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Advanced glycation end products (AGEs) are major in�ammatory mediators in diabetes, a	ecting atherosclerosis progression
via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated.
�e present study of murine bone marrow derived macrophages showed that (1) AGEs enhanced proin�ammatory cytokines
(interleukin-1� (IL-1�), IL-6, and tumor necrosis factor-� (TNF-�)) mRNA expression, RAGE expression, andNF�B activation; (2)
metformin pretreatment inhibited AGEs e	ects and AGEs-induced cluster designation 86 (CD86) (M1 marker) expression, while
promoting CD206 (M2 marker) surface expression and anti-in�ammatory cytokine (IL-10) mRNA expression; and (3) the AMPK
inhibitor, Compound C, attenuated metformin e	ects. In conclusion, metformin inhibits AGEs-induced in�ammatory response in
murine macrophages partly through AMPK activation and RAGE/NF�B pathway suppression.

1. Introduction

Atherosclerosis, one of the main complications of diabetes,
constitutes the leading cause of morbidity and mortality in
today’s world. Macrophages, as major in�ammatory contrib-
utors, are keymodulators of atherosclerotic plaque formation
and progression [1]: M1 macrophages, which are related to
in�ammatory e	ects, stimulate in�ammation and promote
plaque progression, while M2 macrophages, which link
with anti-in�ammatory roles, contribute to in�ammation
resolution and atheroma regression [2, 3]. Previous studies
have demonstrated that excessive in�ammatory M1 mono-
cytes/macrophages emerge in peripheral blood of both pre-
diabetic and diabetic patients [4, 5]. Furthermore, our pre-
vious study also found that M1 monocytes/macrophages, the
in�ammatory subset, increased in circulation and atheroscle-
rotic plaque in STZ-induced diabeticmice andwere related to
enhanced in�ammation and accelerated atherosclerosis [6].

�us, the increased in�ammatory macrophages in diabetes
contribute to persistent low grade in�ammation and acceler-
ated atherosclerosis.

Various factors are responsible for macrophage in�am-
matory activation in diabetes. Besides hyperglycemia, the
advanced glycation end products (AGEs), which are gener-
ated irreversibly in high glucose condition, are another group
of critical pathogenic factors in diabetes. Previous studies
showedAGEs driven in�ammatory response inmacrophages
[7] and promoted atherosclerosis [8]. Because in�amma-
tory macrophages dominate the progression of atheroscle-
rosis, blockage or attenuation of AGEs-induced macrophage
in�ammatory response might alleviate diabetic atherosclero-
sis.

In addition to its antihyperglycemic e	ects, metformin,
with over half-decade use as �rst-line therapy for type 2 dia-
betes [9], slows down diabetic atherosclerosis development
[10] through mechanisms that are still not fully understood.
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Recently, metformin’s anti-in�ammatory properties were
demonstrated in lipopolysaccharide induced macrophages
[11, 12], and previous studies had shown thatmetformin could
downregulate RAGE expression [13] and suppress NF�B
signaling in various cells [14, 15]. As our previouswork proved
that RAGE/NF�B signaling was involved in AGEs-induced
macrophage in�ammatory activation [7], it is reasonable
to hypothesize that metformin might inhibit AGEs-induced
in�ammatory response in macrophages. �erefore, the
present study tested the hypothesis and could provide novel
elucidation for the antiatherosclerotic e	ect of metformin.

2. Materials and Methods

2.1. Mice. Male C57BL/6 mice (8 weeks old) were pur-
chased from Slac Laboratory Animal Co., Ltd. (Shanghai,
China). �e mice were housed under speci�c pathogen-free
conditions with controlled temperature (22–25∘C) and 12 h
light/dark cycles; they were given standard chow and water
ad libitum. All animal experiments were approved by the
Ethics Committee of Xinhua Hospital A�liated to Shanghai
Jiao Tong University School of Medicine (approval number
XHEC-F-2016-012).

2.2. Preparation and Culture of Bone Marrow Derived
Macrophages (BMDMs). Mice were anesthetized with pen-
tobarbital (50mg/kg, i.p.) to minimize su	ering and killed by
cervical dislocation without recovery from anesthesia. Tibias
and femurs were removed and bone ends were cut o	, and
bone marrow was �ushed with PBS supplemented with 1%
fetal bovine serum (FBS, Gibco, Australia, Cat# 10099-141).
A single cell suspension was prepared by �ltering the cells
through a 40 �m strainer (BD Falcon, Cat# 352340). �e
cell suspension was centrifuged at 1500 rpm for 5min, and
the cell pellet was resuspended in culture medium. Bone
marrow cells were cultured for 7 days at 37∘Cwith 5% CO2 in
Dulbecco’s modi�ed Eagle’s medium (DMEM), high glucose
(HyClone, Beijing, China, Cat# SH30022.01B) supplemented
with 10% FBS, 2mM L-glutamine (Sigma-Aldrich, Missouri,
USA, Cat# 59202C), 100U/mL penicillin and 100 �g/mL
streptomycin (Beyotime, Jiangsu, China, Cat# C0222), and
20 ng/mL GM-CSF (PeproTech, New Jersey, USA, Cat# 315-
03). Cells were harvested on day 7 for further experiments.
Macrophages (>95%) were identi�ed by �ow cytometry
with anti-CD11b APC and anti-F4/80 FITC (eBioscience,
California, USA, Cat# 17-0112 and Cat# 11-4801) staining.

BMDMswere seeded at a density of 0.5 × 106/mL and cul-
tured overnight before stimulation. Based on experimental
protocol, the BMDMs were treated with di	erent concentra-
tions of metformin (0.25, 1.0, and 2.0�M) or AGEs (200mg/
L) for di	erent time periods. For pathway studies, the
BMDMswere pretreatedwith anti-RAGEantibody or ammo-
nium pyrrolidinedithiocarbamate (PDTC) or Compound C
for 60min. �e anti-RAGE neutralizing antibody (R&D
Systems, Minnesota, USA, Cat# AF1179) was reconstituted
at 0.2mg/mL in sterile PBS and further diluted with culture
medium to the �nal concentration of 20�g/mL. Metformin
hydrochloride (Abcam, Cambridge, UK, Cat# ab120847) was
dissolved in water at a concentration of 50mM and further

diluted with culture medium to the �nal concentrations
(0.25, 1.0, and 2.0�M). �e NF�B inhibitor PDTC (Abcam,
Cambridge, UK, Cat# ab141406) was dissolved in DMSO at
a concentration of 100mM and further diluted with culture
medium to the �nal concentration of 50 �M (contains 0.5%
DMSO, v/v). �e AMPK inhibitor Compound C (Abcam,
Cambridge, UK, Cat# ab120843) was �rstly dissolved in
DMSO at a concentration of 10mM and further diluted with
culture medium to the �nal concentration of 5�M (contains
0.5%DMSO, v/v). To rule out the in�uence of DMSO, proper
dosages of DMSO were added to culture medium to meet
the groups with the highest concentration of DMSO. AGE-
BSA was purchased from Anyan-bio Technology (Shanghai,
China, Cat# AY-4710P), and the corresponding amount of
BSA was used as control.

2.3. Real-Time PCR Analysis. Total RNA was extracted from
BMDMsusingTRIzol reagent (Takara, Liaoning, China, Cat#
9109), and 1 �g of total RNAwas reverse transcribed to cDNA
using the PrimeScript RT Master Mix kit (Takara, Liaoning,
China, Cat# RR036A). Real-time PCR array analysis was
performed by using the SYBR Premix Ex Taq� kit (Takara,
Liaoning, China, Cat# RR420A) in a total volume of 20 �L,
with 2�L of cDNA primers (0.2mM each), 10 �L of SYBR
Green, and 0.4�L of Rox Dye II. �e standard PCR condi-
tions consisted of 95∘C for 30 sec, followed by 40 cycles of
95∘C for 5 sec and 60∘C for 34 sec, with a �nal dissociation
stage; the samples were run on anABI 7500 detector (Applied
Biosystems, California, USA). �e amounts of target genes
were determined and normalized to the amount of GAPDH
cDNA (SangonBiotech, Shanghai, China, Cat# B661304).�e
sequences of the primers (synthesized by Sangon Biotech,
Shanghai, China) for the target genes were as follows: Fwd 5�-
CTCACAAGCAGAGCACAAGC-3� and Rev 5�-TCCAGC-
CCATACTTTAGGAAGA-3� for IL-1�; Fwd 5�-TCTGCA-
AGAGACTTCCATCCA-3� and Rev 5�-AGTCTCCTCTCC-
GGACTTGT-3� for IL-6; Fwd 5�-GGTGCCTATGTCTCA-
GCCTC-3� and Rev 5�-CCACTTGGTGGTTTGTGAGTG-
3� for TNF-�; Fwd 5�-TGCACTACCAAAGCCACAAG-3�

and Rev 5�-TGATCCTCATGCCAGTCAGT-3� for IL-10.

2.4. Western Blot Analysis. A�er di	erent stimulations, the
BMDMs were collected and cellular lysates were prepared.
Equal amounts of protein (40–60�g) were resolved on
SDS-PAGE and transferred to polyvinyl di�uoride (PVDF)
membranes. �e blots were blocked with 5% milk in TBST
for 1 h at room temperature and then incubated with primary
rabbit anti-mouse antibodies overnight at 4∘C.�e antibodies
against p-AMPK (1 : 1000, Cat# ab133448) andRAGE (1 : 1000,
Cat# ab3611) were purchased from Abcam (Cambridge, UK),
and the antibodies againstNF�B-65 (1 : 1000, Cat# 8242S) and
p-NF�B-65 (1 : 1000, Cat# 3033S) were purchased from Cell
Signaling Technology (Massachusetts, USA). �e blots were
subsequently incubated with the secondary goat anti-rabbit
antibodies conjugated with horseradish peroxidase (1 : 1000)
for one hour and enhanced using a chemiluminescence
system (ChemiDoc XRS+, Bio-Rad Laboratories, USA). �e
intensity of each band was normalized to the loading control
tubulin (Beyotime, Jiangsu, China, Cat# AT819).
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2.5. Flow Cytometry Analysis. A�er di	erent stimulations,
single cell suspensions of BMDMs were prepared in �ow
bu	er and incubated with antibodies. Anti-mouse CD86 PE
(eBioscience, California, USA, Cat# 12-0862) was used to
identify M1 macrophages while anti-mouse CD206 FITC
(BioLegend, California, USA, Cat# 141704) was used to iden-
tifyM2macrophages. Results were acquired with a BDCanto
II �ow cytometer (BD Biosciences, USA) and analyzed by the
FlowJo so�ware (Tree Star, USA).

2.6. Immuno�uorescent Staining. BMDMs were plated in 24-
well plates. A�er di	erent stimulations, cells were washed
thrice with cold PBS and �xed in 4% (w/v) paraformaldehyde
for 20min and then washed with PBS again. Next, cells
were incubated in bu	ered normal goat serum to prevent
nonspeci�c binding of antibodies for 1 h at room temperature.
�ey then were incubated overnight with antibody against
NF�B-65 (1 : 200, Cat# 8242S) purchased from Cell Signaling
Technology (Massachusetts, USA), followed by incubation
with Cy3 goat anti-rabbit IgG (1 : 500; Beyotime, Cat# A0516)
for 1 h at 37∘C. �erea�er, cells were washed in PBS. DAPI
was used to stain the cell nuclei (blue) at a concentration of
1.43 �M (Sigma, St. Louis, USA, Cat# D8417). Photomicro-
graphs were taken with a Leica DMI3000B camera (Leica,
Germany).

2.7. Statistical Analysis. All results are expressed as mean ±
SD. One-way analysis of variance (ANOVA) was used to
assess the e	ects of one factor among multiple groups, and
post hoc testing was done by Tukey test. Two-way ANOVA
was used to assess the e	ects of two factors among multiple
groups, and post hoc testing was done by Bonferroni test.
Analysis was performed using SPSS so�ware 19.0 (SPSS Inc.,
Chicago, USA) for Windows. A two-tailed value of � < 0.05
was considered statistically signi�cant.

3. Results

3.1. AGEs-Induced In�ammatory Response in BMDMs through
RAGE/NF�B Signaling. Our previous study elucidated that
AGEs promoted BMDMs to express proin�ammatory
cytokines through RAGE/NF�B signaling [7]. To con�rm
this �nding, here we tested cytokine expression pro�le of
BMDMs a�er AGEs stimulation with or without anti-RAGE
neutralizing antibody or PDTC pretreatment. BMDMs were
divided into 4 groups: control, AGEs, AGEs + anti-RAGE,
and AGEs + PDTC group. Cells in the last two groups were
pretreated with anti-RAGE antibody (20�g/mL) or PDTC
(50�M) for 60min, respectively, and then, together with
AGEs group, the three groups were cultured with AGEs
(200mg/L) for 24 h. �e control group was treated with
BSA (200mg/L) for the same amount of time. mRNA levels
of proin�ammatory cytokines (IL-1�, IL-6, and TNF-�)
and anti-in�ammatory cytokine (IL-10) were measured by
real-time PCR. Figure 1 shows that AGEsmarkedly increased
mRNA expression of proin�ammatory cytokines (IL-1�, IL-
6, andTNF-�) (Figures 1(a), 1(b), and 1(c)), while only slightly
upregulating that of IL-10 (Figure 1(d)), indicating that AGEs
predominantly induced in�ammatory response in murine

macrophages. In addition, pretreatment with anti-RAGE
antibody or PDTC ameliorated the proin�ammatory e	ects
of AGEs (Figures 1(a), 1(b), and 1(c)). �erefore, RAGE/
NF�B signaling is involved in AGEs-induced in�ammatory
response in macrophages.

3.2. Metformin Inhibited AGEs-Induced In�ammatory
Response in BMDMs. Because metformin has anti-in�am–
matory potential [11, 12], next we tested whether metformin
inhibited AGEs-induced in�ammatory response in macro–
phages. BMDMs were divided into 5 groups: control, AGEs,
AGEs + MET 0.25 (metformin 0.25�M), AGEs + MET
1.0 (metformin 1.0 �M), and AGEs + MET 2.0 (metformin
2.0 �M). Cells in the last 3 groups were pretreated with
di	erent concentrations of metformin (0.25, 1.0, and
2.0 �M) for 60min, respectively, and then, together with
AGEs group, the 4 groups were stimulated with AGEs
(200mg/L) for 24 h. �e control group was treated with BSA
(200mg/L) for the same amount of time. mRNA levels
of proin�ammatory cytokines (IL-1�, IL-6, and TNF-�)
and anti-in�ammatory cytokine (IL-10) were measured
again by real-time PCR. Figure 2 shows that metformin
dose dependently inhibited AGEs’ enhancement on mRNA
expression of proin�ammatory cytokines (Figures 2(a),
2(b), and 2(c)), while promoting that of IL-10 (Figure 2(d)),
indicating that metformin inhibited AGEs-induced in�am-
matory response in BMDMs. As the results showed that
2.0 �M metformin had the strongest e	ects on downreg-
ulating genes expressions of proin�ammatory cytokines
but upregulating mRNA expression of anti-in�ammatory
cytokine, we administrated 2.0 �M metformin for the
following experiments.

3.3. Suppression of RAGE/NF�B Signaling Responsible forMet-
formin’s Inhibition on In�ammatory Response inMacrophages.
Next, we tested whether inhibition of RAGE/NF�B pathway
was responsible for metformin’s suppressive e	ects on AGEs-
induced in�ammation. Because metformin is an agonist of
AMPK and activation of AMPK can abate in�ammation in
various cells [14, 16, 17], we also evaluated activity of AMPK.
Firstly, BMDMs were divided into 4 groups: control, AGEs,
MET, and AGEs + MET group. In AGEs group, cells were
cultured with AGEs at 200mg/L for 24 h; inMET group, cells
were cultured with metformin at 2.0�M for 24 h; in AGEs +
MET group, cells were pretreated with metformin at 2.0�M
for 60min and then cultured with AGEs at 200mg/L for 24 h;
in control group, cells were culturedwith BSA at 200mg/L for
24 h.Western blot analysis was performed tomeasure protein
levels of RAGE and phosphorylated AMPK (p-AMPK).
Figure 3(a) shows thatAGEs signi�cantly upregulated expres-
sion of RAGE and reduced levels of p-AMPK, while met-
formin had the opposite e	ect. Moreover, pretreatment with
metformin signi�cantly attenuated e	ects of AGEs on RAGE
upregulation and AMPK inactivation. �en, we evaluated
the e	ect of AGEs on activation of NF�B pathway in
macrophages with or without metformin (2.0 �M) pretreat-
ment for 60min before AGEs (200mg/L) stimulation for dif-
ferent time intervals (0, 30, 60, and 180min). In western blot
analysis (Figure 3(b)), the p-p65/p65 ratio in the AGEs group
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Figure 1: AGEs-induced in�ammatory response in BMDMs through RAGE/NF�B signaling. BMDMs were divided into 4 groups: control,
AGEs, AGEs + anti-RAGE, and AGEs + PDTC group. Cells in the last two groups were pretreated with anti-RAGE antibody (20�g/mL)
or PDTC (50 �M) for 60min, respectively, and then, together with AGEs group, the three groups were cultured with AGEs (200mg/L) for
24 h. �e control group was treated with BSA (200mg/L) for the same amount of time. RNA then was extracted, and mRNA levels of IL-1�
(a), IL-6 (b), TNF-� (c), and IL-10 (d) were measured by real-time PCR. Bar graphs represent the results (mean ± SD) of three independent
experiments. One-way ANOVA was applied and all the overall ANOVA was signi�cant. #� > 0.05; ∗� < 0.05; ∗∗� < 0.01; and ∗∗∗� < 0.001
when compared between selected groups.

markedly increased a�er AGEs stimulation, peaking at
60min and decreasing therea�er, indicating that NF�B was
activated a�er AGEs stimulation. Furthermore, the p-p65/
p65 ratio in the AGEs + MET group was much lower at each
time point than in the AGEs group, suggesting that AGEs-
induced NF�B activation was partly inhibited by metformin
pretreatment. Taken together, these �ndings suggested that
metformin inhibited RAGE/NF�B signaling.

Because metformin is an AMPK activator, we next
performed experiments to con�rm whether metformin’s
suppression of NF�B signaling is AMPKdependent. BMDMs
were divided into 4 groups: control, AGEs, AGEs + MET,
and AGEs + MET + CC group. Because AGEs-induced
NF�Bactivation peaked at 60min a�erAGEs stimulation, the
duration of AGEs stimulation was set to 60minutes. In AGEs
group, cells were cultured with AGEs at 200mg/L for 60min;
in AGEs + MET group, cells were pretreated with metformin

for 60min and then cultured with AGEs at 200mg/L for
60min; in AGEs + MET + C-C group, cells were pretreated
with Compound C, an AMPK inhibitor, at 5 �M for 60min,
and then they were treated with metformin at 2.0 �M for
60min followed by AGEs at 200mg/L for 60min; in control
group, cells were cultured with BSA at 200mg/L for 60min.
p65 nuclear translocation was analyzed by immuno�uores-
cent staining. Figure 4 shows that p65 nuclear translocation in
AGEs group was signi�cantly higher relative to control group
indicating NF�B activation; metformin pretreatment signif-
icantly inhibited p65 nuclear translocation; and Compound
C pretreatment abolished metformin’s e	ects. �erefore, the
results evidenced that metformin’s inhibition on NF�B was
AMPK dependent.

Subsequently, we testedwhethermetformin’s anti-in�am-
matory e	ect on AGEs-inducedmacrophages was dependent
upon AMPK activation. BMDMs were divided into 4 groups:
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Figure 2:Metformin inhibited AGEs-induced in�ammatory response in BMDMs. BMDMswere divided into 5 groups: control, AGEs, AGEs
+MET 0.25 (metformin 0.25 �M), AGEs +MET 1.0 (metformin 1.0�M), and AGEs +MET 2.0 (metformin 2.0�M). Cells in the last 3 groups
were pretreated with di	erent concentrations of metformin (0.25, 1.0, and 2.0�M) for 60min, respectively, and then, together with AGEs
group, the 4 groups were stimulated with AGEs (200mg/L) for 24 h.�e control group was treated with BSA (200mg/L) for the same amount
of time. RNA then was extracted, and mRNA levels of IL-1� (a), IL-6 (b), TNF-� (c), and IL-10 (d) were measured by real-time PCR. Bar
graphs represent the results (mean ± SD) of three independent experiments. One-way ANOVA was applied and all the overall ANOVA was
signi�cant. #� > 0.05; ∗� < 0.05; ∗∗� < 0.01; and ∗∗∗� < 0.001 when compared between selected groups.

control, AGEs, AGEs + MET, and AGEs + MET + C-C
group. In AGEs group, cells were cultured with AGEs at
200mg/L for 24 h; inAGEs+METgroup, cells were pretreated
with metformin for 60min and then cultured with AGEs
at 200mg/L for 24; in AGEs + MET + C-C group, cells
were pretreated with Compound C at 5�M for 60min, and
then they were treated with metformin at 2.0�M for 60min
followed by AGEs at 200mg/L for 24 h; in control group, cells
were cultured with BSA at 200mg/L for the same amount of
time. mRNA levels of proin�ammatory cytokines (IL-1�, IL-
6, and TNF-�) and anti-in�ammatory cytokine (IL-10) were
tested again by real-time PCR. Figure 5 demonstrated that
pretreatmentwithCompoundCattenuatedmetformin’s inhi-
bition on proin�ammatory cytokines mRNA expression and
promotion of IL-10 mRNA expression in macrophages.�us,
these data indicated that the anti-in�ammatory function

of metformin was at least partly dependent on AMPK
activation.

3.4. Metformin Changes AGEs-Induced Surface Markers
Expression on Macrophages. M1 or M2 macrophages are,
respectively, considered as pro- and anti-in�ammatory
macrophages [18]. Because CD86 is one of the important
surface markers for M1 (proin�ammatory) macrophages and
CD206 for M2 (anti-in�ammatory) macrophages [19], we
next studied metformin’s impact on AGEs-induced surface
markers (CD86 and CD206) expression on macrophages by
�ow cytometry analysis. BMDMswere divided into 6 groups:
control, AGEs, AGEs + anti-RAGE, AGEs + PDTC, AGEs +
MET, andAGEs +MET+C-C. InAGEs group, cells were cul-
tured with AGEs at 200mg/L for 24 h; in AGEs + anti-RAGE
group, cells were pretreated with anti-RAGE neutralizing
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Figure 3: Metformin activates AMPK and inhibits AGEs-induced RAGE expression and NF�B activation. (a) BMDMs were divided into 4
groups: control, AGEs, MET, and AGEs + MET group. In AGEs group, cells were cultured with AGEs at 200mg/L for 24 h; in MET group,
cells were cultured with metformin at 2.0�M for 24 h; in AGEs + MET group, cells were pretreated with metformin for 60min and then
cultured with AGEs at 200mg/L for 24 h; in control group, cells were cultured with BSA at 200mg/L for 24 h. Western blot analysis was
performed to measure protein levels of RAGE and phosphorylated AMPK (p-AMPK). Tubulin was used as internal control. (b) BMDMs
were pretreated with or without metformin (2.0�M) for 60min before AGEs (200mg/L) stimulation for di	erent time intervals (0, 30, 60,
and 180min). Protein levels of NF�B-p65 (p65) and phosphorylated NF�B-p65 (p-p65) were measured by western blot. Tubulin was used as
internal control. Bar graphs represent the results (mean ± SD) of three independent experiments. One-way ANOVA was applied and all the
overall ANOVA was signi�cant. #� > 0.05; ∗� < 0.05; ∗∗� < 0.01; and ∗∗∗� < 0.001 when compared between selected groups.

antibodies for 60min followed by AGEs at 200mg/L for 24 h;
in AGEs + PDTC group, cells were pretreated with PDTC for
60min, followed by AGEs at 200mg/L for 24 h; in AGEs +
MET group, cells were pretreated with metformin at 2.0 �M
for 60min and then cultured with AGEs at 200mg/L for 24 h;
in AGEs + MET + C-C group, cells were pretreated with
Compound C at 5 �M for 60min, and then they were treated
with metformin at 2.0�M for 60min followed by AGEs at
200mg/L for 24 h; in control group, cells were cultured with
BSA at 200mg/L for the same amount of time. Single cell
suspensions then were prepared. M1 surface marker CD86
andM2 surfacemarkerCD206were detected by �ow cytome-
try analysis. As expected, AGEs signi�cantly increased CD86
but did not a	ect CD206 expression; and pretreatment with
anti-RAGE antibody or PDTC signi�cantly abated AGEs’
e	ect. Pretreatment with metformin partly reversed AGEs’
e	ects on CD86 expression and markedly increased CD206

expression; however, Compound C abated metformin’s
potency (Figure 6).

4. Discussion

�e present study provides novel insight into a hypoglycemic
agent: metformin inhibits the in�ammatory response
induced by advanced glycation end products in murine
macrophages partly through AMPK activation and sup-
pression of RAGE/NFkappaB signaling.

Macrophage is a vital player in atherosclerosis, with its
in�ammatory response determining progression of athero-
sclerotic lesions. AGEs are recognized as strong in�amma-
tory mediators in the diabetic microenvironment, induc-
ing an in�ammatory response in macrophages [20, 21].
�erefore, AGEs-inducedmacrophage activation and in�am-
mation augmentation are critical mechanisms contributing
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Bar = 50 �m. One-way ANOVA was applied and the overall ANOVA was signi�cant. ∗∗� < 0.01 and ∗∗∗� < 0.001 when compared between
selected groups.

to diabetic accelerated atherosclerosis, rendering it impor-
tant to inhibit in�ammatory response in macrophages in
order to slow down or even block atherosclerotic progres-
sion. Recently, metformin was shown to have anti-in�am-
matory e	ects on lipopolysaccharide (LPS) or PMA induced
macrophages [11, 22, 23].However, it is still unknownwhether
metformin was able to suppress AGEs-induced in�amma-
tory response in macrophages. �e present study showed
that pretreatment with metformin not only reduced mRNA
expression of proin�ammatory cytokines (IL-1�, IL-6, and
TNF-�) but also upregulated mRNA expression of anti-
in�ammatory cytokine (IL-10) in macrophages. �ese data
evidenced thatmetformin inhibits AGEs-induced proin�am-
matory e	ects in macrophages. Previous study has demon-
strated that RAGE/NF�B axis is important in driving in�am-
mation in AGEs-induced macrophages [7]. In the present
study, we found that blockade of RAGE or NF�B signaling
could signi�cantly attenuate AGEs-induced genes expression
of in�ammatory cytokines, which con�rmed the critical
role of RAGE/NF�B signaling in AGEs-induced in�amma-
tory response. In addition, although evidence is mounting
that metformin downregulates RAGE expression or inhibits
NF�B activity in several cell types [13–15], until the present
study, there had been no reports on metformin’s inhibition
on AGEs-induced RAGE/NF�B signaling in macrophages.
�erefore, for the �rst time, we demonstrated that met-
formin inhibits AGEs-induced in�ammatory response in
macrophages via suppressing RAGE/NF�B activation.

Of note, in the present study, we found blockade of RAGE
or NF�B signaling or administration of di	erent concen-
trations of metformin could not completely abolish the

proin�ammatory e	ects of AGEs. Such �ndings hint that
pathways other than RAGE/NF�B might also be responsible
for AGEs-induced in�ammatory response in macrophages.
As is well known, in addition to RAGE, AGEs can bind
with several other receptors such as AGE-receptor complex,
scavenger receptor, and Toll-like receptor 4 (TLR-4) to trans-
mit messages [24, 25]. Furthermore, besides NF�B pathway,
MAPKand STAT signaling have been proven to be implicated
in driving in�ammatory response in macrophages [26, 27].
�erefore, RAGE/NF�B signaling is just one of the many
pathways mediating the in�ammatory response induced by
AGEs; other potential pathways remain to be studied.

Metformin is an AMPK activator, and AMPK signaling
suppresses NF�B activation thereby attenuating in�amma-
tory responses [28, 29]. In the present study, pretreatment
with Compound C, an AMPK inhibitor, abated metformin’s
suppression on NF�B as well as proin�ammatory cytokines
expression, indicating that metformin’s inhibition of AGEs-
induced in�ammatory response in macrophages was AMPK
dependent. Of note, in the present study, AGEs slightly
increased mRNA expression of IL-10, while pretreatment
with metformin signi�cantly strengthened AGEs’ induction
of IL-10 mRNA expression in a dose dependent manner. In
light of the powerful anti-in�ammatory function of IL-10,
the promotion e	ect of metformin upon IL-10 expression
would further enhance its anti-in�ammatory properties.
Furthermore, blockade of NF�B signaling did not change IL-
10 expression while AMPK blocking treatment signi�cantly
ameliorated metformin’s promotion on IL-10 expression,
indicating that AGEs-induced IL-10 expression was NF�B
independent while metformin’s enhancement on expression
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Figure 5:Metformin’s inhibition onAGEs-induced in�ammatory response is AMPKdependent. BMDMswere divided into 4 groups: control,
AGEs, AGEs + MET, and AGEs + MET + CC group. In AGEs group, cells were cultured with AGEs at 200mg/L for 60min; in AGEs + MET
group, cells were pretreated with metformin for 60min and then cultured with AGEs at 200mg/L for 60min; in AGEs + MET + C-C group,
cells were pretreated with Compound C, an AMPK inhibitor, at 5 �M for 60min, and then they were treated with metformin at 2.0�M
for 60min followed by AGEs at 200mg/L for 60min; in control group, cells were cultured with BSA at 200mg/L for 60min. RNA then
was extracted, and mRNA levels of IL-1� (a), IL-6 (b), TNF-� (c), and IL-10 (d) were measured by real-time PCR. Bar graphs represent the
results (mean ± SD) of three independent experiments. One-way ANOVA was applied and all the overall ANOVA was signi�cant. #� > 0.05;
∗� < 0.05; ∗∗� < 0.01; and ∗∗∗� < 0.001 when compared between selected groups.

of IL-10 was at least partly AMPK dependent.�erefore, met-
formin not only suppressed expression of proin�ammatory
cytokines throughAMPK signaling inducedNF�B inhibition
but also enhanced expression of anti-in�ammatory cytokine
(IL-10) also via AMPK activation.

A previous study found that metformin primed macro-
phages into di	erent phenotypes based on the microenviron-
ment [30]. In the present study, metformin inhibited AGEs-
induced M1 surface marker CD86 expression while increas-
ing M2 surface marker CD206 expression. Based on the
metformin’s e	ects on cytokines expression, results of the
present study suggest that metformin probably inhibits
AGEs-induced macrophage M1 polarization and might
enhance macrophage M2 polarization. Because macrophage

polarization determines function, that is, pro- (M1) or anti-
in�ammatory (M2) [18, 19], the results further support met-
formin’s inhibition of AGEs-induced in�ammatory response
in macrophages.

5. Conclusion

Various metabolic disorders underlie the pathogenesis of
diabetic vascular complications. AGEs-induced proin�am-
matory status of macrophages might be a critical mech-
anism responsible for diabetic accelerated atherosclerosis.
�erefore, attenuating AGEs’ proin�ammatory e	ects on
macrophages might alleviate atherosclerosis in diabetes. �e
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present study demonstrates that metformin inhibits AGEs-
induced in�ammatory response in murine macrophages
through AMPK activation and suppression of RAGE/NF�B
signaling, thereby providing a novel molecular mechanism
responsible for metformin’s bene�ts on diabetic atheroscle-
rosis.
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