
Metformin: Mechanisms in Human Obesity and Weight Loss

Armen Yerevanian, M.D. and Alexander A. Soukas, M.D., Ph.D.
Department of Medicine, Diabetes Unit, Endocrine Division, and Center for Genomic Medicine, 
Massachusetts General Hospital

Department of Medicine, Harvard Medical School, Boston, MA 02114, USA

Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA

Abstract

Purpose of Review: Metformin has multiple benefits for health beyond its antihyperglycemic 

properties. The purpose of this manuscript is to review the mechanisms that underlie metformin’s 

effects on obesity.

Recent Findings: Metformin is first line therapy for type 2 diabetes. Large cohort studies have 

shown weight loss benefits associated with metformin therapy. Metabolic consequences were 

traditionally thought to underlie this effect, including reduction in hepatic gluconeogenesis and 

reduction in insulin production. Emerging evidence suggests that metformin-associated weight 

loss is due to modulation of hypothalamic appetite-regulatory centers, alteration in the gut 

microbiome, and reversal of consequences of aging. Metformin is also being explored in the 

management of obesity’s sequelae such as hepatic steatosis, obstructive sleep apnea and 

osteoarthritis.

Summary: Multiple mechanisms underlie the weight loss-inducing and health-promoting effects 

of metformin. Further exploration of these pathways may be important in identifying new 

pharmacologic targets for obesity and other aging-associated metabolic diseases.
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Introduction

Guanidine containing extracts from Galega officinalis, the French lilac, were used for their 

anti-diabetic, anti-hypertensive, and anti-aging properties dating back to medieval times 
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[1,2]. In the early 20th century, compounds related to the active agents in the French lilac, 

members of the biguanide family of anti-diabetic agents, were synthesized such as 

phenformin, buphormin, and metformin [3]. Shortly thereafter in the 1920s, and largely 

accidentally, the biguanides were noted to have anti-diabetic properties. These three 

biguanides were subsequently studied in humans and approved for use in diabetes in Europe 

in the 1950s [4]. Though phenformin and buphormin were removed from the market in the 

1970s due to the occurrence of lactic acidosis and ensuing mortality, metformin’s use 

advanced, achieving approval in Canada in the 1970s and the United States in 1994. Since 

that time, it has become a mainstay in the treatment of type 2 diabetes (T2D). Due to its 

excellent tolerability, safety profile, efficacy and lack of hypoglycemia it is now considered 

first-line in the treatment of T2D in conjunction with lifestyle modifications [5]. Excitingly, 

in recent years it has become clear from epidemiological and preclinical studies that 

metformin has favorable effects beyond its effects on glycemia. Particularly, it has been 

shown to reduce body weight, reduce the incidence of and mortality from cancer, and to 

prolong lifespan. These effects have made metformin an attractive research opportunity for 

diseases associated with obesity and aging. This review explores the relationship between 

metformin and the treatment and management of obesity.

Metformin and Weight Loss

Initial studies examining the cardiometabolic effects of metformin at the time of its FDA 

approval showed modest effects on weight [6]. The Metformin Study Group showed a 

statistically significant decrease in 3.8 kg in the metformin group compared to no significant 

change in the sulfonylurea group at week 29 [4]. The United Kingdom Prospective Diabetes 

Study (UKPDS) showed weight neutral status of metformin compared to glibenclamide, a 

sulfonylurea that stimulated weight gain [7]. Kahn et al. showed that metformin treated 

diabetic patients experienced a 2.7 kg weight loss over a 4-year period, with rosiglitazone 

and glyburide both showing weight gains of 4.8 kg and 1.6 kg respectively [8]. Meta-

analysis of comparator studies between different agents showed that compared to 

sulfonylureas metformin showed significant differences in end weight [9]. However, these 

meta-analyses were unable to show statistically significant differences from placebo.

Subsequent smaller studies examined metformin with weight loss as the primary outcome 

and in patients without diabetes. Generally, these studies did not find significant weight 

reductions, although they were mostly small (N < 200) and for short duration lasting from 1 

month to 1 year [10]. The BIGPRO study group examined weight loss with Metformin 850 

mg BID treatment of 1 year duration and found a 2 kg weight loss (P < 0.06) [11]. Paolisso 

et al. found a 2.8 kg greater decrease in weight over a 1-month period during a hypocaloric 

diet with metformin over placebo [12]. Glueck et al. examined 31 nondiabetic obese subjects 

on 2.55 g of metformin a day and found a statistically significant average weight loss of 13 

lbs. over 28 weeks [13]. Other small studies performed in the late 1990s and early 2000s did 

not show statistically significant differences in weight compared to placebo [14].

The largest study to show the weight benefits of metformin is the Diabetes Prevention Study 

(DPP). The DPP examined the preventative impacts of metformin on metabolic parameters 

in individuals at high risk for T2D. It showed that the initiation of metformin reduced the 
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incidence of diabetes by 31% in a 3-year period for these high-risk patients. Follow up 

studies examined effects on weight and waist circumference. Patients randomized to 

metformin experienced a 2.1 kg weight loss on average. The extent of weight change was 

strongly associated with adherence, with highly adherent patients experiencing an average of 

a 3.5% reduction in body mass and low adherence associated with weight neural status in 2 

years of follow up [15]. Weight loss persisted in the extended follow up period over 10 years 

for the highly adherent group. Waist circumference was also impacted, with reduced weight 

circumference associated with extent of adherence [15]. The DDP showed that weight loss 

associated with metformin was sustained and safe, other than mild gastrointestinal (GI) side 

effects, but was strongly dependent on the adherence rate of the participants.

Due to the modest and inconsistent effects of weight loss the FDA has not approved 

metformin as a weight loss agent. The 2015 Endocrine Society Practice Guideline on 

Pharmacology for Obesity does not recommend the use of metformin as monotherapy for 

obese patients without metabolic complications such as diabetes [16]. The 2016 AACE/ACE 

guidelines on Obesity management recommend the use of metformin in obese patients with 

evidence of prediabetes or insulin intolerance that does not respond to lifestyle medications 

or other anti-obesity medications (Grade A; BEL 1) [17]. The current use of metformin as an 

agent exclusively for weight loss remains off-label but is frequently utilized in patients at 

high risk for metabolic complications and who do not tolerate other interventions.

Metformin and Weight Prevention

Metformin has been examined in multiple disease processes as a weight gain prevention 

tool. One area plagued by medication-induced weight gain is the treatment of psychosis and 

mood disorders. Atypical anti-psychotic agents are associated with reduced risk of 

extrapyramidal features, however frequently induce metabolic complications including 

weight gain and hyperglycemia. Multiple studies have examined whether the initiation of 

metformin prevents anti-psychotic-associated weight gain. A recent meta-analysis-

examining 12 studies with a total of 743 patients treated with metformin and atypical anti-

psychotics showed a significant reduction in BMI and insulin resistance but not fasting 

blood sugar [18].

The management of more advanced T2D involves insulin which is pro-obesogenic both from 

its anabolic effect on lipid accumulation and due to compensatory eating to prevent episodes 

of hypoglycemia [19]. In the HOME trial, metformin continued beyond the initiation of 

insulin therapy has been shown to prevent insulin-induced weight gain, versus when it is 

discontinued and insulin substituted in its place [20].

Cellular Targets of Metformin in Diabetes

Given the safety and tolerability of metformin, as well as its plural benefits on health, much 

attention has been devoted to deducing its mechanism of action. The most classical effects of 

metformin in diabetes are attributed to its ability to reduce hepatic glucose output [21, 22]. 

Most, but not all, literature suggests that the mechanisms by which metformin lowers 

hepatic glucose production relates to its modulation of mitochondrial energetics and redox 

Yerevanian and Soukas Page 3

Curr Obes Rep. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



potential. Metformin inhibits complex I of the electron transport chain, reducing 

mitochondrial adenosine triphosphate (ATP) production [23]. However, there is some 

controversy over whether this effect is meaningful at attainable concentrations of metformin 

in humans in vivo [24]. None the less, the ratio of ATP to its metabolites adenosine 

diphosphate and monophosphate (ADP and AMP) are thought to be one potential 

mechanism by which metformin lowers hepatic glucose output. One consequence of this 

increased AMP:ATP ratio is activation of AMP-activated protein kinase (AMPK), an 

inhibitor of hepatic lipogenesis and gluconeogenesis [25, 26]. However, animal models 

suggest that AMPK is dispensible for the antihyperglycemic effects of metformin, as 

animals with liver-specific genetic deletion of AMPK or its upstream kinase liver kinase B1 

(Lkb1) are still able to reduce hepatic gluconeogenesis in response to metformin [27, 28]. 

Multiple alternative explanations have been put forward that do not include AMPK, 

including AMP mediated alterations in adenylate cyclase activity and cAMP concentrations, 

direct allosteric inhibition of gluconeogenic enzymes, and modulation of hepatic redox 

potential by alterations in the glycerol-phosphate shuttle [29–31]. Thus, while the role of 

AMPK remains controversial in hepatic metabolism, AMPK has been found to be relevant 

as a global energy sensor both in the liver and in the central nervous system (CNS). Below 

we discuss the potential ability of CNS AMPK to modulate metformin’s effect on appetite.

Metformin and Appetite

Current evidence suggests that the weight change associated with metformin is more likely 

to be due to decreased caloric intake versus increases in energy expenditure. Metformin 

appears to impact appetite regulation both directly and indirectly due to its gastrointestinal 

side effects. Studies supporting these conclusions are discussed below (Figure 1).

Initial studies explored the effects of metformin on food intake. Lee et al. performed appetite 

analysis on diabetic subjects and found that metformin had a dose dependent effect on the 

quantity consumed [32]. In the same study, a 24-week double-blind treatment with 

metformin induced up to 8 kg weight loss in subjects with diabetes. Similarly, in T2D 

subjects started on insulin, those continued on metformin had less weight gain, attributed to 

a reduction in caloric intake [19, 33]. In contrast, no change was seen in energy expenditure.

Mechanisms by which metformin suppresses appetite are still being elucidated. Metabolic 

acidosis in various chronic disease states including CKD is associated with relative anorexia 

and protein malnutrition [34]. Metformin is known to induce lactate production through 

suppression of complex I of the electron transport chain [35]. The ensuing decreased 

respiratory potential of mitochondria shunts glucose towards anaerobic respiration, driving 

lactate production, particularly post-prandially [6, 36]. Lactate-mediated, mild, metabolic 

acidosis may thus drive some metformin-mediated appetite suppression [37–39].

Metformin may also affect appetite through the gut-brain axis. Metformin has been shown to 

increase secretion of the weight-loss promoting incretin glucagon like peptide 1 (GLP-1) 

[40, 41], and the anorectic hormone peptide YY (PYY) [42]. The development of delayed 

release metformin has created an opportunity to study gut-specific effects of metformin. 

Utilizing these delayed-release formulations, Buse et al. found that the glycemic effects of 
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metformin could be realized without any change in serum metformin concentration, 

suggesting that metformin exerts its effects on blood glucose through local action on the GI 

tract [43]. A putative additional mechanism by which metformin may suppress appetite 

through action in the GI tract include alteration of bile acid absorption through interaction 

with farnesoid X receptor [41, 44]. The alteration of bile acids is thought to have a 

secondary effect on secretion of appetite suppressing neuropeptides such as GLP-1 and 

peptide YY [45].

CNS effects of metformin, both direct and indirect have been reported. Metformin has been 

shown to be important in activating intestinal afferents to the Nucleus Tractus Solitarius 

(NTS) in a GLP-1 receptor and PKA dependent manner via AMPK [46]. Functional MRI 

studies have shown metformin induced cerebral metabolic changes in patients with T2D, 

experiencing decreased metabolism in the parahippocampal gyrus, ventromedial prefrontal 

cortex and fusiform gyrus [47]. These are areas associated with semantic memory and 

reward formation and may be altering food-reward relationships [48, 49].

Hypothalamic effects of metformin have also been reported. Intracerebroventricular (ICV) 

injections of metformin have been found to reduce food intake by decreasing hypothalamic 

expression of the orexigenic peptide neuropeptide Y (NPY) in rats [50]. ICV metformin has 

also shown to prevent the function of exogenous ghrelin on promoting appetite through 

suppression of mechanistic target of rapamycin (mTOR) [51]. There is evidence of blood-

brain barrier permeability to metformin, and metformin reaches concentrations in the tens of 

micromolar in CSF and several brain regions, including hypothalamus, further supporting 

the potential for a direct CNS effect [52, 53]. STAT3 phosphorylation, which is evident after 

administration of the anorectic hormone leptin [54], is activated in hypothalamic neurons in 

obese diabetic rats with metformin administration [55]. Metformin has also been shown to 

impact leptin receptor expression and decrease hypothalamic leptin resistance [56, 57].

AMPK is expressed in the appetite-regulating components of the hypothalamus including 

the arcuate nucleus [58]. It is essential to the functioning of Agouti-related Peptide (AgRP) 

neurons, as deletion of AMPK in these neurons leads to a lean phenotype in mice [59]. Thus, 

expression of AMPK is associated with orexigenic phenotypes due to stimulation of the 

NPY-AgRP axis. Curiously, although metformin is a known activator of hepatic AMPK, 

metformin has been shown to suppress hypothalamic AMPK in vitro and in vivo, consistent 

with its anorexigenic effect [60]. In primary cultures of rat hypothalamic neurons, metformin 

inhibits AMPK and prevents increases in orexigenic NPY expression [60]. This highlights 

the complex, tissue specific effects of metformin on metabolism and appetite, which, in 

aggregate, stimulate weight loss. It should be stressed that the relevance of direct, 

metformin-mediated neuronal activation of AMPK to appetite regulation remains unclear, 

due to the reported effects of the drug on appetite regulatory signals such as incretins, leptin 

and peripheral metabolites.

Metformin and the GI Tract

As mentioned above, another potential mechanism by which metformin may suppress 

appetite is via effects in the GI tract. [61]. With oral administration, metformin reaches its 
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highest concentrations in the GI tract in enterocytes [52]. These high metformin levels have 

been associated with increased enterocyte glucose uptake [62]. This glucose is utilized in an 

anaerobic manner driving local lactate production. Biopsy studies have shown increased 

lactate production with metformin infusions in the rat model [63]. The metabolic impacts of 

this gut lactate production may drive some of the gastrointestinal symptoms associated with 

metformin including diarrhea, bloating and GI discomfort. This has been examined 

genetically. Dujic et al. examined polymorphisms in organic cation transporter 1 (OCT1, the 

major transporter by which metformin is taken up into enterocytes and hepatocytes) and the 

likelihood of metformin intolerance [64]. They found that persons with homozygous 

reduced-function alleles had a 2-fold higher likelihood of intolerance symptoms to 

metformin, probably due to increased accumulation of metformin in the intestinal lumen 

[65]. Intestinal serotonin concentrations have also been found to be upregulated in 

metformin treatment [66]. The authors hypothesized that excess local secretion of serotonin 

may drive some of GI intolerance symptoms associated with metformin. The extent of 

weight loss and its relationship to these side effects is unclear. The DPP trial suggests that 

adherence correlates with weight loss, but whether GI side effects are a harbinger of 

metformin’s efficacy for weight loss is still to be determined.

Side effect studies have also identified that dysgeusia is a common side effect of metformin 

[67]. Recent studies have shown organic cation transporter 3 (OCT3) is involved in the 

concentration of metformin in the salivary glands [68]. A medicinal, bitter or metallic taste 

due to the oropharyngeal concentration of metformin may also be an appetite suppressing 

quality of this medication.

Metformin and the Microbiome

The accumulation of metformin in the GI tract is thought to impact not just epithelial brush 

border metabolism but also that of the complex bacterial community of the gut. The 

distribution of microbial flora has been shown to be different between obese and non-obese 

populations, with multiple factors thought to be playing both causative and correlative roles 

[69]. Multiple common enteric species have found to be negatively correlated with the 

obese/metabolic syndrome phenotype [70]. Studies have shown that administration of 

Ackermansia improves metabolic phenotypes in mice and that metformin increases the 

relative abundance of Ackermansia. [71, 72]. Napolitano et al. identified changes in the 

relative concentration of phyla Bacteroides and Firmicutes with metformin treatment [41]. 

One difference noted in multiple studies was the reduction in bacteria that produce short 

chain fatty acids. (SCFAs). SCFAs such as acetate and butyrate are being investigated as 

important signaling metabolites that impact hepatic gluconeogenesis and fatty acid 

metabolism. Increases in SCFAs are thought to contribute to decreased hepatic 

gluconeogenesis, reductions in FFA release from adipocytes, and suppression of appetite via 

the incretin system [73]. Metformin treatment in rats was found to modulate gut microbiota 

and increase SCFA metabolizing bacteria [74]. Additionally, metformin-mediated shifts in 

intestinal Lactobaclillus sp. has been shown to reduce hepatic glucose production in a rat 

model of T2D by restoring normal intestinal glucose sensing and sodium glucose 

cotransporter-1 (SGLT1) expression [75]. Human studies show favorable effects on the 

microbiome as well. A recent double-blind randomized control study demonstrated that the 
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addition of metformin significantly altered relative abundance of multiple bacterial strains. 

Stool samples were transferred to mice which exhibited improved metabolic parameters after 

metformin-treated stool transplant, as well as increase expression of bacterial genes related 

to SCFA metabolism [76]. These studies suggest the exciting possibility that the favorable 

effects of metformin, including the weight effects of metformin, may be a product of a 

modified microbiome.

Metformin, Obesity and Aging

Obesity, while fundamentally a disorder of nutrient homeostasis, is also a disease of aging, 

increasing markedly worldwide as individuals age [77]. Also common in aging is the 

phenotype of sarcopenic obesity, where an increase in fat mass is accompanied by decreases 

in lean body mass [78]. This has been found to be a relatively common occurrence, with 

some elderly populations exhibiting prevalence of up to 15%. Anthropometric measures are 

unreliable in identifying this type of obesity and make elucidating eutrophic versus obese 

states challenging. Unfortunately, there are no agents that directly target muscle loss and 

sarcopenic obesity, with anabolic therapy focused on exercise as the principle method of 

treatment. Metformin however is being investigated as a potential tool for managing the 

sequelae of aging. Multiple studies in C. elegans and mouse models have shown extension of 

lifespan and healthspan (proportion of individual’s life where they are productive and free 

from disease) with metformin [79]. Epidemiologic studies have also shown decreased rate of 

aging-related cancer development in individuals who take metformin [80]. Multiple 

pathways are thought to contribute to these potential effects. Metformin is known to 

suppress the function of mTOR complex, increased activity of which is mechanistically 

linked to aging and multiple aging-related diseases [81, 82]. Wu et al. elucidated that mTOR 

suppression is mediated by metformin through action on transport through the nuclear pore 

complex (NPC) [83, 84]. Suppression of passage through the NPC via metformin’s effect on 

mitochondria prevents inappropriate mTOR activation caused by age-related increases in 

nuclear pore transport, which have been shown to be causal in aging [85]. Still other work in 

model systems suggests that metformin modulates aging by affecting AMPK activity or via 

effects on the microbiome [79, 86].

In humans, it remains unclear how metformin modulates aging. Trials are underway to 

investigate the effects of metformin on muscle mass and strength, and a trial has been 

proposed to study the effects of metformin on aging-related outcomes [87, 88]. It also 

remains a possibility, since elevated insulin/IGF-1 signaling has been linked to progeria, that 

metformin’s ability to improve insulin sensitivity and lower lifetime insulin load is a 

mechanistic tie to its ability to promote healthy aging.

Metformin and Sequelae of Obesity

Non-Alcoholic Fatty Liver Disease (NAFLD)

The metabolic effects of biguanides on the liver have created interest in metformin as a 

potential therapeutic for NAFLD, a problem intimately related to the obesity epidemic. 

Meta-analyses have been unable to show benefit for metformin in reducing hepatic fibrosis 

or clinical parameters such as reductions in aminotransferase levels. These studies however 
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were small, heterogeneous and frequently contained diabetic patients [89]. It is also unclear 

whether transient impacts on these parameters are due to a primary effect of metformin on 

the pathogenesis of NASH or due to secondary effects from reductions in weight, appetite 

and insulin resistance. The American Association for the study of Liver Disease (AASLD) 

2018 guidelines do not recommend the use of Metformin as an agent to treat Non-alcoholic 

fatty liver disease [90].

Obstructive Sleep Apnea (OSA)

OSA is a common complication of obesity [91]. Metformin has been examined through 

cross sectional and retrospective studies on its impacts on OSA severity. Its use was not 

associated with changes in OSA prevalence [92].

Metabolic Bone Disease

Obese patients are known to have a decreased rate of fracture for a given bone mineral 

density, however diabetic patients are at increased risk of fractures [93, 94]. Metformin has 

been evaluated to see if it impacts bone turnover in vitro. The addition of metformin does 

not appear to increase the risk of fractures in rodents [95]. Randomized trials have shown no 

change in BMD in diabetic patients receiving insulin vs insulin and metformin [96]. 

Observational studies have not consistently shown a reduction in fractures with the use of 

metformin [97].

Osteoarthritis

Osteoarthritis is a common complication of obesity due to the high impact forces on joints 

[98]. Cohort studies have not shown that metformin use is associated with decreased 

prevalence of osteoarthritis. A prospective observational study from Taiwan found that 

patients who utilized Cox-2 inhibitors and metformin versus Cox-2 inhibitors alone were 

less likely to receive a joint replacement (HR 0.742) [99]. It is unclear whether this is 

mediated by inflammation however one study noted that metformin protected nucleus 

pulposus cells and prevents disc degeneration [100].

Thromboembolism

Venous thromboembolism is a serious complication of morbid obesity due to lower 

extremity venous stasis, prothrombotic adipokines such as leptin and resistin, and chronic 

inflammation [101]. Metformin has been found to decrease risk of DVT in a cohort study in 

Taiwan [102]. Potential etiologies for this phenomenon include inhibiting platelet activation 

and mtDNA release [103].

Conclusions

Despite its excellent safety and tolerability profile, metformin remains equivocal as a 

primary treatment for obesity and as a weight loss agent. It may serve as an adjunct therapy 

for those patients who are at high risk for metabolic complications or are experiencing other 

sequelae of obesity. Its mechanistic effects on central hypothalamic signaling, incretin 

secretion and alteration of the gut microbiome establish attractive areas of research in 

identifying new targets for obesity treatment. The long-term impacts of metformin use on 
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aging and sarcopenia have yet to be elucidated, but they may also provide important insights 

into optimizing body composition with age. In the meantime, metformin will continue to 

serve as a mainstay treatment in the management of T2D and confer multiple metabolic 

effects beyond glycemic control.
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Figure 1. 
Mechanisms by which metformin impacts obesity, appetite, and weight loss. CNS: central 

nervous system, AgRP: Agouti-related peptide, AMPK: AMP-activated protein kinase, 

NTS: nucleus tractus solitarius, SCFA: short chain fatty acids, GLP-1: glucagon like 

peptide-1, PYY: peptide YY.
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