin failed to reduce fasting plasma glucose
concentration in OCT1-knockout mice submitted to a high-
fat diet for 8 weeks and failed to suppress glucagon-stimulated
glucose production in OCT1−/− hepatocytes (30). On the other
hand, the effect of metformin on glucose tolerance tests was
similar in animal controls and OCT1/2-knockout animals (31).
A broad variation in clinical efficacy of metformin has long
been recognized as well as a reduced function polymorphism of
OCT1 in humans. However, if some authors reported a decreased
effect of metformin in type-2 diabetes patients carrying reduced
function polymorphism of OCT1 (30, 36), others did not observe
such a correlation (37, 38).

To the best of my knowledge, no study correlating metformin
concentration in tissue (or cells) and metformin-induced
Complex I inhibition was ever published.

Drugs that are extensively sequestered in organelles have a
very large apparent volume of distribution and a prolonged half-
life in vivo (39). Metformin is not metabolized and is secreted by
the kidneys with a half-life of 1.74–7.3 h in humans depending on

the studies (35, 40–42). With a volume of distribution of 1.12 ±

0.08 L/kg in healthy volunteers (40), metformin is not supposed
to accumulate dramatically in tissues. The amount of metformin
in the liver ranges from 2 to 5 times that of plasma -depending on
the studies (32, 35, 42, 43)- and increases up to 10 times that of
plasma in small intestinal walls (32).

Thus, the pharmacokinetic studies indicate that metformin
enters but does not accumulate in large amounts in cells.Whether
its metabolic activity depends on its diffusion inside the cells is
supported by several but not all studies.

Once in the cell, as metformin inhibits Complex I it
is tempting to speculate that metformin penetrates the
mitochondria. The composition of the mitochondrial matrix
(the space delimited by the inner mitochondrial membrane)
is different from that of the cytosol. In order to maintain such
a different metabolite composition, the inner membrane is
impermeable to almost all hydrophilic molecules which enter or
leave the mitochondria through specific transporters. Among the
numerous recognized mitochondrial carriers, no specific carrier
for metformin has been identified yet.

Despite this, many authors have hypothesized that metformin
accumulates in mitochondria (5, 13, 15, 44). This scenario
may reconcile the observation that millimolar concentrations
of metformin are necessary to inhibit Complex I in isolated
mitochondria (see below) while, when used at the therapeutic
dose, the plasma metformin concentration remains in the
micromolar range in both humans and animals (31, 36, 42).

From a theoretical point of view, this hypothesis is
plausible. Indeed, because the mitochondrial respiratory chain
transfers protons from the matrix to the intermembrane space,
mitochondria build up and maintain an electrical mitochondrial
membrane potential that drives the accumulation of positively
charged molecules into mitochondria, provided the molecule
crosses the membrane. In these conditions, Nernst equation
indicates that for a physiological mitochondrial membrane
potential of−180mV the thermodynamic equilibrium is reached
after a 1,000-fold accumulation of a positively charged molecule
if the molecule has one charge. Since metformin is a positively
charged molecule and assuming the presence of a still unknown
carrier for metformin in the inner membrane, its mitochondrial
concentration could reach the millimolar range despite a
cytosolic concentration within the micromolar range (see
Figure 1). In addition, assuming a plasma membrane potential
of −36mV and the absence of kinetic constraints on metformin
transporters (OCT and MATE), the cytosolic concentration of
metformin would be 4 times that of plasma.

However, the hypothesis that metformin accumulates in
mitochondria contradicts several observations.

First of all, the accumulation of numerous positive charges in
the matrix compensated by proton extrusion by the respiratory
chain, should lead to a collapse of mitochondrial membrane
potential associated with an increase in delta pH. However, note
that metformin did not depolarize isolated mitochondria (8).

Secondly, assuming that the total mitochondrial volume
represents approximately 20% of hepatocytes, a 1,000-fold
accumulation ofmetformin insidemitochondria would represent
an approximately 200-fold accumulation of metformin in liver
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FIGURE 1 | Mechanism of action of metformin on complex I: the direct hypothesis and the indirect hypothesis. Metformin enters cells via Organic Cation Transporters

(OCTs) and leaves cells via multidrug and toxin extrusion (MATE) transporters. Assuming a plasma membrane potential of 35mV and a passive mechanism of OCTs

and MATE, the cytosolic metformin concentration is expected to be 4 times that of the plasma concentration. In the direct hypothesis (left), metformin is supposed to

enter mitochondria via a hypothetical carrier reaching a matrix concentration 1,000 times that of the cytosol for mitochondrial membrane potential of 180mV. In the

indirect hypothesis (right), metformin does not enter mitochondria but stimulates a hypothetical signaling pathway that eventually modifies Complex I conformation,

making it less active.

(without accounting for accumulation in the cytosol). Such an
accumulation is 2 orders of magnitude higher than that measured
by several groups (32, 35, 42, 43).

Thirdly, a large mitochondrial accumulation is not compatible
with the low volume of distribution of metformin and its short
half-live (see above).

Fourthly, using radioactive [14C] metformin, the radioactivity
was not found to accumulate in liver mitochondria of rats
treated orally with metformin (45) and no radioactivity was
measured inside mitochondria when Xenopus laevis oocytes were
exposed to concentrations of metformin that led to Complex
I inhibition (6). Importantly, Complex I remained inhibited
after mitochondrial isolation. Although this result does not
definitively exclude a possible accumulation of metformin in
mitochondria as a cause of Complex I inhibition (accumulated
metformin may diffuse during the isolation procedure), it rules
out the hypothesis that the inhibition of Complex I by metformin
requires metformin inside mitochondria.

In summary, unlike the less hydrophilic biguanides (46),
the accumulation of metformin inside the mitochondria is not
supported by direct measurements, is not consistent with the
pharmacokinetic data, and would require a transporter that has
not yet been discovered.

Derivatives combining a molecule of metformin at different
alkyl chain lengths containing a triphenylphosphonium cation
(a liposoluble cation known to accumulate in mitochondria
according to membrane potential) have been synthesized (47,
48) in order to increase the anti-cancer effect of metformin
(see below). These different compounds accumulate in cells
(47), depolarize mitochondria (48) and inhibit Complex I with
an IC50 in the micromolar range (47, 48), which according
to Nernst equation is consistent with the accumulation of

compounds in the mitochondrial matrix at a concentration in
the millimolar range. If metformin accumulated spontaneously
in the mitochondria, the addition of molecules targeting the
mitochondria would be unnecessary, which is clearly not the case.

CHARACTERISTICS OF COMPLEX I
INHIBITION ACCORDING TO THE MODELS
USED

Although this may seem odd, it has been reported by
several different laboratories that the concentrations required to
inhibit Complex I are lower for intact cells than for isolated
mitochondria (4–6, 13, 19). Note however that the characteristics
of Complex I inhibition reveals some differences depending on
whether metformin acts on intact cells (animal models, infused
organs, isolated cells) or directly on isolated mitochondria or
isolated Complex I (see Table 1).

The incubation of isolated Complex I or submitochondrial
particles in the presence of millimolar concentrations of
metformin leads to an inhibition of Complex I that can be
complete (13) with an IC50 ranging from 19 to 79mM depending
on laboratories (5, 9, 13). It should be noted that there is no
membrane potential in these particular conditions of incubation,
thus no possibility of metformin accumulation. In other words,
the concentrations tested are the actual concentrations to which
Complex I is exposed.

The incubation of isolated mitochondria in the presence
of millimolar concentrations of metformin leads to a rather
fast (within a few minutes) inhibition of Complex I with an
“apparent” IC50 also in the millimolar range (5).
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TABLE 1 | Main differences in the characteristics of Complex I inhibition according to the model used.

Live animal, perfused organ, intact cells Isolated mitochondria, isolated Complex I

References References

Speed of inhibition Time dependent (4) (5) Immediate (minutes) (14) (13)

Type of inhibition Partial (4) (5) (18) Total (13)

Affinity Apparent IC50 approximately 1mM after

30min in isolated rat hepatocytes

Apparent IC50 250µM and 330µM after

6 h incubation in 143B and HepG2 cells

respectively

(4)

(13)

Apparent IC50 15mM in isolated

mitochondria

IC50 79mM in sub-mitochondrial particles

IC50 66mM in immunocaptured Complex I

IC50 19mM in isolated Complex I

(5)

(5)

(9)

(13)

Inhibition in State-3? Yes (5) (11) (12)

(14) (15)

Yes (5) (8) (9) (10)

(12) (14) (15)

Inhibition in State-4? Yes (4) (7) (14) No (4) (8) (10) (15)

Inhibition after

uncoupling

Yes (4) (7) (11) (14)

(19)

No (4) (15) (19)

Inhibition after the

removal of metformin

Yes (4) (14) (20) No for metformin concentration ≤ 2mM (13)

NADH/NAD+ Increases (4) (5) (18) Decreases (19)

This observation is not easily reconcilable with the
proposal that metformin accumulates in mitochondria.
Indeed, assuming that metformin did accumulate in
mitochondria, Complex I inhibition would have been observed
at micromolar concentrations of metformin (corresponding
to millimolar concentrations inside mitochondria), which
has not been reported. One could argue that at millimolar
concentrations of metformin, the inhibition of Complex
I would depolarize mitochondria, preventing metformin
accumulation. However, it has been shown that millimolar
concentrations of metformin did not depolarize isolated
mitochondria (8).

In these particular conditions of incubation (isolated
mitochondria exposed to millimolar concentrations of
metformin), it has to be noted that the inhibition of Complex I
is observed almost exclusively during ATP synthesis (also called
State 3) and disappears when mitochondria are depolarized
(uncoupled State) or at rest (also called State 4) (4, 8, 15). Such
behavior is not observed with rotenone (the reference inhibitor
of Complex I) but is typical of biguanide-induced inhibition of
Complex I in isolated mitochondria (49).

It has been proposed that the reason why the inhibition is
not observed after uncoupling might be due to the fact that the
driving force for metformin accumulation within mitochondria
disappears in these particular conditions. Although, as stated
above, the accumulation of metformin in mitochondria is not
supported by any evidence, this hypothesis does not explain the
lack of inhibition in State 4, a situation in which the driving force
(the membrane potential) is higher than in State 3.

Curiously, it has been reported that the inhibition of oxygen
consumption in isolatedmitochondria is accompanied by NADH
oxidation (19). This observation is not expected in case of a
simple Complex I inhibition, suggesting an uncoupling effect of
metformin in this particular condition.

The incubation of intact cells in the presence of metformin
leads to a slower inhibition of Complex I depending on

metformin concentration (hours are required for micromolar
concentrations of metformin) (5, 50). Contrary to what is
observed in isolated Complex I, the inhibition is not total and
plateaus at approximately 40% of the Vmax (4). Consistent with
a pure effect on Complex I, the inhibition leads to an increase in
the NADH/NAD+ ratio (as assessed by the Lactate/pyruvate and
3-hydroxybutyrate/ acetoacetate ratios) (4, 5). Importantly, once
cells are permeabilized (i.e., once mitochondria can be studied as
if they were isolated) the inhibition is observed in State 3, but
also in State 4 and after uncoupling (4, 11, 19). Finally, Complex
I remains inhibited in mitochondria isolated from either rat
exposed to metformin or liver perfused with metformin, even
after uncoupling (4, 14) or when NADH:quinone oxidoreductase
activity (i.e., Complex I activity) is studied directly using broken
mitochondria (4). Note that the isolation procedure removes
most of (if not all) the free metformin, while uncoupling (either
chemical or after inner membrane rupture) would release the
putative accumulated metformin. Although these results do
not exclude a possible binding of metformin in mitochondrial
membrane, they rule out the hypothesis that the inhibition of
Complex I by metformin could depend on membrane potential.

OTHER MITOCHONDRIAL EFFECTS OF
METFORMIN

In intact cells the inhibition of oxygen consumption is strictly
located on Complex I. This conclusion comes from the
observation thatmetformin has no effect on oxygen consumption
when electrons feed the respiratory chain downstream Complex
I (using succinate for example) regardless of the respiratory State
(3, 4 and uncoupled) (4).

On the contrary, using isolated mitochondria and millimolar
concentrations of metformin, some authors reported inhibitory
effects on complexes III and IV (16). High concentrations of
metformin have been reported to inhibit ATP hydrolysis but not
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ATP synthesis (13), suggesting an unconventional effect on the
ATP synthase.

Some evidence suggests that Complex I can interact with
ATP synthase (51). So we may infer that in this particular
condition of incubation (isolated mitochondria exposed to
millimolar concentrations of metformin), ATP synthesis possibly
sensitizes Complex I to metformin. Although speculative, this
personal suggestion could account for the observation that
millimolar concentrations of metformin inhibit Complex I
almost exclusively in State 3.

In summary, on intact cells metformin acts slowly but the
effect is visible at micromolar concentrations. The inhibition
affects only Complex I in all the respiratory states and does
not depend on mitochondrial membrane potential. On isolated
mitochondria (or isolated Complex I), metformin acts rapidly
but the effect requires millimolar concentrations. The inhibition
does not only affect Complex I and Complex I inhibition is not
observed in all the respiratory states.

WHERE DOES METFORMIN ACT ON
COMPLEX I?

The respiratory chain is a sequence of redox reactions which
couple an electron flux with a vectorial transfer of protons.
Mammalian respiratory chain complex I is a large protein
complex with at least 45 subunits. It includes a hydrophobic part
embedded in the inner membrane involved in proton transfer
and a hydrophilic part protruding into the matrix in which
electrons pass from NADH to ubiquinone via a succession of
redox reactions. Complex I inhibitors rotenone and piericidin
bind at, or close to, the ubiquinone binding site, inhibiting
both electron flux and proton extrusion. Using artificial electron
acceptors, a rotenone-insensitive NADH oxidation which is not
coupled with proton pumping (i.e., a non-physiological pathway)
can occur in Complex I.

Using isolated Complex I and millimolar concentrations of
metformin, it has been shown that metformin does not inhibit
NADH oxidation due to artificial electron acceptors, behaves
as a non-competitive inhibitor of the physiological electron
pathway and preferentially binds Complex I when the enzyme
is in its “deactive” conformation (13). However, the exact
localization where metformin acts in this condition of incubation
remains unknown. Moreover, the exact mechanism leading to
the inhibition of Complex I in intact cells using micromolar
concentrations of metformin and where exactly it inhibits the
electron flux in Complex I has not been reported.

HYPOTHETICAL MECHANISMS OF
ACTION

To account for the fact that the concentration of metformin
required to observe the inhibition of Complex I on whole cells is
lower than the concentration required to observe the inhibition
on mitochondria, two hypotheses have been proposed in the
literature (see Figure 1).

The first one (in chronological order, but second in
popularity) proposes that in vivo and in intact cells, metformin
triggers a signaling pathway that in turn induces the inhibition
of Complex I (4). Although such a signaling pathway is
yet unknown, it has been reported that Complex I exists
in two different functional conformations (active and
inactive) (52), while reactive thiols of several Complex I
subunits have been identified as targets for post-translational
modifications (53, 54). However, whether metformin
affects reactive thiols in Complex I has not been published
yet.

The second hypothesis necessarily involves an accumulation
of metformin in the mitochondria that would be driven by
mitochondrial membrane potential. Although proposed by
several authors, this hypothesis is not yet supported by any
evidence (see above).

EFFECTS OF METFORMIN-INDUCED
COMPLEX I INHIBITION ON CELL DEATH
PROCESSES

Apparently contradictory effects are found in the literature
regarding the effects of metformin on cell death. Some authors
have put forward its protective effects against cell death (3) while
others have reported its induction of cell death especially in
cancer cells (2). Yet, all of them have concluded that the observed
effects are due to the inhibition of Complex I (see below).

METFORMIN PREVENTS CELL DEATH
WHEN IT IS DUE TO PTP OPENING

The permeability transition pore (PTP) is a channel located
in the inner membrane normally closed in order to maintain
a high mitochondrial membrane potential required for ATP
synthesis. Once permanently opened, the membrane potential
collapses (55), leading to a drastic inhibition of ATP synthesis.
Beyond this uncoupling effect, PTP opening has many other
effects: It allows the thermodynamic equilibrium of the
mitochondrial and cytosolic redox potentials, leading to an
increase in cytosolic NAD(P)H concentration (56). It partly
inhibits Complex I (57), reallocating the electron flux for the
production of reactive oxygen species (58). Finally, it leads to the
release of mitochondrial pro-apoptotic proteins both in isolated
mitochondria (secondary to mitochondrial swelling leading to
the rupture of the outer membrane) (59) and in intact cells (most
probably by a distinct but still unknownmechanism) (56, 60–62).

As there are several signaling pathways involved in cell
death, there are many factors activating these pathways. To
discriminate whether a given condition leading to cell death
involves PTP opening or not, experiments are performed in the
presence or absence of a recognized PTP inhibitor (generally
cyclosporine A, but not exclusively). Using this approach,
it has been reproducibly observed that PTP opening occurs
when cell death is triggered by calcium overload or oxidative
stress (63).

Frontiers in Endocrinology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 753

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Fontaine Metformin and Mitochondrial Complex I

The molecular nature of the PTP has long been a subject
of dispute but recent and compelling data from different
laboratories suggest that the PTP might involve ATP synthase
(51, 64). Surprisingly, the reference Complex I inhibitor rotenone
has been shown to inhibit PTP opening in all the tested cells and
tissues (either spontaneously or in the presence of cyclosporine
A) (23, 65). Although rotenone induces an energetic stress, it
also prevents cell death in the same models as cyclosporine
A (23) and does inhibit Complex I and PTP opening with a
similar concentration dependence (65). Piericidin, another well
recognized Complex I inhibitor also inhibits PTP opening (23).
Thus, the activity of Complex I can be said to be a regulator of
PTP opening. Moreover, several ubiquinone analogs (known to
bind with Complex I among others) have been proved to regulate
PTP opening and cell death (57, 66–69).

Knowing that metformin partly inhibits Complex I, we tested
whether it also inhibited PTP opening and related cell death. We
found that, metformin was less potent than rotenone but also
inhibited PTP opening (50). Suggesting a common mechanism
of action with rotenone, the effect of metformin was not additive
with that of rotenone, whereas it was additive with that of
cyclosporine A (65). At present, metformin has been shown
to prevent PTP opening in endothelial cells (50), KB cells
(7), INS-1 insulinoma cells (61), HeLa cells (65), LNCaP cells
(70), A375 cells (70), primary cortical neurons (71) and kidney
mitochondria (72). Accordingly, metformin prevents cell death
induced by oxidative stress in endothelial cells (50) and KB cells
(7), etoposide in primary neurons (71), gentamicin in kidneys
(72), hyperglycemia in endothelial (50) and INS-1 cells (61),
hyperfructosemia in INS-1 cells (61) and ischemia reperfusion in
INS-1 cells (73). Many other works have found a protective effect
of metformin (particularly during oxidative stress or ischemia
reperfusion injury) without having studied the role of the PTP
(18, 74–77).

ANTI-NEOPLASTIC EFFECTS OF
METFORMIN

Although PTP opening irremediably leads to cell death, PTP
opening is not mandatory to kill cells as cells can die with a closed
PTP. Although Complex I inhibition prevents PTP opening-
related cell death (see above), it can also induce cell death in
several models. Indeed, it has been repetitively reported that
rotenone (25) or biguanides (including metformin) can induce
cell death, especially in cancer cells (15, 17, 20, 78).

Cancer cells are known to be generally highly glycolytic
(Warburg effect) and are thus not supposed to be very sensitive
to mitochondrial poison. But is it so simple? As soon as cells
consume oxygen at the mitochondrial level, they are supposed
to produce mitochondrial ATP. Thus, even if the proportion of
mitochondrial ATP production is reduced in cancer cells, this
mitochondrial ATP production exists and its reduction could
be toxic. Supporting this proposal, it has been reported that
metformin inhibits the proliferation of HCT116 p53−/− cancer
cells in the presence of glucose, while it induces cell death in case
of glucose deprivation (15). Moreover, the effect of metformin is

totally prevented by the overexpression of a metformin-resistant
Saccharomyces cerevisiae NADH dehydrogenase NDI1 (15), very
elegantly demonstrating that the toxicity of metformin is due to
its effect on Complex I.

The suggestion that metformin’s toxicity is related to an
energetic stress raises several questions: Why is metformin
less toxic in non-cancer cells that are yet more dependent on
mitochondrial ATP production? How can metformin protect
against PTP-induced cell death despite its effect on ATP
production? In other words, what triggers that a same inhibition
of Complex I either prevents or induces cell death?

Again, part of the answer could be found in the comparison
of metformin concentrations. While millimolar concentrations
of metformin are generally used to induce cell death in
vitro, micromolar concentrations are sufficient to prevent PTP-
opening induced cell death. Although it has been shown that
cellular energy status is inversely correlated with metformin
concentrations (11, 79), a 24-h incubation with 100µM
metformin did not affect the AMP/ATP ratio in primary cultured
hepatocytes (11). This suggests that the metformin concentration
used to prevent PTP opening (100µM, overnight) was not
sufficient to induce a lethal decrease in energy status. On the
contrary, this confirms that the concentrations used to kill cells
dramatically affect the energy status. Note however that some
authors have reported an anti-apoptotic effect even at millimolar
concentrations of metformin, suggesting that some cells are able
to overcome energy stress (75, 80).

However, if the mechanism by which metformin kills
isolated cells can be traced to a collapse in energy status, the
concentrations that prevent cancer growth in animal models are
in the micromolar range. The practical assumption of metformin
accumulation in mitochondria has obviously been retained, but
one can wonder: why are normal cells preserved? Alternative
or complementary explanations must exist. Among them, it has
been proposed that the effect of metformin in animal models
is indirect (for example due to a decrease in blood insulin
concentration) (2). It is also possible that the accumulation of
metformin or the sensitivity of Complex I to metformin is higher
in cancer cells than in normal tissues (personal hypothesis). As
far as I know, these assumptions have not yet been tested.

CONCLUSIONS AND PROPOSAL

As explained several times in this manuscript, the concentration
with which experiments were conducted is the main misleading
point regarding the effect of metformin on Complex I.
On the one hand, it is obvious that the assumption that
metformin accumulates in mitochondria suits many authors.
This hypothesis can bridge the gap between concentrations
measured in vivo and those used in vitro. On the other
hand, two different laboratories that attempted to measure such
an accumulation put forward a total absence of metformin
accumulation in mitochondria (6, 45) in which Complex
I was nevertheless inhibited (6). Furthermore, although the
pharmacokinetic data are indirect evidence, they are not
compatible with an accumulation of metformin in mitochondria.
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Facing the facts, one must admit that there is either a technical
mistake in the studies that did not find metformin accumulation
in mitochondria or there is absolutely no experiment performed
at millimolar concentrations of metformin that reflect what
occurs in vivo. This includes a lot of articles both on
its antidiabetic role and on its anticancer effect. There
is an urgent need to solve this problem for good, and
this could be performed easily by fast cell fractionation
coupled to mass spectrometry (or other technics to detect
metformin) in order to confirm if metformin is found in
large amount in mitochondria of cells exposed to metformin.
Currently, the published evidence does not support the

generally accepted hypothesis of metformin accumulation in
mitochondria.
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