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Simple Summary: This literature analysis is focused on the pleiotropic action associated with met-
formin treatment. Precisely, metformin treatment exerts many health effects, mainly by inhibiting in-
flammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism,
which overall may be particularly useful in cancer patients’ clinical management. Consequently,
metformin is the main novel therapeutic extensively studied in various clinical trials, which are also
summarized in this review.

Abstract: The molecular mechanism of action and the individual influence of various metabolic path-
ways related to metformin intervention are under current investigation. The available data suggest
that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotec-
tive, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending
on cellular context. This literature review was undertaken to provide novel evidence concerning
metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubt-
edly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes,
increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these
characteristics make metformin an attractive medicament to translate to human trials, the promising
results of which were also summarized in this review.

Keywords: metformin; antioxidant; anti-cancer

1. Introduction

Metformin, a biguanide derived from galegine (isoamylene guanidine), has been
the main initial pharmacological intervention for type 2 diabetes mellitus (T2DM) since
the 20th century [1,2]. Metformin administration has been recommended as the first-line
glucose-lowering therapy for all newly diagnosed T2DM by both the American Diabetes
Association (ADA) and the European Association for the Study of Diabetes (EASD) since
2009 [1,3]. This medicine is considered to be safe and efficient in monotherapy and in
combination with other anti-diabetic therapies [3]. Moreover, it has been shown that
adding metformin to insulin therapy to patients with type 1 diabetes mellitus (T1DM)
resulted in greater glycemic control and a greater decrease in HbA1c [1].

In addition to decreasing blood sugar levels, metformin is emerging as a therapy
with other numerous beneficial effects, including body weight control; reductions in the
incidence of aging-related diseases; reductions in the risks of cardiovascular and neuropsy-
chiatric disorders and metabolic syndrome; and even improving fertility in polycystic
ovary syndrome (PCOS) [4–7]. Recent literature data describe metformin as an endothe-
lial protector, an effective drug in heart failure, and an anti-inflammatory target useful
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in rheumatological and immunological diseases as well as in many aging-related mor-
bidities [8–10]. Metformin’s influence on multiple pathways, including lipid metabolism,
deactivation of inflammation-related processes, and oxidative homeostasis, has been estab-
lished [11–14]. Interestingly, the anti-cancer potential of metformin was firstly recognized in
patients with T2DM. Patients treated with metformin were characterized by a lower cancer
incidence compared to patients receiving other anti-diabetic therapies [15–17]. Moreover,
the evidence suggests that metformin treatment is associated with a decreased incidence
of certain type of cancers, such as colon, liver, breast, pancreatic, and lung cancer [18,19].
Simultaneous anti-cancer treatment and metformin administration improved the response
to cancer therapy and decreased cancer mortality [15,20]. With the wide pleiotropic effect
of metformin, only 20% of side effects occur, mainly in the gastrointestinal tract. Therefore,
this therapy could be used in most clinical management protocols. Moreover, metformin is
the main novel therapeutic focus of various clinical trials [21].

This literature review was undertaken to summarize novel evidence concerning met-
formin intervention with a particular emphasis on its antioxidant and anti-cancer properties.
Furthermore, the promising results obtained in many clinical trials concerning metformin
intervention are also presented in this review [15,22–26].

2. Multifactorial Actions of Metformin

Metformin is generally known for its anti-diabetic effects. Approximately 40–60% of
orally administered metformin is absorbed into the blood. The maximum blood levels
are reached after approximately 2.5 h for the immediate-release and 7 h for the extended-
release tablet forms [27]. Following the oral ingestion of metformin, this therapeutic is
absorbed by enterocytes through the plasma monoamine transporter (PMAT; encoded by
the gene Solute Carrier Family 29 Member 4 (SLC29A4), and the organic cation transporter
3 (OCT3), encoded by the gene Solute Carrier Family 22 Member 3, SCL22A3) [28,29].
In hepatocytes, the organic cation transporter 1 (OCT1) and OCT3 are responsible for
metformin absorption [30]. Metformin is extracted into the bile by multidrug toxin and
extrusion 1 (MATE1) (encoded by Solute Carrier Family 47 Member 1, SLC47A1) [31]. Then,
metformin metabolites are excreted unchanged into the urine, where the organic cation
transporter 2 (OCT2) (encoded by Solute Carrier Family 22 Member 2, SLC22A2) transports
it into the renal epithelial cells through the basolateral membrane, and MATE1 and MATE2
(encoded by Solute Carrier Family 47 Member 2, SLC47A2) excrete it into the urine [31–34].

Metformin is able to directly and indirectly interact with many enzymes, such as mito-
chondrial electron transport chain (ETC) complex I, adenosine 5′-monophosphate-activated
protein kinase (AMPK), glycerol 3-phosphate dehydrogenase, fructose 1-6-bisphosphatase, and
glucose 6P-phosphatase, which highlights the metabolic properties of metformin [15,35–40].
Metformin’s influence on multiple metabolic pathways is produced by targeting ETC com-
plex I, the inhibition of which leads to subsequent AMPK activation [41–43]. AMPK is the
most significant regulator of many metabolic pathways related to lipid metabolism, insulin
sensitivity, and energy homeostasis [6,15,27,44]. Nevertheless, several other metabolic
properties should be also considered as a major contributor to the therapeutic action
of metformin, particularly inhibition of fructose 1-6-bisphosphatase, a gluconeogenesis
rate-controlling enzyme, via lowering hepatic glucose production [45]. Moreover, met-
formin decreases glucose 6-phosphatase activity in hepatocytes by activation of glycolysis
downstream of glucose phosphorylation [46]. These mechanisms are implicated in the
subsequent pentose-phosphate pathway in the endoplasmic reticulum, constituting the
principal component involved in cellular proliferation and antioxidant processes [47].

The reduction in insulin resistance after metformin treatment is associated with an in-
crease in plasma insulin-like growth factor-binding protein 1 (IGFBP-1) concentrations and
a decrease in the insulin-like growth factor (IGF-I)/IGFBP-1 ratio [48,49]. This biguanide
is also implicated in the redistribution of glucose transporters—glucose transporter 1
(GLUT-1) and glucose transporter 4 (GLUT-4)—from the intracellular space to the cell
membranes [50,51]. One of metformin’s mechanisms of action is the activation of insulin
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receptor substrate 2 (IRS-2) in the liver, and the downstream increase in deoxyglucose
uptake is mediated via increased translocation of GLUT-1 to the plasma membrane [52].

Importantly, metformin administration is also associated with the regulation of many
molecular targets, such as mitogen-activated protein kinases (MAPKs), B-cell CLL (BCL-2),
signal transducer and activator of transcription 3 (STAT3), glioma-associated oncogene
homolog 1 (GLI1), mitogen-activated protein kinase 1/2 (ERK1/2), and ribosomal S6
kinase (RSK1) [14,53–58]. Using gene expression analysis after metformin intervention, the
expression of key genes and their associated proteins was assessed to evaluate metformin’s
anti-cancer properties (Table 1).

Table 1. Metformin’s metabolic targets.

Gene/Protein
Abbreviation Full Name Form of

Dysregulation Reference

MAPK Mitogen-activated protein kinase Down [59]

BCL-2 B-cell CLL/lymphoma 2 Down [60]

P38 Mitogen-activated protein kinase p38 Down [59,61]

JNK c-Jun N-terminal kinase Down [59]

STAT3 Signal transducer and activator of
transcription 3 Down [62]

GLI1 Glioma-associated oncogene homolog 1 Down [63]

MEK1/2 Dual specificity mitogen-activated
protein kinase 1/2

Up [63]

TP Thymidine phosphorylase Down [64]

ERCC1 Excision repair cross-complementation 1 Down [64]

ERK1/2 Mitogen-activated protein kinase 1/2 Up [65]

RSK1 Ribosomal S6 kinase Up [66]

AMPK AMP-activated protein kinase Up [66]

mTOR Mammalian target of rapamycin Down [65]

AKT RAC-alpha serine/threonine-protein
kinase Down [65]

P27 Cyclin-dependent kinase inhibitor 1B Up [67]

Nevertheless, metformin exerts hermetic effects [68]. The metformin dose–response
action is characterized by a low dose stimulation and high dose inhibition [69]. This
phenomenon can be explained using an example of the activation of mitochondrial complex
I by metformin administration [41]. In in vivo studies, the inhibition of respiratory complex
I was achieved after 10 mM or 30 mmol/L metformin treatment [70–72]. On the other
hand, a study performed by Larsen et al. revealed that a high dose of metformin does not
impact mitochondrial complex I respiration in skeletal muscle of patients with T2DM [73].
The inhibition of respiratory complex I and AMPK phosphorylation is achieved using
concentrations higher than 1 mM, which is above the maximum therapeutic doses used
(generally, 500–2500 mg/day). In contrast, therapeutic concentrations of metformin induce
activation of mitochondrial energy metabolism with an improvement in cellular energy
status [74]. The concept of hormesis can be useful to fully understand the effective tailoring
of metformin therapy [69,75,76].

3. Metformin as a Promoter of Antioxidant Defense

Oxidative stress is an imbalance between the production of reactive oxygen species
(ROS) and the organism system’s ability to detoxify and may cause a toxic effects through
the production of lipid peroxides and ROS, which could result in damage of components,
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such as proteins, lipids, and DNA [77]. These damages are mostly caused by O2− (superox-
ide radical), OH– (hydroxyl radical), and H2O2 (hydrogen peroxide) [78–80].

While multiple reports based on in vivo and in vitro studies provide evidence that
oxidative-stress markers unequivocally decrease in metformin-treated individuals, the de-
tails of the mechanisms responsible for these changes are not thoroughly understood [81–86].
The in vitro study performed by Javadipour et al., which focused on the antioxidant effects
associated with metformin, revealed that metformin protected against increased oxida-
tive stress via the nicotinamide adenine dinucleotide (NAD)-dependent protein deacylase
sirtuin-3 (SIRT3)-related pathway [86,87]. The study was conducted on mitochondria
isolated from rat pancreases, and increased oxidative stress and insulin resistance were
induced through arsenic exposure [86]. Additionally, metformin is a direct Sirtuin 1 (SIRT1)
activating compound, which is a crucial cellular survival protein, thus also involved in
combatting oxidative stress [88,89]. Experimental studies indicate that SIRT1 may play a
role in the pathogenesis of skeletal muscle insulin sensitivity. SIRT1 directly influences the
insulin signal transduction pathway. It increases insulin-dependent IRS2 phosphorylation
and Akt activation. Moreover, SIRT1 interacts with peroxisome proliferator-activated re-
ceptor α coactivator 1 (PGC1α) and AMPK to stimulate muscle glucose uptake and fatty
acid oxidation, and thus it can prevent insulin resistance. Therefore, SIRT1 activators might
be useful in the treatment of insulin resistance-related diseases [90].

Accordingly, in the following studies, the metformin-dependent mechanisms involved
in enhancing the endogenous antioxidant system were also evaluated. Literature data
reported the upregulation of the activity of antioxidant enzymes, including glutathione
reductase, catalase, and superoxide dismutase (SOD), and GSH through the downreg-
ulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [82,91–93].
Moreover, metformin’s modulation of oxidative phosphorylation and glycolysis is me-
diated by mitochondrial-derived glycerophosphate dehydrogenase (MGPDH) by signif-
icant MGPDH downregulation [20]. In addition, metformin can reduce oxidative stress
and promote autophagic processes through the activation of AMPK and SIRT3 [53,85,94].
Moreover, paraoxonase 1 (PON1) is the antioxidant that circulates in association with
high-density lipoprotein (HDL), simultaneously eliminating the lipid peroxides within
lipoproteins [95–97]. It is considered to be an HDL lipid-oxidation protector. The study,
which was performed using diabetic animal models [54,85] and patients with newly di-
agnosed T2DM [98] treated with metformin, proved that after this drug intervention, the
activity of PON1 was increased (Table 2).

Table 2. Metformin’s antioxidant targets.

Protein Name Full Name Form of
Dysregulation Reference

GR Glutathione reductase Down [36]

MGPDH
Mitochondrial

glycerophosphate
dehydrogenase

Down [20]

NADPH oxidase
Nicotinamide adenine

dinucleotide phosphate
oxidase

Down [82]

PON1 Paraoxonase 1 Up [95]
SOD Superoxide dismutase Down [36]

SIRT1 Sirtuin 1 Up [85,99]

In addition, an in vivo animal study suggested that metformin may protect against
ROS [83]. Accordingly, the administration of metformin increases the survival of cells
exposed to 4–7 Gray of radiation [100]. An additional advantage is a protective effect 24 h
after exposure to radiation, which is potentially useful in counteracting the previously re-
ceived radiation [100,101]. These reports emphasize the necessity of continuing to evaluate
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metformin-induced antioxidant mechanisms, therefore, to provide protection against ROS
and radiation-induced oxidative damage.

4. Anti-Cancer Effect

There is growing interest in the potential benefits of metformin in cancer treatment
and prevention [60]. Tumorigenesis is a complex relationship of metabolic processes
that requires a number of steps, in which hyperglycemia may be the main modulator.
Cancer cells require high glucose uptake for unrestrained cell growth [6,21,102]. Metformin
treatment may not only reduce the risk of cancer patient mortality but may also improve
the efficacy of cancer treatment [22,103]. A study performed on patients with T2DM
treated with metformin revealed that cancer incidence and mortality were decreased by
approximately 10% to 40% compared to that in patients not treated with metformin [14,104].

Mallik et al. showed that AMPK, which is a regulator of multiple processes in cells,
specifically acts to inhibit cellular proliferation by disrupting cell division in mitosis, thus
playing an essential role in cancer pathogenesis [105]. The increase in AMPK activity
induced by metformin appears to induce the G1 phase of the cell cycle, which leads to
the arrest of cell proliferation without activating the apoptotic mechanism [42]. Moreover,
through AMPK activation, metformin indirectly reduces cancer cell viability by inducing
apoptosis and inhibits osteoclast differentiation in bone tumors [106,107]. Furthermore, the
reduction in blood glucose and insulin levels may impair the cancer’s growth by AMPK
activation, which leads to decreased transcription of gluconeogenic genes by inhibition
of histone deacetylases (HDAC) and decreased lipogenic gene expression by inhibition of
sterol regulatory element binding proteins [108].

The mammalian target of rapamycin (mTOR) is one of the major intracellular fac-
tors involved in modulating cell growth, proliferation, and metabolism [109–111]. The
overexpression of mTOR is often associated with tumor progression, diabetes, and neurode-
generative disorders [19,105]. It has been shown that metformin inhibits mTOR activity, and
this may help to inhibit the multiplication of neoplastic cells [37,112,113]. Moreover, mTOR
kinase integrates cell-signaling pathways, including the insulin pathway, and growth fac-
tors such as insulin-like growth factor 1 (IGF-1) and 2 (IGF-2), and acts as a sensor for the
cellular levels of energetic compounds [62]. Typically, under aerobic conditions, energy is
produced through glycolysis followed by the citric acid cycle and oxidative phosphory-
lation [114]. However, the pathway of energy production in cancer cells differs; the citric
acid cycle and oxidative phosphorylation are limited, even under aerobic conditions, to
favor lactic fermentation, which is called the “Warburg effect”. This process produces
significantly less ATP, which leads to increased energy uptake and use of nutrients, such
as nucleotides, amino acids, and lipids, which in turn favor the proliferation of cancer
cells [115]. Importantly, metformin, by reducing hyperglycemia and normalizing lipid
metabolism, inhibits the Warburg effect, thereby hindering cancer proliferation.

Protein 53 (p53) is a tumor suppressor that regulates autophagic and apoptotic pro-
cesses [116]. Accumulating evidence suggests that p53 activation can transcriptionally
inhibit GLUT1 and GLUT4 expression, suppressing glucose uptake [117]. Moreover, p53
induces the expression of TP53-induced glycolysis and apoptosis regulator (TIGAR), a
transcription factor involved in the regulation of ROS formation, autophagy, and apopto-
sis [118]. Accordingly, metformin’s anti-cancer effect could be related to the modulation
of AMPK, which leads to subsequent p53 activation [105,116]. In one study, the reduced
stability of p53 in metformin-treated individuals led to a decrease in differentiated embryo
chondrocyte 1 (DEC1) expression, which plays a crucial role in the DNA-damage response
via transcriptional regulation under hypoxic conditions and the induction of cancer cell
apoptosis [19,21,119].

It has been shown that the inhibition of epidermal growth factor receptor 2 (HER2)
expression leads to reduced expression of vascular endothelial growth factor A (VEGFA),
ultimately resulting in lower angiogenesis and anti-cancer effects [120]. Interestingly, Wang
et al. reported that metformin could reduce the expression of HER2 [121]. Furthermore,
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metformin has been shown to reduce the synthesis of lithocholic acid (LCA), which is
additionally stimulated by increased oxidative stress [122], leading to an inhibitory effect
on NF-κB signaling. NF-κB signaling is essential for the regulation of interleukin 8 (IL-
8), which plays an important role in tumor progression and metastasis in a variety of
human cancers, especially in lung and colon cancers [123,124]. In addition, metformin
inhibits hexokinase (HK) in breast cancer cells, which is an essential glycolytic enzyme that
catalyzes the phosphorylation of glucose by ATP to glucose-6-phosphate (G6P). It has been
shown that G6P partially impairs glucose metabolism and tumor growth [125]. The study
performed by Bonannii et al. showed that in a group of diabetic patients also diagnosed
with breast cancer treated with metformin, the tumor size was reduced compared to
that in the control group [126]. The trend of decreasing breast cancer proliferation in the
diabetes patient group suggests that indirect insulin- and glucose-mediated effects are the
main mechanism of anticancer effect of metformin in human breast cancer and attenuate
the role of direct effects on specific pathways concerned on the AMPK/mTOR cascade
activity [126]. The prognosis of neoplastic disease development can be determined based
on the expression of genes encoding angiogenic factors. Research focused on angiogenesis
is justified in order to identify useful prognostic factors, find diagnostic markers, and
determine new therapeutic targets for introducing potential new-generation medicines.

What should also be noted in the context of the anti-cancer action of metformin is
that this therapeutic inhibits the production of leptin and stimulates the production of
adiponectin [127]. Increased serum leptin levels have been shown to be associated with
increased tumor growth and a greater risk of metastasis. By contrast, adiponectin may
present an inhibitory effect on cancer development and appears to exert an anti-proliferative
effect in tumor cells.

Overall, the results demonstrate that metformin acts comprehensively on various
cancers, such as breast, pancreatic, gastric, colorectal, endometrial, prostate, and bladder
cancer, and could represent an independent treatment option or be used in combination
with other medicines [18,19,22,98,128–130]. In many studies performed in a group of
lung cancer patients treated with metformin, decreased proliferation of cancer cells and
increased apoptosis were reported [102,131–134]. Growing evidence from epidemiological
and observational studies shows that metformin may be an effective adjuvant anti-cancer
therapy [24,60,132].

5. Pleiotropic Use of Metformin in Clinical Trials
5.1. Metabolic Effect of Metformin in Various Diseases

Currently, 2035 clinical trials using metformin are registered as completed or ongo-
ing according to the Protocol Registration and Results System (PRS) and the European
Union Clinical Trials Register. This underlines the growing interest in this therapy [135].
Numerous clinical studies have demonstrated that metformin monotherapy is effective
in reducing the risk of serious complications associated with T2DM with a median dose
of 1500–2000 mg/day [136–139]. The beneficial effects of metformin in reducing the risk
factors of atherosclerosis, improving microcirculatory blood flow, and, in particular, increas-
ing the sensitivity of cells to insulin are well documented [140]. Metformin also improves
the function of the heart muscle cells. Increasing glucose metabolism along the glycolysis
pathway through the inhibition of fatty acid β-oxidation reduces the oxygen demand of
myocardial cells. This has a positive effect on the efficiency of the Na/K/Ca membrane
pumps [141,142]. The increased removal of Ca2+ ions from the cytoplasm of cardiomyocytes
improves the relaxation of the heart muscle [143]. Additionally, metformin intervention in
T2DM patients also resulted in a reduction in the risk of Parkinson’s disease, dementia, and
other neurodegenerative diseases [144,145]. The study performed by Hsu et al. reported
that T2DM increased the risk of dementia 2.6-fold, and the combined intervention of sul-
fonylureas and metformin was able to decrease the risk of dementia by 35% in an 8-year
observation [145].
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It has been shown that obesity is associated with increased risk of the cancer de-
velopment, whereas metformin treatment is associated with weight reduction [146–149].
The clinical trial conducted by Ruholamin et al., in a group of women diagnosed with
gestational diabetes who received 500 mg metformin once or twice a day, demonstrated
that metformin intervention resulted in weight and insulin dose reductions, leading to
better glycemic control. Moreover, newborns were observed to have a decreased rate of
obesity [150–152]. The study conducted by Seifarth et al., which focused on the effect of
metformin intervention on weight loss in non-diabetic obese individuals, suggested that
this treatment option was an effective tool for weight reduction in both insulin-sensitive
and insulin-resistant overweight patients and obese patients [26]. This study included
154 patients with body mass indices ≥27 kg/m2 who received metformin intervention
dosages of 2500 mg per day in an outpatient setting over 6 months [26].

5.2. Effect of Metformin on Fertility

There are currently 349 female infertility trials, many of which are focused on the
increased efficacy of in vitro fertilization (IVF) when combined with metformin interven-
tion [153]. The clinical trial performed by Foda et al. showed that metformin therapy
in patients with endometriosis resulted in an increased pregnancy rate and lower serum
cytokine levels [154]. For the purpose of this study, 35 infertile patients with endometriosis
were administered with 500 mg metformin three times daily for 6 months plus a multivita-
min once daily. A literature review on metformin intervention in the treatment of infertility
in PCOS revealed 10 completed clinical trials [153]. The studies demonstrated that met-
formin was effective in inducing ovulation and reducing the risk of preterm labor in PCOS
patients. A comprehensive review of seven randomized clinical trials involving 702 women
unsuccessfully trying to become pregnant for a period of 6 months showed an increased
clinical pregnancy rate after metformin treatment. Moreover, these studies confirmed
that metformin therapy improved blood supply and the thickness of the endometrium in
PCOS women [155]. Additionally, Johnson suggested that women with PCOS undergoing
IVF should be treated with metformin to reduce the risk of ovarian hyperstimulation
syndrome [156]. In 2019, a promising metformin intervention in a group of women with
unexplained infertility with anovulatory cycles was begun (NCT03681197) [157].

5.3. Anti-Cancer Effect of Metformin in Cancer in Clinical Trials

Currently, 255 clinical trials concerning the potential use of metformin in cancer treat-
ment are being conducted. There is strong evidence concerning the association between
metformin use and decreased pancreatic cancer incidence and increased overall survival
in colorectal cancer [158,159]. The study conducted by Miranda et al. on patients with
colorectal cancer revealed that 850 mg of metformin, 425 mg/m2 5-fluorouracil, and 50 mg
leucovorin twice a day was associated with longer survival in obese patients [160]. In
another METAL (metformin in advanced lung cancer) trial, the clinical utility of met-
formin with erlotinib in second-line therapy of patients with stage IV non-small-cell lung
cancer was evaluated. For the purpose of this study, twelve patients were enrolled and
administered with 1500 mg metformin with 150 mg erlotinib. The study showed that this
combination improved prognoses for patients. This approach could also improve survival
and overall outcome [161]. The clinical trial conducted by Bever et al., in which 22 patients
with metastatic pancreatic adenocarcinoma were treated with metformin alone (850 mg
orally twice a day) or with rapamycin (4 mg daily), showed that the intervention was
well tolerated, and that certain patients achieved stable disease, which was further associ-
ated with longer survival [162]. Moreover, interim analyses of ongoing studies involving
neoadjuvant metformin treatment in newly diagnosed breast cancer patients demonstrate
that this intervention is safe and well tolerated. It was proved that metformin can directly
affect primary breast cancer in vivo, including the downregulation of phosphodiesterase
3B (PDE3B), a critical regulator of cAMP synthesis, which combined with AMPK activation,
can be considered as adjuvant breast cancer therapy [163]. The clinical trial conducted by
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Goodwin et al. suggested that the administration of 850 mg of metformin led to weight
loss and improved metabolic health in early-stage breast cancer patients. Furthermore,
support for a potential metformin treatment mediated by reducing serum levels of insulin
and other metabolic markers, such as serum levels of glucose, leptin, and high-sensitivity
C-reactive protein (hsCRP) in a group of breast cancer patients was provided [164]. Patients
receive oral metformin hydrochloride twice a day (once daily in weeks 1–4). Treatment
continues for up to 5 years in receptor positive (estrogen receptor and/or progesterone
receptor positive) subjects in the absence of disease progression or unacceptable toxicity.
Contrarily, the clinical trial of Zhao et al. concerning aromatase-inhibitor treatment com-
bined with 500 mg metformin orally in pre-treated postmenopausal patients with hormone
receptor-positive metastatic breast cancer returned negative results although with excellent
tolerability [109]. However, the study performed by Monami et al., in which 195 patients
were included over a period of 9.6 years, proved that metformin intervention for more than
36 months was associated with a significant reduction in the risk of cancer [165]. According
to a cohort study, patients with esophageal cancer (in a study group of 285 patients) and
patients with rectal cancer (in a study group of 472 patients) receiving a combination of
metformin with radiotherapy/chemotherapy demonstrated increased responses to the
anti-cancer treatment and improved prognoses [24].

6. Can Metformin Intervention Be Considered as Adjuvant Anti-Cancer Therapy?
6.1. Anti-Cancer Effect of Metformin in Thyroid Cancer

In recent years, the global incidence rates of thyroid cancer (TC) have been steadily
rising [15]. Recent reports indicate that metformin may exert anti-tumor activity by inhibit-
ing tumor cell proliferation and inducing apoptosis [62,125,166]. It has been documented
that TC diabetic patients treated with metformin are characterized by smaller tumor sizes,
higher complete remission rates, and longer progression-free survival compared to dia-
betic patients not treated with metformin [4]. Ye et al. described the in vitro effects of
10 and 20 mM of metformin on human papillary TC using a human papillary TC cell line
(TPC-1). The use of metformin increased the expression of several factors, including the
heat shock 70-kDa protein 5 (Hspa5), also known as binding immunoglobulin protein (BIP),
C/EBP homologous protein (CHOP), and caspase-12, which activate endoplasmic reticu-
lum (ER) stress conditions, leading to cancer cell apoptosis [55,64]. Using flow cytometry, a
significant increase in TPC-1 cell apoptosis after metformin intervention was observed as
compared to in the control group. The study performed using in vitro and in vivo models
concluded that metformin can promote apoptosis through endoplasmic-reticulum-stress-
associated pathways following the increased expression of BiP, DNA damage-inducible
transcript 3, and caspase-12 [167]. Han et al. suggested that metformin inhibits TC cell
growth, migration, and the epithelial-to-mesenchymal transition by inhibiting the mTOR
pathway, where the metformin treatment was given at a concentration of 10 mM concentra-
tion [168]. The study performed by Thakur et al. demonstrated that MGPDH regulated
human TC cell growth and oxidative phosphorylation (OXPHOS) [20]. Moreover, MGPDH
overexpression was associated with an increase in thyroid cell proliferation. Interestingly,
downregulation of MGPDH expression and OXPHOS inhibition in TC in vitro was ob-
served after 48 h 5 mM metformin treatment [20]. Using TC cells (FTC133 and BCPAP),
Bikas et al. demonstrated that the combination of metformin and other glycolysis inhibitors
improved upon current TC treatments. Moreover, due to providing the decrease in cellular
ATP, the prolonged activation of AMPK, and the sustained autophagy, adding metformin to
already used treatment regimens resulted in a broader cancer-treatment spectrum [55,107].

Radioactive iodine therapy (RAI) is the standard treatment for differentiated thyroid
cancer (DTC). The increased oxidative stress, reflected by malondialdehyde (MDA) mea-
surements, further enhanced by RAI in DTC patients may have important implications
for future health complications [169,170]. Despite the beneficial therapeutic effect of RAI
intervention, exposure to radiation can lead to several oxidative alterations, especially in
the metabolism of reproductive system tissue [7,171]. Over the last decade, evidence of
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the anti-cancer effects of metformin—the most widely prescribed anti-diabetic medicine
in the world—shows its usefulness in the clinical management of endocrine malignan-
cies [15,21,61,172–174].

6.2. Metformin Intervention in Endometrial Cancer

Endometrial cancer (EC) is the most common gynecological malignancy and is charac-
terized by hypermenorrhea, dysfunctional uterine bleeding, and infertility [175,176]. The
current recommendations from the Cancer Genome Atlas (TCGA) define four clinically
distinct endometrial cancer types based on their p53 mutational burden, the copy number
variations, the exonuclease domain of the DNA polymerase epsilon (POLE) mutations,
and the microsatellite instability [177]. Furthermore, EC is usually associated with PCOS,
obesity, insulin resistance, and T2DM [156,178]. The impact of insulin and IGF-1 expression
have an important role in the development of EC. Furthermore, the aggressiveness of EC
has been shown to correspond with elevated levels of circulating insulin and endometrial
IGF-1 concentrations. Another potentially important element in the mechanism through
which metformin inhibits the development of EC is related to increased GLUT4 activity,
which is combined with cell proliferation inhibition and cell cycle arrest and apoptosis
induction [178]. Moreover, the data demonstrate that female sex steroids regulate tissue
insulin sensitivity and modulate the intracellular glucose pathways [7,179,180]. In this
regard, metformin increases the blood levels of sex hormone binding globulin, which leads
to a reduction in the circulating estrogen and androgen concentrations [178,181]. It has
been reported that 2 mM of metformin improved EC hormonal treatment by causing a
regression to histologically normal endometrium, enhancing healing, and reducing any side
effects [175,178,182]. Additionally, 500 mg of metformin orally, three times a day, is capable
of overcoming progestin resistance in endometrial cancer cells [183]. It has been suggested
that metformin’s anti-cancer properties result from its ability to alter glucose metabolism,
activating AMPK and inhibiting the PI3K/AKT/mTOR signaling pathway [184,185]. In
particular, numerous studies have examined the effectiveness of targeted therapies acting
on the PI3K/AKT/mTOR pathway, epidermal growth factor receptor (EGFR), human
epidermal growth factor receptor 2 (HER2), and vascular endothelial growth factor (VEGF),
which have been shown to be metformin targets [178,186,187]. The use of targeted therapies
appears to be key to achieving better responses and survival among women with advanced
or recurrent EC [188]. In this regard, the pleiotropic effects of metformin on cellular energy
production with intercellular and hormone-based interactions make metformin a potential
anti-cancer treatment for EC.

There are 14 clinical trials being conducted to assess the effectiveness of metformin
medication in the treatment of endometrial hyperplasia and cancer [189]. Studies of the
therapeutic properties of metformin in EC patients have been published, showing that met-
formin treatment functions as an useful preventive therapy for neoplastic diseases [190,191].
The results from clinical trials suggest that metformin intervention (750–2250 mg/day
administered for 24–36 weeks to achieve a complete response) combined with medrox-
yprogesterone acetate (MPA) improves the regression of cancer cells, providing additional
protective effects on fertility in EC patients [192]. Current clinical trials showed that pro-
gestin fertility-sparing treatment combined with 500–1500 mg daily of metformin shortened
the treatment time, reducing the risk of side effects and endometrial damage during the
treatment of EC [178,181,183,189–191,193].

7. Materials and Methods

The literature review was performed using the PubMed database and according
to the PRISMA and EQUATOR network guidelines [194–197]. For the purpose of this
review, medical papers published in 2004–2021 were analyzed. Systematic review of the
current literature about the metformin intervention was performed. The keywords used
in the literature search were as follows: metformin, metformin pharmacokinetics, anti-
cancer therapy, antioxidant therapy, metformin therapy, potential therapy, clinical trials,
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thyroid cancer, and endometrial cancer. Studies evaluating the latest reports based on
anticancer properties, the impact of oxidative stress, and potential therapeutic targets
related to metformin intervention were included. Articles with irrelevant conclusion
statements, inappropriate study methods, inadequate reporting, or incomplete reports
were excluded from the study (Figure 1). This review has been registered in PROSPERO
(CRD42022299568).

Figure 1. PRISMA-based flow diagram of the meta-analysis process performed [194,198].

8. Conclusions

Undoubtedly, metformin exerts pleiotropic effects on many metabolic pathways. One
of metformin’s most significant potential applications is cancer treatment. Studies using
in vitro models focused on metformin’s anti-cancer mechanisms and potential uses pro-
duced favorable results. Therefore, based on this evidence, metformin can be used widely
in relation to thyroid, endometrial, breast, pancreas, and lung cancers, which are epidemic
in modern societies according to the reputably published literature data. However, further
randomized clinical trials to assess metformin’s individual metabolic effects and specific
molecular mechanisms are warranted. There is a high probability that introduction of
metformin to therapeutic protocols could extend the period of cancer non-recurrence and
reduce the side effects of chemotherapy and radiotherapy. Thus, the development of novel
indications for this therapy is still required.
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