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Methane (CH4) is an important greenhouse gas because it has 25 times the global 28	
  

warming potential of carbon dioxide (CO2) by mass over a century
1
. Recent 29	
  

calculations suggest that atmospheric CH4 emissions have been responsible for 30	
  

approximately 20% of planet’s warming since pre-industrial times
2
. 31	
  

Understanding how CH4 emissions from ecosystems will respond to expected 32	
  

increases in global temperature is therefore fundamental for predicting the 33	
  

magnitude of feedbacks between the carbon cycle and climate change. 34	
  

Methanogenesis is the terminal step in the remineralisation of organic matter 35	
  

and is carried out by strictly anaerobic Archaea
3
. Like most other enzymatically 36	
  

mediated forms of metabolism, methanogenesis is temperature dependent
4,5

. 37	
  

However, it is not yet known how this physiological response combines with 38	
  

other biotic – e.g. methanotrophy
6
, substrate supply

3,7
, microbial community 39	
  

composition
8
 – and abiotic – e.g. water-table depth

9,10
 – processes to determine 40	
  

the temperature sensitivity of ecosystem-level CH4 emissions. Nor is it known 41	
  

whether CH4 emissions at the ecosystem-level have a fundamentally different 42	
  

temperature dependence than other key fluxes in the carbon cycle, such as 43	
  

photosynthesis and respiration. Here we use meta-analyses to show that seasonal 44	
  

variations in CH4 emissions from a wide range of ecosystems exhibit an average 45	
  

temperature dependence similar to that of CH4 production derived from pure 46	
  

cultures of methanogens and anaerobic sediment slurries. This average 47	
  

temperature dependence (0.98 electron volts (eV)), which corresponds to a 61-48	
  

fold increase between 0 – 30°C, is considerably higher than previously observed 49	
  

for respiration (approximately 0.65 eV)
11

 and photosynthesis (approximately 0.3 50	
  

eV)
12

. As a result, we show that both the emission of CH4 and the ratio of 51	
  

CH4:CO2 emissions increase markedly with seasonal increases in temperature. 52	
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Our findings suggest that global warming may have a large impact on the 53	
  

relative contributions of CO2 and CH4 to total greenhouse gas emissions from 54	
  

continental aquatic ecosystems, terrestrial wetlands and rice paddies. 55	
  

 Biogenic methane (CH4) fluxes are a major component of global CH4 56	
  

emissions, yet they are poorly constrained
2,13,14

. There are large uncertainties not only 57	
  

in the current magnitude of these fluxes, but also in the factors that regulate them
2,13

. 58	
  

In particular, there is substantial uncertainty in the parameterisation of the 59	
  

temperature dependence of natural CH4 emissions in process-based biogeochemistry 60	
  

models
15-18

, which greatly hinders our ability to predict the response of this key 61	
  

component of the carbon cycle to global warming. For example, temperature 62	
  

sensitivities for ecosystem-level CH4 emissions have reported apparent activation 63	
  

energies that range from 0.2 to 2.5 eV
6,19-21

 (1 eV = 96 kJ mol
-1

). 64	
  

In a bid to reduce this uncertainty, which is fundamental to improving 65	
  

projections of future carbon cycle-climate change feedbacks
15-18

, we quantified 66	
  

variation in the temperature dependence of CH4 fluxes for three different types of 67	
  

experiments – i.e. methanogenic cultures, anaerobic sediment slurries, and seasonal 68	
  

field surveys of CH4 emissions – that correspond to three distinct levels of biological 69	
  

organisation – i.e. population, community, and ecosystem, respectively. In particular, 70	
  

we assess whether ecosystem-level CH4 emissions exhibit a temperature dependence 71	
  

similar to that of the underlying methanogenic process, and quantify the magnitude of 72	
  

between site deviations from this physiological response. To do this, we first establish 73	
  

the magnitude and variability of the temperature dependence of key metabolic rate 74	
  

processes (i.e. methanogenesis, growth) for populations of methanogens in culture, as 75	
  

well as the temperature dependence of CH4 production for anaerobic microbial 76	
  

communities in slurries. We then assess whether these temperature dependencies 77	
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differ from those observed in an ecosystem-level analysis of the seasonal temperature 78	
  

dependence of natural CH4 emissions from aquatic, wetland and rice paddy 79	
  

ecosystems (see S1 of the Supplementary Information). Our ecosystem analysis 80	
  

includes both new and previously published data that together encompass 1553 paired 81	
  

estimates of CH4 emission and temperature taken from 126 field sites. 82	
  

To directly characterise the physiological temperature dependence of key 83	
  

metabolic rate processes for methanogens, we compiled data on rates of 84	
  

methanogenesis and growth from laboratory cultures of methanogen populations as 85	
  

well as rates of CH4 production from microbial communities in anaerobic sediment 86	
  

slurries (see S1 of the Supplementary Information). We then separately fit the data 87	
  

compiled for each type of experiment to a Boltzmann-Arrhenius function, which 88	
  

characterises the exponential relationship between metabolic rate and temperature 89	
  

assuming a single enzyme catalysed reaction is rate-limiting
22

, using a linear mixed-90	
  

effects model (see S2 of the Supplementary Information) of the form
23

 91	
  

                                  (1) 92	
  

where 	
  is the natural logarithm of the measured rate of CH4 production or 93	
  

growth rate at absolute temperature, T (K), for some arbitrary experimental unit, i. In 94	
  

this expression,	
  each experimental unit, i, corresponds to a distinct strain of 95	
  

methanogen (culture analysis) or sediment community (slurry analysis) that has been 96	
  

subjected to a range of temperatures. The parameter  (in eV; 1 eV = 96 kJ mol
-1

) 97	
  

corresponds to an average among experimental units for the apparent activation 98	
  

energy, which characterises the temperature sensitivity of , and k is the 99	
  

Boltzmann constant (8.62x10
-5

 eV K
-1

). We centred the temperature data using the 100	
  

mean temperature,	
   , across experimental units, so that  corresponds to an 101	
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average rate at	
   . For each analysis, we expect estimates of and  to vary 102	
  

between experimental units due, for example, to differences between cultures in cell 103	
  

densities, and variation between slurries in community composition. We account for 104	
  

these factors in our linear mixed-effects models by treating the slopes and intercepts 105	
  

as random variables with averages of  and , respectively, and deviations 106	
  

from these averages of  and for each experimental unit, i (see S2 of the 107	
  

Supplementary Information for details of the statistical analysis). 108	
  

The population-level analysis of the culture data reveal that the average 109	
  

apparent activation energies, , for the rates of methanogenesis and growth are 110	
  

statistically indistinguishable (likelihood ratio test; 
 
= 0.39, d.f. = 1, P = 0.53), and 111	
  

therefore have a similar temperature sensitivity (Fig. 1a;  = 1.10 eV, 95% 112	
  

confidence interval: 0.93 – 1.27 eV). The community-level analysis of CH4 113	
  

production rates in anaerobic slurries yields a similar value for  (0.93 eV, 95% 114	
  

confidence interval: 0.82 – 1.03 eV), indicating that the temperature dependence of 115	
  

CH4 production at the community level largely reflects the kinetics of the 116	
  

physiological processes generating this flux. More detailed analyses indicate that the 117	
  

estimates of  for sediment slurries obtained from three broadly defined ecosystem 118	
  

types (i.e. aquatic, wetlands, rice paddies; see S1 of the Supplementary Information 119	
  

for details of the data) are statistically indistinguishable (likelihood ratio test: 
 
= 120	
  

1.62, d.f. = 2, P = 0.44). Consistent with our expectations, does vary between 121	
  

experimental units, i, as reflected by the magnitude of the standard deviation of the 122	
  

random effect on the slope of the Arrhenius model, ,	
  in both analyses (see Table 123	
  

1). 124	
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 To explore how the temperature dependence of methanogenic populations and 125	
  

communities, compare to that of natural ecosystem-level CH4 emissions, we fit 126	
  

equation (1)  – here experimental units, i, correspond to sites – to a database of 1553 127	
  

measurements of CH4 emission and temperature, measured seasonally for 126 field 128	
  

sites that span the globe and encompass three distinct ecosystem types (aquatic, 129	
  

wetlands, rice paddies – see S1 of the Supplementary Information for definitions). 130	
  

Analyses reveal that estimates of  are statistically indistinguishable among 131	
  

ecosystem types (likelihood ratio test: 
 
= 4.97, d.f. = 2, P = 0.10), and therefore 132	
  

that the average temperature dependence of CH4 emissions from diverse ecosystem 133	
  

types can be characterised by a common apparent activation energy ( = 0.98 eV; 134	
  

95% confidence interval: 0.88 – 1.08; see Fig. 2). This average temperature 135	
  

dependence is strikingly similar to that observed for methane production in cultures 136	
  

and sediment slurries (Fig. 1), which is remarkable given the multitude of processes – 137	
  

e.g. methanotrophy
6
, water-table depth

9,10
, substrate supply

7
, community 138	
  

composition
8
 – that may confound the temperature dependence of CH4 emissions over 139	
  

a seasonal cycle at the ecosystem-level. Our analysis is broadly consistent with the 140	
  

hypothesis that the seasonal temperature dependence of CH4 emissions at the 141	
  

ecosystem-level largely reflects the kinetics of the methanogenic process generating 142	
  

this flux (see S4 for further discussion of the potential mechanisms constraining the 143	
  

scaling of the temperature dependence of CH4 emissions). Importantly, the average 144	
  

apparent activation energy we report here for the seasonal temperature dependence of 145	
  

ecosystem-level CH4 emissions ( 	
  = 0.98 eV) is considerably higher than that 146	
  

reported previously for CO2 fluxes attributable to respiration (~0.65 eV)
11

, which 147	
  

could have important implications for the effect of global warming on the balance of 148	
  

CH4 and CO2 emissions from ecosystems
24

.  149	
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Given the average seasonal temperature dependencies of CH4 emissions 150	
  

reported here ( 	
  = 0.98 eV), and that previously documented for respiration (~0.65 151	
  

eV)
11

, we expected the ratio of CH4 to CO2 emission to increase, on average, with 152	
  

seasonal increases temperature across a collection of sites (see S3 of the 153	
  

Supplementary Information). While the temperature dependence of this ratio is not 154	
  

expected to adhere to a Boltzmann-Arrhenius relationship, we can approximate it 155	
  

using an expression of the form (see S3 of the Supplementary Information for a 156	
  

derivation of Eq. 2) 157	
  

 (2) 158	
  

where 	
  is the ratio of CH4 to CO2 emissions for site i at temperature T,  159	
  

and are averages across sites for the temperature dependence of this ratio and 160	
  

the magnitude of the ratio at temperature ,  and  and  are random-effects 161	
  

terms used to represent site-level deviations from these respective averages. 162	
  

 To test this prediction, we analyse ecosystem-level data for the subset of 163	
  

studies in our compilation that report simultaneous measurements of ecosystem-level 164	
  

fluxes of CH4 and CO2, enabling us to calculate the efflux ratio of these greenhouse 165	
  

gases in response to seasonal variation in temperature. This dataset comprises 177 166	
  

estimates from 38 field sites. In exactly the same way as for the analyses of CH4 167	
  

emissions, we fit a linear mixed effects model using the Boltzmann-Arrhenius 168	
  

function to the natural logarithm of the CH4:CO2 flux data (see Eq. 2). As predicted, 169	
  

this ratio increases with increasing temperature for the majority of the field sites (35 170	
  

of 38), yielding average temperature dependence across sites of  = 0.71 eV (95% 171	
  

confidence interval: 0.46 – 0.97; see Fig. 3). This finding suggests that, on average, 172	
  

the relative contribution of methane to total greenhouse gas emissions from aquatic 173	
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ecosystems increases with seasonal increases in temperature due to the differences in 174	
  

the biochemical kinetics of methanogenesis, respiration and photosynthesis. 175	
  

Our analyses demonstrate that the average apparent activation energy of CH4 176	
  

emissions across a wide range of ecosystems scales consistently with that of 177	
  

populations of methanogens in culture, and laboratory incubations of microbial 178	
  

communities. Moreover, this temperature dependence is much higher than that of both 179	
  

respiration
11

 and photosynthesis
12

, resulting in a greater relative contribution of CH4 180	
  

to total C emissions from aquatic ecosystems at higher temperatures. While this 181	
  

scaling of the temperature dependence of CH4 fluxes across levels of biological 182	
  

organisation is remarkable, our results also emphasise that temperature is not the only 183	
  

variable that controls CH4 emissions. Indeed, the substantial site-to-site variation we 184	
  

report for the temperature dependence of ecosystem-level CH4 emissions 185	
  

(characterized by in our mixed-effects model; see also Fig. 2b & Table 1), 186	
  

highlights the importance of other variables in driving deviations from the underlying 187	
  

physiological response. It is also important to note, that the average within-site 188	
  

apparent activation energy we report here for CH4 emissions ( = 0.98 eV) does not 189	
  

hold for the temperature response derived from geographic variation in average CH4 190	
  

emissions and temperature across sites. For example, average site temperature is a 191	
  

poor predictor of spatial variation in average emissions for each ecosystem type (see 192	
  

Extended Data Figures 1 & 2), suggesting that other biotic – e.g. methanotrophy
6
, 193	
  

substrate supply
3,7

, microbial community composition
8
 – and abiotic – e.g. water-table 194	
  

depth
9,10

 – variables, besides temperature, may be more important for driving 195	
  

differences in total CH4 emissions among ecosystems.  196	
  

Overall, our findings provide a robust basis for refining parameterisation of 197	
  

the temperature sensitivity of CH4 fluxes in global coupled climate-carbon cycle 198	
  

ε
E
M
,i

E
M
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models, a factor that until now yielded significant uncertainty in these models
15

. 199	
  

Furthermore, the observation of a general increase in the CH4:CO2 ratio with 200	
  

increasing temperature, driven by the high temperature sensitivity of CH4 production, 201	
  

has important implications for the magnitude of future positive feedbacks between 202	
  

global warming and the carbon cycle given the relative potency of CH4 compared to 203	
  

CO2 as a greenhouse gas
2,13

. In fact, a recent sensitivity analysis of the temperature 204	
  

dependence of CH4 production in CLM4Me
16

, a process-based wetland 205	
  

biogeochemistry model embedded within the land surface component of an Earth 206	
  

system model, demonstrates that a Q10 value of 4, equivalent to the activation energies 207	
  

we identify ( 	
  ≈ 1.0 eV), would result in an 50% increase in high latitude CH4 208	
  

emissions over the 21
st
 Century, relative to the model’s baseline Q10 of 2 at 20°C 209	
  

( 	
  ≈ 0.5 eV). Our analyses give strong evidence to support temperature sensitivities 210	
  

for methanogenesis and CH4 emissions that are substantially higher than other key 211	
  

fluxes in the carbon cycle, like heterotrophic respiration and photosynthesis, and 212	
  

suggest that current predictions of carbon cycle-climate change feedbacks
25

, which 213	
  

fail to account for these differences, may be significantly underestimated. 214	
  

 215	
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Tables 303	
  

 304	
  

Table 1| Estimates of the parameters used to characterise the temperature dependence 305	
  

of CH4 flux or the CH4: CO2 efflux ratio. The standard deviations (s.d.) of site or 306	
  

experimental unit-specific estimates for  (equation 1) were significantly > 0 for 307	
  

each of the analyses (P < 0.05), indicating differences among sites or experimental 308	
  

units in apparent activation energies. The standard deviations of site or experimental 309	
  

unit-specific estimates for  (equation 1) were significantly >0 in all analyses (P < 310	
  

0.001), indicating differences among sites or experimental units in CH4 flux or the 311	
  

CO2:CH4 efflux ratio at the average temperature.  312	
  

 313	
  

 

Flux Type 

 

 (95% CI) 

 

s.d. 
 

 

s.d. 
 

Laboratory Studies 

Pure culture methanogens 1.10 (0.93 – 1.27) 0.42 

 

2.28 

Slurries CH4 production 0.93 (0.82 – 1.03) 0.32 2.45 

    

Whole Ecosystem CH4 Efflux 0.98 (0.88 – 1.08) 0.36 2.16 

    

CO2:CH4 ratio 0.71 (0.46 – 0.97) 0.59
 

1.03 

314	
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Figures 315	
  

 316	
  
 317	
  

Figure 1| The temperature dependence of CH4 production. Analyses fitting the 318	
  

Boltzmann-Arrhenius function to rate data, reveal similar temperature dependencies 319	
  

for (a) pure cultures of methanogens, and (b) slurries of aquatic (red), wetland (green) 320	
  

and rice-paddy (red) sediment samples incubated at different constant temperatures in 321	
  

the laboratory. In (b), the temperature dependence of CH4 production is not 322	
  

significantly different among ecosystem types (see main text for details of statistics). 323	
  

In all plots, data have been standardised by subtracting from each measurement the 324	
  

estimated experiment-specific deviation from the average intercept predicted by the 325	
  

mixed-effects model. This standardisation was used for visualisation of the data only; 326	
  

raw values were used in the statistical analyses.327	
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 328	
  
 329	
  

Figure 2| The temperature dependence of CH4 emissions at the ecosystem scale. 330	
  

Analysis reveals a consistent temperature dependence for the emission of CH4 from 331	
  

aquatic (red), wetland (green) and rice-paddy (red) ecosystems (a). Histogram of the 332	
  

site-level activation energies is also given (b), note that the majority of estimated 333	
  

apparent activation energies are very close to the average value derived from 334	
  

experiments using pure cultures and anaerobic sediment communities (see Fig. 1). 335	
  

The red dashed line in (b) corresponds to  = 0.98 eV, estimated from the mixed 336	
  

effects model. In the Arrhenius plot, data have been standardised by subtracting from 337	
  

each measurement the estimated site-specific deviation from the average intercept 338	
  

predicted by the mixed-effects model. This standardisation was for visualisation of 339	
  

the data only; raw values were used in the statistical analyses. 340	
  

341	
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 342	
  

 343	
  
 344	
  

Figure 3| The temperature dependence of the CH4:CO2 emission ratio. Analyses 345	
  

reveal a high temperature dependence in the CH4 to CO2 emission ratio (a). A 346	
  

histogram of the site-level apparent activation energies is also given (b). The red 347	
  

dashed line in (b) corresponds to  = 0.71 eV, estimated from the mixed effects 348	
  

model. As with Figs. 1 & 2, data for the Arrhenius plot have been standardised by 349	
  

subtracting from each measurement the estimated site-specific deviation from the 350	
  

average intercept predicted by the mixed-effects model. This standardisation was for 351	
  

visualisation of the data only; raw values were used in the statistical analyses. 352	
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