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Abstract 

Background: The in silico fragmenter MetFrag, launched in 2010, was one of the first approaches combining 
compound database searching and fragmentation prediction for small molecule identification from tandem mass 
spectrometry data. Since then many new approaches have evolved, as has MetFrag itself. This article details the latest 
developments to MetFrag and its use in small molecule identification since the original publication.

Results: MetFrag has gone through algorithmic and scoring refinements. New features include the retrieval of refer-
ence, data source and patent information via ChemSpider and PubChem web services, as well as InChIKey filtering 
to reduce candidate redundancy due to stereoisomerism. Candidates can be filtered or scored differently based 
on criteria like occurence of certain elements and/or substructures prior to fragmentation, or presence in so-called 
“suspect lists”. Retention time information can now be calculated either within MetFrag with a sufficient amount of 
user-provided retention times, or incorporated separately as “user-defined scores” to be included in candidate rank-
ing. The changes to MetFrag were evaluated on the original dataset as well as a dataset of 473 merged high resolu-
tion tandem mass spectra (HR-MS/MS) and compared with another open source in silico fragmenter, CFM-ID. Using 
HR-MS/MS information only, MetFrag2.2 and CFM-ID had 30 and 43 Top 1 ranks, respectively, using PubChem as a 
database. Including reference and retention information in MetFrag2.2 improved this to 420 and 336 Top 1 ranks with 
ChemSpider and PubChem (89 and 71 %), respectively, and even up to 343 Top 1 ranks (PubChem) when combin-
ing with CFM-ID. The optimal parameters and weights were verified using three additional datasets of 824 merged 
HR-MS/MS spectra in total. Further examples are given to demonstrate flexibility of the enhanced features.

Conclusions: In many cases additional information is available from the experimental context to add to small mol-
ecule identification, which is especially useful where the mass spectrum alone is not sufficient for candidate selection 
from a large number of candidates. The results achieved with MetFrag2.2 clearly show the benefit of considering this 
additional information. The new functions greatly enhance the chance of identification success and have been incor-
porated into a command line interface in a flexible way designed to be integrated into high throughput workflows. 
Feedback on the command line version of MetFrag2.2 available at http://c-ruttkies.github.io/MetFrag/ is welcome.
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Structure elucidation
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Background
�e identification of unknown small molecules from 

mass spectral data is one of the most commonly-men-

tioned bottlenecks in several scientific fields, including 

metabolomic, forensic, environmental, pharmaceutical 

and medical sciences. Recent developments to high reso-

lution, accurate mass spectrometry coupled with chroma-

tographic separation has revolutionized high-throughput 

analysis and opened up whole new ranges of substances 

that can be detected at ever decreasing detection limits. 

However, where “peak inventories” are reported, the vast 

majority of the substances or peaks detected in samples 

typically remain unidentified  [1–3]. Although targeted 

analysis, where a reference standard is available, remains 
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the best way to confirm the identification of a compound, 

it is no longer possible to have access to reference stand-

ards for the 100s–1000s of substances of interest in com-

plex samples. While mass spectral libraries are growing 

for high accuracy tandem and MS
n spectra, the cover-

age is still relatively small compared with the number of 

compounds that could potentially be present in typical 

samples  [4, 5]. �us, for substances without reference 

standards or not present in the spectral libraries, the 

challenge of identification still remains. �is has spurred 

activities in computational mass spectrometry, aimed at 

proposing tentative identifications for the cases where 

the mass spectrum is not (yet) in a mass spectral library.

�e in silico fragmenter MetFrag, launched in 2010, 

was one of the first approaches to address this niche 

for accurate tandem mass spectra in a fast, combinato-

rial manner [6]. �e MetFrag workflow starts by retriev-

ing candidate structures from the compound databases 

PubChem  [7], ChemSpider  [8] or KEGG  [9, 10], or 

accepting the upload of a structure data file (SDF) con-

taining candidates. Candidates are then fragmented using 

a bond dissociation approach and these fragments are 

compared with the product ions in the measured mass 

spectrum to determine which candidates best explain 

the measured data. �e candidate scoring is a function of 

the mass to charge ratio (m/z),   intensity and bond dis-

sociation energy (BDE) of the matched peaks, while a 

limited number of neutral loss rules (5 in total) account 

for rearrangements  [6]. Searching PubChem, the origi-

nal MetFrag (hereafter termed “MetFrag2010” for read-

ability) achieved a median rank of 8 (with an average of 

338 candidates per compound) when restricted to a Feb. 

2006 version of PubChem, and 31.5 querying PubChem 

in 2009 (average of 2508 candidates per compound) on a 

102 compound dataset from Hill et al. [11]. As PubChem 

is now double the size of the 2009 version, the candidate 

ranking becomes more challenging over time due to the 

increase in numbers of candidates. �us, innovations are 

required to improve performance and efficiency.

Other methods for in silico fragmentation are also 

available. �e commercial software Mass Frontier  [12] 

uses rule–based fragmentation prediction based on 

standard reactions, a comprehensive library of over 

100,000 fragmentation rules, or both. �e approaches 

of MetFrag and Mass Frontier are complementary and 

have been used in combination to support structure elu-

cidation  [13, 14], but Mass Frontier does not perform 

candidate retrieval or scoring by itself. With increasing 

amounts of data available, machine learning approaches 

have been used to train models of the fragmentation pro-

cess. Heinonen et  al.  [15] introduced FingerID, which 

uses a support vector machine to learn the mapping 

between the mass spectra and molecular fingerprints of 

the candidates. Allen et al. [16] use a stochastic, genera-

tive Markov model for the fragmentation. Implemented 

in CFM-ID (competitive fragment modelling), this can 

be used to assign fragments to spectra to rank the can-

didates, but also to predict spectra from structures alone. 

�e MAGMa algorithm  [17] includes information from 

MS
n fragmentation data, but also uses the number of 

references as an additional scoring term. �e latest frag-

menter, CSI:FingerID combines fragmentation trees and 

molecular fingerprinting to achieve up to 39  % Top  1 

ranks, outperforming all other fragmenters  [18]. �e 

MetFusion  [19] approach takes advantage of the availa-

bility of spectral data for some compounds and performs 

a combined query of both MetFrag and MassBank  [20], 

such that the scores of candidates with high chemical 

similarity to high-scoring reference spectra are increased.

Lessons from recent critical assessment of small mol-

ecule identification contests (CASMI)  [21, 22], which 

included many of the above-mentioned algorithms, 

show that the use of smaller, specific databases greatly 

improves the chance of obtaining the correct answer 

ranked highly and that the winners gathered information 

from many different sources, rather than relying on the 

in silico fragmentation alone. Furthermore, performing 

candidate selection by molecular formula can risk losing 

the correct candidate if the formula prediction is not cer-

tain, such that an exact mass search can be more appro-

priate in cases where more than one formula is possible. 

Despite the progress achieved for in silico fragmentation 

approaches, there are still some fundamental limitations 

to mass spectrometry that mean that candidate rank-

ing cannot be solved by fragment prediction alone. For 

example, mass spectra that are dominated by one or only 

a few fragments (e.g. a water loss) that can be explained 

by most of the candidates simply do not contain enough 

information to distinguish candidates. Further examples 

and limitations are discussed extensively in [4].

�e aim of MetFrag2.2 was to incorporate many addi-

tional features into the original MetFrag in silico frag-

menter, considering all the information presented above. 

Features to explicitly include or exclude combinations of 

elements and substructures by either filtering or scor-

ing were added. Suspect screening approaches, growing 

in popularity in environmental analysis [1], were also 

incorporated to allow users to screen large databases (i.e. 

PubChem and ChemSpider) while being able to check 

for candidates present in smaller, more specific databases 

(e.g. KEGG [9], HMDB [23], STOFF-IDENT [24], Mass-

Bank  [20] or NORMAN suspects  [25]), enabling users 

to “flag” potential structures of interest. �e number of 

references, data sources and/or patents for a substance 

are now accessible via PubChem and/or ChemSpider 

web services, and a PubChem reference score has already 
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been included in the MAGMa web interface  [26]. A 

high number of literature references or patent listings 

may indicate that the substance is of high use and thus 

more likely to be found in the environment. Similarly, a 

higher number of scientific articles for a metabolite could 

indicate that this has been observed in biological sam-

ples before. Reference information has been shown to 

increase identification “success” in many cases, for exam-

ple [17, 27, 28], by providing additional information com-

pletely independent of the analytical evidence. However, 

as this information can introduce a bias towards known 

compounds, this information should be incorporated 

with caution, depending on the experimental context.

Retention time information is often used for candi-

date selection in LC/MS. Unlike the retention index (RI) 

in GC, where the Kovats RI [29] is quite widely applied, 

there is not yet an established RI per se for LC/MS 

despite a high interest. Instead, where a reverse phase 

column is used for the LC method, the octanol–water 

partitioning coefficient (log P) and retention times (RT) 

of substances can be correlated due to the column prop-

erties [30]. �e log P of the measured standards can be 

predicted with various software approaches and corre-

lated with the retention times (see e.g.  [31] for an over-

view on different methods). �is has already been used 

in candidate selection (e.g. [13, 32–34]), with various log 

P predictions. �e orthogonal information proved useful 

despite the large errors associated with the predictions 

(e.g. over 1 log unit or up to several minutes retention 

time window depending on the LC run length). �ese are 

due to uncertainties in log P prediction that are common 

among different prediction implementations when con-

sidering a broad range of substances with different (and 

many) functional groups and ionization behaviour. As the 

Chemical Development Kit (CDK  [35, 36]) offers log P 

calculations, this can be incorporated within MetFrag2.2. 

Alternative approaches with log D, accounting for ioni-

zation, or those requiring more extensive calculations 

(e.g.  [37–39]) can be included via a user-defined score, 

described further below.

�is article details the developments and improve-

ments that have been made to MetFrag since the origi-

nal publication, including a detailed evaluation on several 

datasets and specific examples to demonstrate the use of 

MetFrag2.2 in small molecule identification.

Implementation
MetFrag architecture

MetFrag2.2 is written in Java and uses the CDK  [35] to 

read, write and process chemical structures. To start, 

candidates are selected from a compound database 

based on the neutral monoisotopic precursor mass and 

a given relative mass deviation (e.g. 229.1089 ± 5 ppm), 

the neutral molecular formula of the precursor or a set 

of database-dependent compound accession numbers. 

Currently, the online databases KEGG [9, 10], PubChem 

[7] or ChemSpider [8] can be used with MetFrag2.2, as 

well as offline databases in the form of a structure data 

file (SDF) or, new to MetFrag2.2, a CSV file that con-

tains structures in the form of InChIs [40] together with 

their identifiers and other properties. Furthermore, Met-

Frag2.2 is able to query local compound database systems 

in MySQL or PostgreSQL, as performed in [41].

MetFrag2010 considered the ion species [M  +  H]+, 

[M]+, [M]
−

 and [M − H]
−

 during candidate retrieval and 

fragment generation. While the web interface contained 

an adduct mass adjustment feature, the presence of 

adducts was not considered in the fragments. MetFrag2.2 

can also handle adducts also appearing in the product 

ions associated with [M + Na]+, [M + K]+, [M + NH4]
+  

for positive ionization and [M  +  Cl]
−

, [M  +  HCOO]
−

 

and [M  +  CH3COO]
−

 for negative ionization. As the 

candidate retrieval is performed on neutral molecules, 

the precursor adduct type must still be known before-

hand; for high-throughput workflows this information is 

intended to come from the workflow output.

Additive relative and absolute mass deviation values are 

used to perform the MS/MS peak matching and can be 

adjusted according to the instrument type used for MS/

MS spectra acquisition. �e number of fragmentation 

steps performed by MetFrag2.2 can be limited by setting 

the tree depth (default is 2).

�e overall score of a given candidate is calculated as 

shown in Eq. 1.

�e final candidate score SCFinal
 is the weighted sum of 

all single scoring terms used, where the weights given 

by ωi specify the contribution of each term. All SC scor-

ing terms used to calculate SCFinal
 are normalized to the 

maximum value within the candidate result list for a 

given MS/MS input. �e calculation of individual scor-

ing terms are detailed in the subsections below; all terms 

besides SCFrag are new to MetFrag2.2.

A variety of output options are available. Output SDFs 

contain all compounds with a structure connection table 

and all additional information stored in property fields. 

For the CSV and XLS format, the structures are encoded 

by SMILES [42] and InChI codes, while an extended XLS 

option is available that includes images of the compounds 

and/or fragments. In all cases the compounds are sorted 

by the calculated score by default.

(1)

SCFinal
= ωFrag · SCFrag + ωRT · SCRT + ωRefs · SCRefs

+ ωIncl · SCIncl

+ ωExcl · SCExcl
+ ωSuspects · SCSuspects

+ · · · + ωn · SCn
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In silico fragmentation re�nements

�e in silico fragmentation part of MetFrag2.2 has under-

gone extensive algorithmic and scoring refinements. �e 

fragmentation algorithm still uses a top-down approach, 

starting with an entire molecular graph and removing 

each bond successively. However, the generated frag-

ments are now stored more efficiently by using only 

the indexes of removed bonds and atoms, similar to the 

MAGMa approach [43]. �is not only increases process-

ing speed and decreases memory usage, but still allows 

the fast calculation of the masses and molecular formulas 

of each fragment. �is makes it possible to process MS/

MS spectra with higher tree depths to generate reliable 

fragments for molecules with complex ring structures 

with lower CPU and memory requirements. As a result, 

fragment filters such as the molecular formula dupli-

cate filter used in MetFrag2010 to decrease the number 

of generated structures were no longer required, their 

removal reduces the risk of missing a potentially correct 

fragment. �e calculation of the fragmentation score, 

SCFrag, modified from the score given in [6], is shown in 

Eq. 2 for a given candidate C:

For each peak p matching a generated fragment, the 

relative mass RelMassp and intensity RelIntp as well as the 

sum of all cleaved bonds b of the fragment f assigned to 

p are considered. Where more than one fragment could 

be assigned to p, the fragment with the lowest denomi-

nator value is considered. In contrast to Eq. 2, the Met-

Frag2010 scoring used the difference between 1/max(wc) 

and 1/max(e) · ec, which could lead to negative scores if 

the BDE penalty was large. �e weights α, β and γ were 

optimized on a smaller subset of spectra from Gerlich 

and Neumann [19] that was not used further in this work 

including merged MassBank IPB (PB) and RIKEN (PR) 

MS/MS spectra and were set to α = 1.84, β = 0.59 and 

γ = 0.47. Once SCFrag has been calculated for all candi-

dates within a candidate list, it is normalised so that the 

highest score is one.

Compound �lters, element and substructure options

�e unconnected compound filter was already imple-

mented in MetFrag2010 to remove salts and other 

unconnected substances that could not possibly have the 

correct neutral mass from the candidate list. InChIKey 

filtering has now been added to reduce candidate redun-

dancy due to stereoisomerism, as stereoisomers inflate 

candidate numbers but cannot (usually) be distinguished 

with MS/MS. �e InChIKey filtering is performed using 

the first block, which encodes the molecular skeleton (or 

(2)SCFrag =

∑

p∈P

RelMassp
α

· RelIntp
β

(

∑

b∈Bf
BDEb

)γ

connectivity), but not the stereochemistry. While this is 

generally reasonable, some tautomers may have differing 

InChIKey first blocks (see e.g. [40]), such that not all tau-

tomers will be filtered out. �e highest-scoring stereoiso-

mers overall with a matching first block are retained.

Element restrictions have been added to enhance the 

specificity of the exact mass search. �ree options are 

available to restrict the elements considered: (a) include 

only the given elements, (b) the given elements have to be 

present, but other elements can also be present (as long 

as they are not explicitly excluded) and (c) exclude certain 

elements. Options (b) and (c) can be used in combina-

tion. �ese filters can be used for example to incorporate 

isotope information (e.g. Cl, S) that has been detected in 

the full scan (MS1) data.

Substructure restrictions allow the inclusion and exclu-

sion of certain molecular substructures, encoded in 

SMARTS [44]. Each substructure is searched indepen-

dently, thus overlapping substructures can also be con-

sidered. �is option is particularly useful for cases where 

detailed information about a parent substance is known 

(e.g. transformation product, metabolite elucidation), 

or complementary substructure information is available 

from elsewhere (e.g. MS2Analyzer [45] or other MS clas-

sifiers [13]). Candidates containing certain substructures 

can either be included and/or excluded prior to frag-

mentation, or scored differently. To calculate a score, the 

number of matches in the inclusion or exclusion list con-

taining n substructures are added per candidate as given 

in Eq. 3 (where Mi = 1, if substructure i matches candi-

date C from the given candidate list L or 0 otherwise):

�e inclusion (SCIncl
) and/or exclusion (SCExcl

) score(s) per 

candidate are then calcualted as shown in Eq. 4:

where maxC ′
∈L(NC ′

Match
) is the maximal value of 

NCMatch
 within the candidate list and the scores SCIncl

 

or SCExcl
 are set to 0 when maxC ′

∈L(NC ′
Match

) = 0 or 

maxC ′
∈L(n − NC ′

Match
) = 0, respectively.

Additional substance information

Reference and patent information

While the reference and patent information is repre-

sented by the placeholder term ωRefs · SCRefs
 in Eq. 1, the 

score can either be composed of several terms or added 

as a combined term, as described below.

(3)NCMatch
=

∑
M1 + M2 + · · · + Mn; Mi ∈ {0, 1}

(4)

SCIncl
=

NCMatch

maxC ′∈L

(

NC ′
Match

) ;

SCExcl
=

n − NCMatch

maxC ′∈L

(

n − NC ′
Match

)
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If the query databases is PubChem, the number of pat-

ents (PubChemNumberPatents, PNP) and PubMed ref-

erences (PubChemPubMedCount, PPC) are retrieved 

for each candidate via the PubChem PUG REST API 

[46]. �ese values result in the scoring terms SCPNP
 and 

SCPPC
, which can be weighted individually, or a combined 

term with either or both parameters. For the latter, first, a 

cumulative reference term is calculated as shown in Eq. 5, 

before the PubChem combined reference score (SCPCR
) is 

calculated for candidate C in candidate list L as shown in 

Eq. 6 for PubChem:

For ChemSpider, five values with reference infor-

mation can be retrieved using the ChemSpider web 

services  [47]), including the number of data sources 

(ChemSpiderDataSourceCount, CDC), references 

(ChemspiderReferenceCount, CRC), PubMed references 

(ChemSpiderPubMedCount, CPC), Royal Society for 

Chemistry (RSC) references (ChemSpiderRSCCount, 

CRSC) and external references (ChemSpiderExternal-

ReferenceCount, CERC). Any combination of these ref-

erence sources can be used and weighted individually, 

yielding the score terms SCCDC
, SCCRC

, SCCPC
, SCCRSC

 and 

SCCERC
. Alternatively, the ChemSpider Combined Refer-

ence Scoring term (SCCCR
) can be calculated, as shown 

below in Eqs. 7 and 8:

�e corresponding command line terms are given in the 

additional information (see Additional files 1, 2, 3).

Suspect lists

Additional lists of substances (so-called “suspect lists”) 

can be used to screen for the presence of retrieved candi-

dates in alternative databases. �e suspect lists are input 

as a text file containing InChIKeys (one key per line) for 

fast screening. �e first block of the InChIKey is used to 

determine matches. Example files are available from [25]. 

�is “suspect screening” can be used as an inclusion fil-

ter (include only those substances that are in the suspect 

list) or as an additional scoring term for the ranking of 

the candidates, yielding the term ωSuspects · SCSuspects given 

in Eq. 1.

(5)NCPCR
= a1 · PNPC + a2 · PPCC , a1, a2 ∈ {0, 1}

(6)
SCPCR

=

NCPCR

maxC ′
∈LNC

′

PCR

(7)

NCCCR
= b1 · CRCC + b2 · CERCC + b3 · CRSCC

+ b4 · CPCC + b5 · CDCC

b1, b2, b3, b4, b5 ∈ {0, 1}

(8)SCCCR
=

NCCCR

maxC ′
∈LNC

′

CCR

Retention time score via log P

�e retention time (RT) scores offered within MetFrag2.2 

are based on the correlation of log P and user-provided 

RT information. �e RTs must be associated with suf-

ficient analytical standards measured under the same 

conditions as the unknown spectrum (a minimum of 

ten data points are recommended, depending on the 

distribution over the chromatographic run). By default, 

the log P is calculated using the XlogP algorithm in the 

CDK library [36, 48, 49]. Alternatively, if PubChem is 

used as a candidate source, the XLOGP3 value retrieved 

from PubChem can also be used [50]. �e user-provided 

RTs and their associated log P values comprise a train-

ing dataset to generate a linear model between RT and 

the log P, shown in Eq. 9, where a and b are determined 

using least squares regression:

�is equation is then used to estimate log PUnknown, given 

the measured RT associated with the unknown spec-

trum, and compared with log PC calculated for each can-

didate. It is imperative that the log P calculated for each 

candidate arises from the same source as the log P used 

to build the model in Eq. 9. Lower log P deviations result 

in a higher score for a candidate; the score is calculated 

using density functions assuming a normal distribution 

with σ = 1.5 (chosen arbitrarily), as shown in Eq. 10:

Alternative log P values that are not available within 

MetFrag2.2 can also be used to establish a model and 

calculate a different SCRT
 in a two-step approach. First, 

MetFrag2.2 can be run either with or without one of the 

built-in models, so that candidates and all other scores 

can be obtained. �e InChIs or SMILES in the output 

CSV, or structures in the output SDF can then be used by 

the user to calculate their own log P values. �ese should 

be included in the output CSV or SDF using the “User-

LogP” tag (or a self-defined alternative) and used as input 

for MetFrag2.2 with the Local Database option and a RT 

training file containing retention times and the user log 

Ps with the column header matching the tag in the results 

file. �e values a and b in Eq. 9 are then determined and 

used to calculate SCRT
 for the final scoring. Alternative 

RT models that do not use log P should be included as a 

“user-defined score”, as described below.

User-de�ned scoring functions

�e final term in Eq.  1, ωn · SCn
, represents the “user-

defined scoring function”, which allows users to incorpo-

rate any additional information into the final candidate 

scoring. �e MetFrag2.2 output (InChIs, SMILES, SDF) 

(9)log PUnknown = a · RTUnknown + b

(10)SCRT =
1

σ
√
2π

e
−(|log PUnknown−log PC|)2/2σ 2
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can be used to calculate additional “scores” for the can-

didates using external methods and these scores can be 

reimported with the candidates and all other MetFrag2.2 

scores in the pipe-separated (|) format for final scoring. 

�e scores and weights are matched from the column 

headers in the input file and the parameter names added 

to the score list. �e commands are given in a additional 

table (see Additional files 1, 2, 3), with an example (“ter-

butylazine and isomers”) below.

Results and discussion
�e changes to MetFrag2.2 were evaluated on several 

datasets, described in the following. Further examples 

are given to demonstrate the use of different new fea-

tures. Unless mentioned otherwise, candidate structures 

were retrieved from the compound databases PubChem 

and ChemSpider in June, 2015. If not stated explicitly, 

the datasets were processed with a relative and absolute 

fragment mass deviation of 5 ppm and 0.001 Da, respec-

tively. �e resulting ranks, if not specified explicitly, cor-

respond to pessimistic ranks, where the worst rank is 

reported in the case where the correct candidate has the 

same score as other candidates. Stereoisomers were fil-

tered to keep only the best scored candidate based on the 

comparison of the first part of the candidates’ InChIKeys. 

�e expected top ranks calculated as in Allen et al. [16], 

which handles ties of equally scored candidates in a uni-

formly random manner, are also given when compar-

ing the two in silico fragmenters. �is demonstrates the 

effect of equally scored candidates on ranking results.

�e datasets from Eawag and UFZ used in this publi-

cation arose from the measurement of reference stand-

ard collections at Eawag and UFZ, which comprise small 

molecules of environmental relevance such as pharma-

ceuticals and pesticides with a wide range of physico-

chemical properties and functional groups, and also 

include several transformation products which typically 

have lower reference counts. All spectra are publicly 

available in MassBank.

In Silico fragmentation performance

Comparison with MetFrag2010

�e merged spectra from 102 compounds published 

in Hill et  al.  [11], also used in [6, 19], formed the first 

evaluation set. �e candidate sets from Gerlich and 

Neumann  [19] were used as input for MetFrag2.2 and 

processed with consistent settings: relative mass devia-

tion of 10 ppm and absolute mass deviation of 0 Da, i.e. 

no absolute error, for a direct comparison with Met-

Frag2010. With MetFrag2.2, the median rank improved 

from 18.5 to 14.5, while the number of correct ranked 

candidates in the top 1, 3 and 5 improved from 8 to 9, 20 

to 24 and 28 to 34, respectively.

Baseline performance on Orbitrap XL Dataset

A set of 473 LTQ Orbitrap XL spectra resulting from 

359 reference standards formed the second dataset. �e 

spectra were measured at several collision energies with 

both collision-induced ionization (CID) 35 and higher-

energy CID (HCD) 15, 30, 45, 60, 75 and 90 normalized 

units (see [51] for more details) coupled with liquid chro-

matography (LC) with a 25 min program on an Xbridge 

C18 column. �e raw files were processed with RMass-

Bank [51, 52], yielding the “EA” records in MassBank. 

�ese spectra were merged using the mzClust_hclust 

function in xcms [53] (parameters eppm  =  5 × 10
−6 

and eabs = 0.001 Da) to create peaks with the mean m/z 

value and highest (relative) intensity and retained where 

they contained at least one fragment peak other than 

the precursor. In total 473 spectra (319 [M  +  H]+and 

154 [M − H]
−

) were evaluated with MetFrag2010 using 

ChemSpider, as well as MetFrag2.2 using either PubChem 

or ChemSpider. �e correct molecular formula was used 

to retrieve candidates. �e results, given in Table 1, show 

the clear improvement between MetFrag2010 (73 Top 1 

ranks with ChemSpider) and MetFrag2.2 (105 top 1 ranks 

with ChemSpider). �is is also indicated by the higher 

relative ranking positions (RRP)  [19] retrieved by Met-

Frag2.2 where a value of 1 marks the best possible result 

and 0 the worst possible result. Note that the version 

used here is 1-RRP as defined in Kerber et  al.  [54] and 

Schymanski et al. [55]. �e results show that the algorith-

mic refinements improved the baseline in silico fragmen-

tation performance, although it is difficult to tell which of 

the changes had the greatest influence.

Comparison with CFM‑ID using Orbitrap XL Dataset

�e same dataset of 473 merged spectra and the corre-

sponding PubChem candidate sets were used as input 

for CFM-ID [16] version 2.0 (“Jaccard”, RDKit 2015.03.1, 

lpsolve 5.5.2.0, Boost 1.55.0), to form a baseline compari-

son with an alternative in silico fragmenter. �e results, 

given in Table 1, show that CFM-ID generally performed 

better, indicated by the higher number of correct first 

ranked candidates (43 vs. 30), top 5 (170 vs. 145), top 10 

(232 vs. 226) and a lower median and mean rank of 11 

versus 12 and 127 versus 141. �e expected ranks, includ-

ing equal ranked candidates, also implied a better perfor-

mance of CFM-ID (top  1: 43 vs. 57, top  5: 163 vs. 193, 

top  10: 245 vs. 261). �is was not entirely unexpected 

as CFM-ID uses a more sophisticated fragmentation 

approach, but also requires a much longer computa-

tion time. For run time analysis, 84 of the 473 queries, 

selected at random, were processed (single-threaded) 

with MetFrag2.2 and CFM-ID in parallel on a computer 

cluster with a maximum of 28 (virtual) computer nodes 

with 12 CPU cores each. �e total run times (system + 
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user runtime, retrieved by linux bash command time) 

were 75  min for MetFrag2.2 and 12,570  min (209.5  h) 

for CFM-ID. �ese values represent the runtime on a 

single CPU core for all 84 queries in series. �e average 

run time per query amounts to 54 s for MetFrag2.2 and 

8979 s (150 min) for CFM-ID.

As CFM-ID and MetFrag2.2 use independent in silico 

fragmentation approaches, one can hypothesize that 

the combination of the approaches should improve 

the results further. To demonstrate this, the CFM-ID 

results were incorporated into MetFrag2.2 by introduc-

ing an additional scoring term ωCFM-ID · SCCFM-ID
, where 

SCCFM-ID
 defines the normalized CFM-ID probability of 

candidate C. Different contributions of each fragmenter 

relative to another was determined by randomly draw-

ing 100 combinations of ωFrag and ωCFM-ID such that 

(ωFrag + ωCFM-ID = 1). �e best results, shown in Table 1, 

were obtained with ωFrag = 0.67 and ωCFM-ID = 0.33 , 

where the change in number 1 ranks with weight is 

shown in Additional file  4. With this best combination, 

the number of Top 1 ranks improved from 30 to 61, while 

the median rank improved to 8. �is shows that the com-

bination of independent fragmentation methods can 

indeed yield valuable improvements to the results, shown 

again in the next paragraph after including the additional 

information. Further validation was beyond the scope 

of the current article, as further improvements could be 

made by retraining CFM-ID on Orbitrap data, but would 

be of interest in the future.

Adding retention time and reference information

Parameter selection on Orbitrap XL Dataset

�e next stage was to assess the effect of references 

and retention time information on the MetFrag results. 

Firstly, each score term (i.e. fragmenter, retention time 

and/or reference information) was either included or 

excluded by setting the weight (ωFrag ,ωRT,ωRefs) to 1 or 

0, to assess the impact of the various combinations on 

the number of correctly-ranked number 1 substances. 

�e results are shown in Table  2. �e best result was 

obtained when all three “score terms” (fragmenter, 

RT and references) were included in candidate rank-

ing. For PubChem, both RT/log P models (CDK XlogP 

and XLOGP3 from PubChem directly) were assessed 

and thus two sets of results are reported. �e reference 

information was included using the combined reference 

scores introduced in Eqs.  6 and  8, where all combina-

tions of the reference values described above (1–2 for 

PubChem, 1–5 for ChemSpider, i.e. 3 and 31 combina-

tions in total, respectively), were used to form a cumu-

lative total reference term, shown in Eq. 5 for PubChem 

and Eq. 7 for ChemSpider. �e best results were achieved 

with PubChem when using both patents and PubMed 

references (SCPNP+PPC
; a1 = 1, a2 = 1), while for Chem-

Spider using the ReferenceCount, ExternalReference-

Count and the DataSourceCount (SCCRC+CERC+CDC
) proved 

best, i.e. b1 = 1, b2 = 1, b3 = 0, b4 = 0, b5 = 1. Table  2 

contains the number of Top  1 ranks for each combina-

tion of ωFrag ,ωRT,ωRefs ∈ {0, 1}. �e results show clearly 

that, while references alone result in over 311 top 1 ranks 

(65 % for PubChem), the addition of both fragmentation 

and retention time information improves the results fur-

ther, to 69  % of candidates ranked first (PubChem) and 

even 87  % of candidates ranked first (ChemSpider). For 

PubChem the distribution of the number of Combine-

dReferences (including patents and PubMed references) 

for the 359 queries of the (unique) correct candidates is 

shown in Additional file 5.

Table 1 Comparison of in silico fragmentation results for 473 Eawag Orbitrap spectra (formula search)

MetFrag2010 and MetFrag2.2 were compared with the same ChemSpider candidate sets; MetFrag2.2 and CFM-ID with the same PubChem candidate sets. Far right: 

Best top 1 pessimistic ranks obtained by combining MetFrag2.2 and CFM-ID 2.0 with the weights ωFrag = 0.67 and ωCFM-ID = 0.33. The expected ranks, which partially 

account for equally scored candidates as calculated in [16], are shown in the lower part of the table

MetFrag2010 MetFrag2.2 CFM-ID MetFrag2.2 + CFM-ID

ChemSpider ChemSpider PubChem PubChem PubChem

Pessimistic ranks

 Median rank 8 4 12 11 8

 Mean rank 74 38 141 127 85

 Mean RRP 0.859 0.894 0.880 0.881 0.901

 Top 1 ranks 73 (15 %) 105 (22 %) 30 (6 %) 43 (9 %) 62 (13 %)

 Top 5 ranks 202 267 145 170 202

 Top 10 ranks 258 320 226 232 276

Expected top ranks

 Top 1 ranks 90 (19 %) 124 (26 %) 43 (9 %) 57 (12 %) 70 (15 %)

 Top 5 ranks 218 280 163 193 213

 Top 10 ranks 274 329 245 261 288
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Following this, the combination of each scoring term 

was assessed by randomly drawing 1000 different weight 

combinations such that (ωFrag + ωRT + ωRefs = 1 ) to 

determine the optimal relative contributions of each 

term for the best results. �is was performed for all 

combinations of reference sources (3 for PubChem, 31 

for ChemSpider). �e best result was obtained again 

when using both patents and PubMed references for 

PubChem (SCPNP+PPC
; a1 = 1, a2 = 1), but using only the 

ReferenceCount (SCCRC
; b1 = 1, b2 = 0, b3 = 0, b4 = 0 , 

b5 = 0) for ChemSpider. �e results are summarized 

in Table  3 (including the weight terms) and shown in 

Figs. 1 and 2 for PubChem and ChemSpider respectively. 

�ese triangle plots show the top 1 candidates for all ωi 

combinations, colour-coded (black—0  % of the correct 

candidates ranked first, yellow—10  0  % of the correct 

candidates ranked first) with the ωi per category increas-

ing in the direction of the arrow. Each corner is ωi = 1. 

�e 25th and 75th percentiles are shown to give an idea 

of the distribution of the ranks. �e equivalent plots 

for the number of top  5 and top  10 ranks are given in 

Additional files 6, 7, 8 and 9. Although the results from 

(ωFrag, ωRT, ωRefs ∈ {0, 1}) above indicated that the term 

SCCRC+CERC+CDC
 yielded the best result for ChemSpider 

with 411 top  1 ranks, SCCRC
 yielded 410 top  1 ranks for 

the same calculations, indicating that there is little dif-

ference between the two combinations. Using the ran-

domly-drawn weights, the top  1 ranks improved to 420 

(ChemSpider) and 336 (PubChem). �is proves without 

a doubt that the addition of reference and retention time 

information drastically improves the performance, going 

from 22 to 89  % top  1 ranks (ChemSpider) and 6.3 to 

71 % (PubChem).

As above, it was interesting to investigate whether the 

addition of a complementary fragmentation technique, 

i.e. CFM-ID, would improve the results even further. 

MetFrag2.2 and CFM-ID were combined with retention 

time and reference information using 1000 randomly 

drawn combinations of ωFrag, ωCFM-ID, ωRT and ωPNP+PPC 

such that (ωFrag + ωCFM-ID + ωRT + ωPNP+PPC = 1). �e 

results, shown in Table  3, indicate that the PubChem 

results can be improved further, to 343 top  1 ranks 

(73  %). �is is a drastic improvement from the perfor-

mance of both original fragmenters alone, with CFM-ID 

alone yielding between 10 and 12 % top 1 hits (expected 

rank) in their original publication  [16] with an older 

PubChem, the combination of both fragmenters alone 

yielding 15  % (expected rank) here. �ese combined 

results are also drastically better than the latest in silico 

fragmentation results just published for CSI:FingerID. 

Dührkop et  al.  [18] investigated each individual frag-

menter currently available and compared the results with 

Table 2 PubChem and ChemSpider results (number of pessimistic top 1 ranks) for 473 Eawag Orbitrap spectra

The weights indicate where the score term was included (1) or excluded (0) from the candidate ranking. For PubChem ωRefs · SCRefs = ωRefs · (SCPNP+PPC
); for ChemSpider 

SCRefs = SCCRC+CERC+CDC
 only. See text for explanations

Weight term Score term Weights

ωFrag SCFrag 1 1 1 0 1 0 0

ωRT SCRT 1 1 0 1 0 1 0

ωRefs SCRefs 1 0 1 1 0 0 1

 Database RT source Top 1 ranks

PubChem XLOGP3 325 (69 %) 53 322 315 30 10 311

PubChem CDK XlogP 326 (69 %) 43 322 316 30 8 311

ChemSpider CDK XlogP 411 (87 %) 113 411 376 105 41 376

Table 3 PubChem and  ChemSpider results for  473 Eawag 

orbitrap spectra with  formula retrieval, including  in silico 

fragmentation, RT and  reference information as  shown, 

with the given ωi for the highest number of Top 1 ranks

For PubChem ωRefs · SCRefs = ωRefs · (SCPNP+PPC
); for ChemSpider SCRefs = SCCRC 

only. See text for explanations. Far right: combining CFM-ID results to 

incorporate complementary fragmentation information

MetFrag2.2 MetFrag2.2 + 
CFM-ID

Database ChemSpider PubChem PubChem PubChem

RT/log P  
Model

CDK XlogP CDK XlogP XLOGP3 CDK XlogP

ωFrag (SCFrag) 0.49 0.57 0.50 0.33

ωRT (SCRT) 0.19 0.02 0.16 0.03

ωRefs (SCRefs) 0.32 0.41 0.34 0.35

ωCFMID (SCCFMID
) – – –  0.29

Median rank 1 1 1 1

Mean rank 6.5 35 41 18

Mean RRP 0.990 0.977 0.977  0.978

Top 1 ranks 420 (89 %) 336 (71 %) 336 (71 %)  343 (73 %)

Top 5 ranks 447 396 398  411

Top 10 ranks 454 422 414  429
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the CSI:FingerID. Despite using different data and set-

tings to those here, their results on the Agilent dataset 

indicated that MetFrag2010 and CFM-ID achieved 9 and 

12 % top 1 (expected) ranks, which are reasonably com-

parable with the results presented above. FingerID  [15] 

achieved 19.6 %, while CSI:FingerID achieved 39 % top 1 

results, which is a dramatic improvement over the other 

fragmenters. Since the external information boosted the 

top  1 ranks to 73  % for MetFrag2.2 plus CFM-ID, one 

could speculate that the combination of CSI:FingerID, 

MetFrag2.2 and CFM-ID would result in an even greater 

performance.

Cross‑evaluation on additional datasets

As the RT and reference scores are very subjective to 

experimental context, MetFrag2.2 now contains so many 

tuneable parameters that it will be beneficial to users 

when a few default cases are suggested. �us, once the 

optimal reference source combinations were determined 

as described above, alternative datasets were used to re-

determine the optimal weights ωFrag, ωRT and ωRefs to 

investigate the variation over different datasets. �ree 

sufficiently large datasets available on MassBank con-

tained good quality MS/MS and RT data, all processed 

with RMassBank [51].

UF dataset: A susbset of the 2758 UFZ Orbitrap XL 

records were acquired on an Kinetex Core-Shell C18 col-

umn from Phenomenex with a 40 min chromatographic 

program (all others were direct infusion experiments). 

�ese MS/MS spectra, arising from [M  +  H]+  and 

[M  −  H]
−

  precursors, were recorded at four collision 

energies: CID 35 and 55 as well as HCD 50 and 80. 

�ese spectra were merged and processed as described 

above for the Orbitrap XL dataset, resulting in 225 

merged spectra (“UF” dataset) from 195 substances (184 

[M + H]+ and 41 [M − H]
−

).

EQex and EQxPlus datasets: Two additional Eawag 

datasets were also available. �e “EQex” dataset, meas-

ured on a Q Exactive Orbitrap, contained MS/MS spec-

tra associated with [M + H]+ and [M − H]
−

 precursors 

recorded at six different collision energies (HCD 15, 30, 

45, 60, 75 and 90). �e “EQExPlus” dataset, measured 
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Fig. 1 Top 1 ranks with PubChem (XlogP3) on the Orbitrap XL Dataset. The results were obtained with MetFrag formula query and the inclusion of 
references and retention time. The reference score was calculated with the number of patents (PNP) and PubMed references (PPC). The larger dots 
show the best result (336 number 1 ranks), 75th percentile (320), median (312), 25th percentile (249) and worst result (61). For the best result, the 
weights were ωFrag = 0.50,ωRT = 0.16 and ωRefs = 0.34
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on a Q Exactive Plus Orbitrap, contained MS/MS spec-

tra associated with [M + H]+ and [M − H]
−

 precursors 

recorded at nine different collision energies (HCD 15, 30, 

45, 60, 75, 90, 120, 150, 180).

Both datasets were acquired using the same LC set-

up as the other Eawag dataset. �e MS/MS from these 

two datasets were merged as above to yield 294 merged 

spectra from 204 compounds (195 [M  +  H]+  and 94 

[M  −  H]
−

 ) for the “EQEx” dataset and 314 merged 

spectra from 232 compounds (219 [M  +  H]+  and 91 

[M − H]
−

) for the “EQExPlus” dataset. �ere was a very 

small overlap between the different Eawag datasets (5, 2 

and 2 substance overlap between EA and EQEx, EA and 

EQExPlus and EQEx and EQExPlus, respectively).

�e overlap between the UFZ and Eawag datasets was 

larger, with 97, 16 and 21 substances in common between 

the UFZ and EA, EQEx and EQExPlus datasets, respec-

tively. �e overlap was determined using the first block of 

the InChIKey. As the spectral and retention time data for 

the substances in the individual datasets were processed 

independently with different collision energies and ioni-

zation modes, none of the overlapping substances were 

removed from the datasets. �e retention times extracted 

from the MassBank records per substance were used to 

establish the RT–log P model (see Eq. 9) for each dataset 

independently based on a tenfold cross-validation.

�e influence of the different parameters was assessed 

for each dataset by setting ωFrag ,ωRT and ωRefs to either 

0 or 1 again; these results are presented in Table  4. As 

above, the performance improved from between 2 and 

9  % of the candidates ranked first using fragmentation 

alone, through to 64–82 % ranked first when all ωx were 

weighted equally, although the results varied quite dra-

matically between the datasets. �e 473 spectrum dataset 

used above thus fell within this range.

Similarly, the optimization of ωFrag ,ωRT and ωRefs was 

performed again for each dataset independently using the 

1000 randomly-drawn weights. �e results are presented 

in Table  5 and show that the percentage of top  1 ranks 

varies widely between the datasets, from 63 to 82 %; the 
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Fig. 2 Top 1 ranks with ChemSpider on the Orbitrap XL Dataset. The results were obtained with MetFrag formula query and the inclusion of refer-
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original dataset falls in the middle with 71 %. �e results 

in Table 5 also show that the suggested relative weights to 

one another remain consistent enough to enable default 

parameter suggestion, with ωFrag ≈ 0.5,ωRT ≈ 0.2 and 

ωRefs ≈ 0.3. All results for the number of top 1 ranks for 

the three additional datasets are shown in Additional 

files 10, 11 and 12.

Speci�c examples

As the additional features are more difficult to evaluate 

using large datasets, individual examples are presented 

below to demonstrate the flexibility of MetFrag2.2 com-

mand line (CL), with the corresponding commands give 

in a different font. Lists of the available parameters are 

given in Additional files 1, 2 and 3. �ese examples serve 

to show how MetFrag2.2 can also be adjusted by the user 

to explore individual cases in greater detail than during 

e.g. a high-throughput screening.

Gathering evidence for unknown 199.0428

During the NORMAN Collaborative Non-target Screen-

ing Trial [1], a tentatively identified non-target substance 

of m/z [M − H]
−

 199.0431 was reported by one partici-

pant as mesitylenesulfonic acid (ChemSpider ID (CSID) 

69438, formula C9H12O3S, neutral monoisotopic mass 

200.0507) or isomer. �e same unknown was detected in 

the same sample measured at a second institute, where 

the standard of mesitylenesulfonic acid was available. 

Although the retention time was plausible (5.96  min), 

comparing the MS/MS spectra clearly disproved the 

proposed identification, with many fragments from the 

unknown absent in the standard spectrum. �us, Met-

Frag2.2 was used to investigate other possibilities.

Firstly, the following parameter combination was 

used, taking the unknown MS/MS peak list from the 

second participant: ChemSpider exact mass search, 

fragment error 0.001 Da + 5 ppm, tree depth 2, uncon-

nected compound and InChIKey filter, filter included 

elements = C, S (as isotope signals were detected in the 

full scan), experimental RT =  6.20  min, an RT training 

set of 355 InChIs and RTs measured on the same sys-

tem and score weights of 1 (fragmenter and RT score) 

Table 4 Results (Top 1, 5 and 10 ranks) using PubChem formula queries on three additional datasets

The weights indicate where ranking parameters were included (1) or excluded (0) from the candidate ranking. Retention time score calculation was performed using 

the XLOGP3 values of PubChem. ωRefs · SCRefs = ωRefs · SCPNP+PPC
. See text for explanations

Weight term Score Term Weights

ωFrag SCFrag 1 1 1 0 1 0 0

ωRTs SCRT 1 1 0 1 0 1 0

ωRefs SCRefs 1 0 1 1 0 0 1

 Dataset Metric Ranks

UF (n = 225) Top 1 ranks 164 (73 %) 9 163 159 3 2 157

UF (n = 225) Top 5 ranks 186 (83 %) 48 189 189 36 13 199

UF (n = 225) Top 10 ranks 191 (53 %) 77 196 192 61 25 204

EQex (n = 289) Top 1 ranks 235 (81 %) 33 232 230 26 11 223

EQex (n = 289) Top 5 ranks 263 (91 %) 87 260 258 88 38 276

EQex (n = 289) Top 10 ranks 270 (93 %) 132 269 263 139 55 280

EQexPlus (n = 310) Top 1 ranks 190 (61 %) 32 183 182 21 8 181

EQexPlus (n = 310) Top 5 ranks 238 (77 %) 84 246 238 83 28 243

EQexPlus (n = 310) Top 10 ranks 254 (82 %) 115 258 247 121 37 256

Table 5 Best Top  1 rank results on  three additional data-

sets using PubChem formula queries including  in silico 

fragmentation, RT and  reference information as  shown, 

with the given ωi

Retention time score calculation was performed using the XLOGP3 values of 

PubChem. ωRefs · SCRefs = ωRefs · SCPNP+PPC
. See text for explanations

 Dataset MetFrag2.2

UFZ (n = 225) EQex (n = 289) EQexPlus (n = 310)

ωFrag (SCFrag) 0.40 0.38 0.61

ωRT (SCRT) 0.23 0.27 0.11

ωRefs (SCRefs) 0.37 0.35 0.28

Median rank 1 1 1

Mean rank 58.0 14.6 46.2

Mean RRP 0.972 0.981 0.976

Top 1 ranks 165 (73 %) 236 (82 %) 196 (63 %)

Top 5 ranks 188 261 233

Top 10 ranks 191 268 247



Page 12 of 16Ruttkies et al. J Cheminform  (2016) 8:3 

and 0.25 each for four ChemSpider reference sources. 

�is yielded 134 candidates with four different formulas 

(C9H12O3S, C8H16SSi2, C7H13BO2SSi, C7H10N3O2S), all 

fulfiling the element filter (C, S). SCFinal
 ranged from 0.70 

to 2.12, where several candidates had high numbers of 

references and similar number of peaks explained. �ree 

candidates are shown in Table 6, along with a summary 

of the information retrieved. �e clear top match, ethyl 

p-toluenesulfonate (CSID 6386, shown to the left) was 

unlikely to be correct, as the MS/MS contained no evi-

dence of an ethyl loss and also had a clear fragment peak 

at m/z 79.9556, corresponding with an SO3H group (thus 

eliminating alkyl sulfonates from consideration).

MetFrag2.2 was run again with the SMARTS substruc-

ture inclusion filter, which resulted in 31 candidates but 

with the same top matching structure. However, adding 

the SMARTS S(=O)(=O)OC to the exclusion list elimi-

nates the alkyl sulfonate species and resulted in 18 can-

didates, where the top candidate was now the originally 

proposed (and rejected) identification mesitylenesulfonic 

acid, shown in the middle of Table 6. �e next matches 

were substitution isomers. Referring to the MS/MS 

again, another large peak was present at m/z 183.0115, 

which is often observed in surfactant spectra corre-

sponding with a p-ethyl benzenesulfonic acid moiety. 

Running MetFrag2.2 again with a substructure inclusion 

of CCc1ccc(cc1)S(=O)(=O)O yielded only two candi-

dates, 4-isopropylbenzenesulfonic acid (SCFinal
= 2.5, 

CSID 6388), shown to the right in Table 6 and 4-propylb-

enzenesulfonic acid (SCFinal
= 2.0, CSID 5506213).

To check the relevance of the proposed candidates in 

an environmental sample, a “suspect screening” was per-

formed. �e STOFF-IDENT database [24] contains over 

8000 substances including those in high volume pro-

duction and use in Europe registered under the Euro-

pean REACH (Registration, Evaluation, Authorisation 

and Restriction of CHemicals) Legislation. �e STOFF-

IDENT contents were downloaded (February 2015) and 

the SMILES were converted to InChIKeys using OpenBa-

bel and given as input to MetFrag as a suspect list. Of the 

134 original candidates, only one, 4-isopropylbenzene-

sulfonic acid, was tagged as being present in the STOFF-

IDENT database. �is gives additional evidence that 

indeed 4-isopropylbenzenesulfonic acid is the substance 

behind the unknown spectrum, however it has not been 

possible to confirm this identification at this stage due to 

the lack of a sufficiently pure reference standard.

Terbutylazine and isobars

�e example of terbutylazine (CSID 20848, see Table 7) 

shows how MetFrag2.2 can help in gathering the evi-

dence supporting the identification of isobaric sub-

stances. Terbutylazine and secbutylazine (CSID 22172) 

often co-elute in generic non-target chromatographic 

methods and have very similar fragmentation pat-

terns, but can usually be distinguished from the other 

common triazine isobars propazine (CSID 4768) and 

triethazine (CSID 15157) via MS/MS information. 

However, during the NORMAN non-target screen-

ing collaborative trial  [1], all four substances were 

reported as potential matches for the same mass, show-

ing clearly the danger of suspect screening based only 

on exact mass. For this example, the merged [M + H]+

MS/MS spectrum of terbutylazine from the EA dataset 

above (EA02840X) was used as a peak list to run Met-

Frag2.2, as the correct answer is clear with a reference 

Table 6 Top MetFrag2.2 candidates for unknown at m/z 199.0428 with di�erent settings

Structures overlaid with the included substructure were generated with AMBIT [57]. See text for details

CSID 6386 69438 6388

Original results (134 candidates)

 Rank (n = 134) 1 6 90

 #Peaks explained 5 5 5

 CDK log P/SCRT 1.44/0.167 1.50/0.161 2.02/0.107

 
∑

SCRefs 94 + 15 + 7 + 70 = 186 179 + 1 + 0 + 40 = 220 32 + 0 + 0 + 21 = 53

Substructure interpretation

 Included S(=O)(=O)O S(=O)(=O)O CCc1ccc(cc1)S(=O)(=O)O

 Excluded – S(=O)(=O)OC –

 Comment No ethyl loss in MS/MS Disproven via standard Present in suspect list
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spectrum. Table  7 shows the data for the four sub-

stances mentioned above plus the top match based 

on fragmentation data alone, N-butyl-6-chloro-N ′

-ethyl-1,3,5-triazine-2,4-diamine (CSID 4954587, given 

the synonym “nButylazine” hereafter to save space). 

ChemSpider was used to perform an exact mass search, 

resulting in a total of 112 structures (data from only 

five are shown). Five scores were used, all with weight 

1: FragmenterScore, ChemSpiderReferenceCount, 

RetentionTimeScore, SuspectListsScore and Smart-

sSubstructureInclusionScore. To show the inclusion 

of external log  P calculations, ChemAxon JChem for 

Excel [56] was used to predict log  P and log  D at pH 

6.8 (the pH of the chromatographic program used) for 

a training dataset of the 810 substances in the Eawag 

database on MassBank. �e log P and log D predictions 

were then performed externally for all MetFrag candi-

dates on the dominant tautomeric species and added 

to the MetFrag CSV file for final scoring. �e scores, 

shown in Table  7, showed that different candidates 

were the best match for different categories, indicated 

in italics. �e candidates are ordered by the number of 

references. As above, STOFF-IDENT was used as a sus-

pect list and all four of the substances reported by trial 

participants were indeed in STOFF-IDENT. However, 

Table 7 clearly shows that two can be eliminated using 

SCFrag and substructure matches (as the MS/MS clearly 

displays the loss of a C2H5 and C4H9 group, indicating 

these are likey attached to a heteroatom, in this case 

N). Although secbutylazine is scored lower than terbu-

tylazine, the reference count is the main influence here 

and both substances could be present in an environ-

mental sample—depending on the context.

�e large dataset evaluations show that MetFrag2.2 is 

suitable for high-throughput workflows, with a relatively 

quick runtime. On the other hand, the detailed examples 

shows how the various features of MetFrag2.2 can be 

used to investigate the top candidates in more detail and 

enhance the interpretation of the results, including the 

inclusion of external RT/log P and/or log D information 

that cannot be calculated within MetFrag2.2 (e.g. due to 

license restrictions, as in the case of ChemAxon).

Conclusions
In many cases additional information is available and 

needed from the experimental context to comple-

ment small molecule identification, especially where 

the mass spectrum alone is not sufficient for candidate 

Table 7 Summary of MetFrag2.2 results for terbutylazine and four isobars

The predicted log P and log D from the retention time was 3.17 and 2.18 using a training set of 810 substances calculated externally with ChemAxon and added to 

MetFrag2.2 via the UserLogP option. Included substructure SMARTS were N[CH2][CH3], NCCCC, NC(C)CC, NC(C)(C)C
aName synonym assigned for space reasons. The values in italics indicates the best result per category. Structures overlaid with the included substructure were 

generated with AMBIT [57]. See text for details and weights

Name Terbutylazine Propazine Secbutylazine Triethazine nButylazinea

CSID 20848 4768 22172 15157 4954587

SCFrag 0.958 0.765 0.997 0.653 1.0

#Peaks explained 11/15 10/15 12/15 8/15 12/15

SCCSRefs 286 204 56 45 4

ChemAxon log P 1.65 2.75 2.28 1.11 2.31

SCRT log P 0.159 0.256 0.223 0.103 0.225

ChemAxon log D 1.63 2.75 2.19 0.97 2.23

SCRT log D 0.249 0.247 0.266 0.192 0.266

Suspect hit 1 1 1 1 0

Substructure hits 2 0 2 1 2

Matches NC(C)(C)C – NC(C)CC N[CH2][CH3] NCCCC

N[CH2][CH3] N[CH2][CH3] N[CH2][CH3]

SCFinal (log P) 4.22 3.43 3.69 2.53 2.52

SCFinal (log D) 4.56 3.41 3.85 2.87 2.68

Comment Correct substance No longer in use Can co-elute with 20848
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selection from a large number of candidates. �e results 

for MetFrag2.2 clearly show the benefit of considering 

this additional information, with a tenfold improvement 

compared with MetFrag2.2 fragmentation information 

alone. �e flexibility of the new features in addition to 

the ability to add user-defined scores means that Met-

Frag2.2 is ideally suited to high-throughput workflows, 

but can also be used to perform individual elucidation 

efforts in greater detail. �e ability to incorporate CFM-

ID as an additional scoring function shows the potential 

to improve these results further using complementary 

in silico fragmentation approaches. �e parameter files 

including the spectral data, the candidate, result and 

ranking files of the used EA, UF, EQEx, EQExPlus and 

HILL datasets are available at http://msbi.ipb-halle.de/

download/CHIN-D-15-00088/ and can be downloaded 

as ZIP archives. Feedback on the command line version 

available at http://c-ruttkies.github.io/MetFrag/ is wel-

come. �e new functions greatly reduce the burden on 

users to collect and merge ever increasing amounts of 

information available for substances present in different 

compound databases, thus enabling them to consider 

much more evidence during their screening efforts.

Availability and requirements
  • Project name: MetFrag2.2;

  • Project home page: http://c-ruttkies.github.io/Met-

Frag/;

  • Operating system(s): Platform independent;

  • Programming language: Java;

  • Other requirements: Java ≥1.6, Apache Maven 

≥3.0.4 (for developers);

  • License: GNU LGPL version 2.1 or later;

  • Any restrictions to use by non-academics: none.

  •
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