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ABSTRACT: Conductive materials (CM) have been exten-
sively reported to enhance methane production in anaerobic
digestion processes. The occurrence of direct interspecies
electron transfer (DIET) in microbial communities, as an
alternative or complementary to indirect electron transfer (via
hydrogen or formate), is the main explanation given to justify
the improvement of methane production. Not disregarding
that DIET can be promoted in the presence of certain CM, it
surely does not explain all the reported observations. In fact, in
methanogenic environments DIET was only unequivocally
demonstrated in cocultures of Geobacter metallireducens with
Methanosaeta harundinacea or Methanosarcina barkeri and
frequently Geobacter sp. are not detected in improved methane
production driven systems. Furthermore, conductive carbon
nanotubes were shown to accelerate the activity of methanogens growing in pure cultures, where DIET is not expected to occur,
and hydrogenotrophic activity is ubiquitous in full-scale anaerobic digesters treating for example brewery wastewaters, indicating
that interspecies hydrogen transfer is an important electron transfer mechanism in those systems. This paper presents an
overview of the effect of several iron-based and carbon-based CM in bioengineered systems, focusing on the improvement in
methane production and in microbial communities’ changes. Control assays, as fundamental elements to support major
conclusions in reported experiments, are critically revised and discussed.

1. INTRODUCTION

Methane is a renewable energy source that can be produced in
controlled bioengineered systems from a wide range of organic
substrates including diluted industrial wastewater, animal
manure or the organic fraction of municipal solid waste,
through a process generally called anaerobic digestion (AD).
Fundamental knowledge and technology developments of AD
processes have evolved significantly and in parallel in the last
decades. The fact that the process relies on the activity of slow
growing anaerobic microorganisms1 results in low nutrient
requirements and low amounts of sludge produced, which are
strong advantages of the anaerobic treatment process. These
microorganisms grow slowly because the energy gain from the
anaerobic metabolism is low and has to be divided by different
trophic groups, that is, the bacteria performing hydrolytic,
acidogenesis, and acetogenesis reactions, and the methanogens
converting intermediary degradation products into methane.2

Syntrophic interactions between bacteria and methanogens
are the basis to maintain an AD system working efficiently.
These microorganisms, with distinct, but complementary
metabolic capabilities, exchange electrons for energy purposes,
normally through the transfer of small soluble chemical
compounds, such as hydrogen or formate, that act as electron
shuttles. This interspecies hydrogen/formate transfer process is
very important since the overall thermodynamics depends on
the capacity of the microbial communities to maintain a low
hydrogen partial pressure.3 Thus, diffusion limitations of these

metabolites, between anaerobic bacteria and methanogenic
archaea, can be important bottlenecks in the anaerobic
conversion process.4,5

Recent studies proposed that interspecies electron transfer
(IET) can also be performed directly between bacteria and
methanogenic archaea, or with the aid of conductive materials
(CM), being potentially a more energy conserving approach,
and thus improving the rate of methanogenesis.6,7 However,
clear evidence of direct interspecies electron transfer (DIET)
was only observed in cocultures of electroactive bacteria,
namely Geobacter species, and in cocultures of G. metalliredu-
cens with Methanosaeta harundinacea3,7 or Methanosarcina
barkeri.8 Moreover, DIET seems to require outer membrane
c-type cytochromes and pili,6,7 but traditional syntrophic fatty
acid-degrading bacteria (e.g., Syntrophomonas wolfei and
Syntrophus aciditrophicus)9 and most methanogens (e.g., all
members of the orders Methanopyrales, Methanococcales,
Methanobacteriales and Methanomicrobiales)10 lack the genes
for these cell components. Another indication that not all
syntrophic bacteria are capable of DIET is the case of
Pelobacter carbinolicus, a known syntrophic ethanol oxidizing
bacterium, that could only establish syntrophic interactions
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with Geobacter sulfurreducens via interspecies hydrogen transfer
or interspecies formate transfer,11 although it has been
reported to contain c-type cytochromes.12

Notwithstanding these facts, in the past five years, many
studies have reported the improvement of methane production
in anaerobic reactors amended with CM such as magnetite,
granular activated carbon (GAC), carbon nanotubes (CNT),
and biochar, among others.1,8,13−27, In general, these CM are
highly stable, have large surface area, good adsorption capacity,
and high electric conductivity.28−30 Some of these materials
may act as redox mediators in microbial catalysis of
compounds with electrophilic groups, such as dyes.30

The role of DIET is discussed in recent papers on anaerobic
digestion processes amended with CM.31−33 The authors of
these papers interpret the enhancement of methane production
as a direct consequence of DIET promoted by CM. However,
exploring the results collected from a significant number of
studies on this topic, turned clear that the effect of CM goes
beyond the stimulation of DIET.
In this review, the recent findings on the effect of CM in AD

bioengineered systems is summarized, exploring how these
materials affect methane production rate and the structure of
anaerobic microbial communities. This is a recent research
field with a relevant impact in engineered and natural
anaerobic microbial processes. Little is known about the
mechanisms behind the improvement of methane production
rates when CM are present. Apart from DIET, other elements
of knowledge should be considered, and main interpretations
of the researchers contributing to the knowledge in this field
are herein addressed and discussed.

2. ELECTRON TRANSFER MECHANISMS IN
METHANOGENIC ENVIRONMENTS

Anaerobic digestion is a biological process, where complex
organic compounds are sequentially converted to simple
compounds, by a wide variety of microorganisms. The rate
and the route governing electrons transfer among the microbial
community, determines the entire process efficiency.34−37

Mineralization of waste to methane is dependent on the
activity of hydrolytic, acidogenic, and acetogenic bacteria,

which generate the substrates (i.e., hydrogen, formate and
acetate) for methanogenic archaea, which ultimately produce
methane in AD processes.37−40 IET efficiency between
syntrophic partners dictates the rates of conversion biopro-
cesses when methanogenic activity is guaranteed. In methano-
genic systems microorganisms can transfer electrons between
each other: (1) via soluble chemical compounds (e.g.,
hydrogen, formate, and acetate) which act as electron shuttles;
(2) via other chemicals (e.g., humic substances); (3) via direct
electron transfer by electrically conductive pili or direct
contact; and (4) by direct electron transfer mediated by CM
(Figure 1). In the following subsections the fundamentals and
mechanisms of IET are briefly exposed.33,41−43

2.1. Interspecies Electron Transfer via Soluble
Molecules. The most studied and well-known mechanism
of electron transfer in methanogenic communities is the
indirect interspecies electron transfer via hydrogen or
formate.9,44−46 Syntrophic bacteria produce hydrogen or
formate as a way to dissipate the reducing power, i.e., the
electrons formed during the degradation of organic com-
pounds and, in turn, methanogens utilize those molecules as
electron donors to reduce CO2 to methane (Figure 1A).
Therefore, hydrogen/formate act as shuttles between hydro-
gen/formate-forming bacteria and hydrogen/formate-utilizing
methanogens. At high hydrogen concentrations (>10 Pa), the
hydrogenase activity is inhibited and consequently the
metabolism of syntrophic bacteria is inhibited as well, while
that of the methanogens is stimulated, and vice versa.3,47−49

Formate formation has been detected particularly in cocultures
growing on proteins,50 or fatty acids like propionate and
butyrate.3,51,52 Under certain conditions, interspecies formate
transfer may prevail because formate has a higher diffusion
coefficient, comparing to hydrogen.53,54 Syntrophic interac-
tions involving hydrogen or formate as electron shuttles are
well described in cocultures degrading common compounds
formed during the AD process such as butyrate,55 propio-
nate,56 ethanol,57 and acetate.58

2.2. Interspecies Electron Transfer via Extracellular
Compounds. In numerous anaerobic environments, the
interspecies electron transfer can be mediated also by insoluble

Figure 1. Possible interspecies electron transfer mechanisms in methanogenic environments.42−44
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compounds, such as humic acids present in humus.59−62

Unlike soluble electron shuttles, such as hydrogen or formate,
that can diffuse in and out of the cell,63 insoluble compounds
do not penetrate the cell surface. Lovley and co-workers64

demonstrated that humus can mediate electron transfer
between humics-reducing and humics-oxidizing microorgan-
isms (Figure 1B). The electron acceptor properties have been
related mainly with the redox active quinone moieties present
in humic substances.65 Several microorganisms were found to
reduce humic acids or anthraquinone-2,6-disulfonate (AQDS)
using hydrogen as electron donor (e.g., the halorespiring
bacterium, Desulf itobacterium PCE1, the sulfate-reducing
bacterium, Desulfovibrio G11 and the methanogenic archaea,
Methanospirillum hungatei JF1) or lactate (Desulf itobacterium
dehalogenans and Desulf itobacterium PCE1).59

Humus can also be reoxidized and act as an electron donor.
For example, humic acids can be redox mediators in the
anaerobic substrate oxidation coupled to the abiotic reduction
of metal oxides such as Fe(III) and Mn(IV), being reoxidized
and participating in many cycles.59 Some bacteria of the genus
Geobacter have been reported as quinone-reducing micro-
organisms using Fe(III) as the terminal electron acceptor66−69

but other microorganisms share this ability, such as some
Shewanella, Desulf itobacterium, Desulphuromonas, Geospirillum,
Wolinella, and Geothrix69 and the methanogenic archaea
Methanopyrus kandleri, Methanobacterium thermoautotrophi-
cum.70 The anaerobic oxidation of lactate and hydrogen by
Desulf itobacterium dehalogenans was obtained with AQDS as
mediator, associated with the reduction of goethite.59

2.3. Direct Interspecies Electron Transfer. Recently,
DIET has been described in anaerobic environments, involving
the formation of an electric current between electron-donating
and electron-accepting microbes (Figure 1C)42,43,71,72 and
without the need to produce and exchange electron carriers
(i.e., hydrogen and formate). DIET is analogous to direct
extracellular electron transfer, which consists in the electron
transfer between cells and a solid-state electron acceptor such
as iron and manganese oxides or electrodes.72 Direct
extracellular electron transfer is well studied in bacteria
belonging to the genera Shewanella and Geobacter,42,43,71

which are highly efficient in dealing with solid extracellular
electron acceptors. DIET was first described in defined
cocultures of G. metallireducens, an ethanol oxidizing bacteria,
and G. sulfurreducens, a fumarate reducing bacteria.71 These
microorganisms establish a syntrophic relationship, where G.
metallireducens metabolize the ethanol and the G. sulfurreducens
reduces the fumarate. The ability of this culture for performing
DIET was discovered when cocultures formed with G.
sulfurreducens strains lacking the hyb gene (thus unable to
utilize hydrogen), were able to oxidize ethanol and to reduce
fumarate. Under these conditions, interspecies electron
exchange between G. metallireducens and G. sulfurreducens
occurred directly via conductive pili and without the formation
of soluble intermediates.71 Further, a recent metatranscrip-
tomic analysis showed low abundance of transcripts for
hydrogenase and formate dehydrogenase subunits, which
provided strong evidence of DIET also between the wild-
type of G. metallireducens and G. sulfurreducens.73

More recently, it was shown that DIET can occur in
cocultures of Geobacter species and acetoclastic methanogens
(i.e., Methanosaeta and Methanosarcina species).6,8 Rotaru and
co-workers6 showed that Methanosaeta harundinacea, a strictly
acetoclastic methanogen, can receive electrons directly from G.

metallireducens to produce methane. The idea that Methano-
saeta species are acetoclastic specialists, only producing
methane from acetate, changed from this point on, since it
seems to be able to activate the CO2 reduction pathway for
methane production. In this context, the electrons released by
Geobacter species are transferred, via pili, directly to
Methanosaeta, but the cell machinery involved in electrons
uptake by the methanogen is not yet known.6 These findings
gave a new perspective on the interspecies interactions taking
place in anaerobic bioreactors producing methane.

2.4. DIET Promoted by Conductive Materials. The
presence of CM such as GAC, carbon cloth, and biochar
appears to promote DIET via a conduction-based mechanism,
in which electrons migrate through the CM from electron-
donating to electron-accepting cells.20,22,74

Surprisingly, it was observed that the lack of pili and other
cell component involved in the exogenous electron transfer can
be compensated by the presence of CM, namely GAC,8 carbon
cloth74 and biochar.22 This was verified in defined cocultures
of pilA-deficient strains of G. metallireducens with Methano-
sarcina barkeri, which could not convert ethanol to methane
unless in the presence of CM. This methanogenic coculture in
the presence of biochar were able to utilize 86% of the
electrons released from ethanol oxidation for methane
production, but without biochar no ethanol was consumed
and no methane was produced.22 Similarly, the lack of the
pilin-associated c-type cytochrome (OmcS), necessary for
extracellular electron transfer in Geobacter species, could be
compensated by magnetite, another conductive material.75

Without magnetite Geobacter strains lacking genes for OmcS
were ineffective in forming viable cocultures,71 but in the
presence of magnetite, the OmcS-deficient mutants performed
similarly to the wild type.75

2.5. Hydrogen and Formate IET versus DIET. An
interesting approach toward the clarification of the importance
of DIET in methanogenesis was presented by Storck and co-
workers72 who proposed a mechanistic framework that enabled
the direct assessment of the relative feasibility of DIET, and
mediated interspecies electron transfer (MIET) in a
thermodynamically restricted syntrophic system (propionate
conversion to acetate and methane), through mathematical
modeling. They found that DIET could be more favorable than
hydrogen-MIET, but substantially less favorable than formate-
MIET (1 order of magnitude rate difference), assuming a
default parameter set based on literature data. The model
results also suggested that DIET may be a thermodynamically
more feasible alternative to MIET for disperse communities
limited by diffusion, which is contrary to experimental
observations where nanowire-DIET is commonly observed in
dense aggregates,6,8,71 possibly indicating that coevolution and
cometabolism are more important than external limitations in
the simulated system.72 These authors also suggested that CM
reduce resistivity, and leave only activation losses, making long-
range transport even more feasible.

3. EFFECT OF CONDUCTIVE MATERIALS ON
METHANE PRODUCTION

3.1. CM Improving Methane Production. Several
strategies have been implemented to improve AD. Empirical
modification of process design, operational conditions, and
application of substrate pretreatments, such as microaeration,
thermal and mechanical treatments are some examples.1,76,77

Recently, several authors have been reporting the enhancement
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of methane production by the use of CM (Figure 2), which is
now considered a strategy to improve methane production
efficiency and stability of anaerobic reactors.7,20 The type of
conductive material, the microbial substrates, the mode of
operation and the main results reported in scientific
communications are summarized in Table 1 and Supporting
Information (SI) Table S1. In general, lag phases preceding
methane production are reduced and methane production
rates increase when CM are added to batch experi-
ments.8,16,18−20,27,74,78,79 In continuous anaerobic digesters,
CM also accelerate methane production and contribute for a
more stable operation, allowing higher applied organic loading
rates while maintaining high COD removal rates.21,80−83

Only few studies used direct methanogenic substrates, such
as acetate or H2/CO2,

18,24,84,85,98 while most studies used
volatile fatty acids, such as butyrate and propionate, and
alcohols as substrates to promote the syntrophic metabolism
within microbial communities.8,16−18,20,22−24,78,79,82,85,96,100

More complex organic matter, such as dairy wastewater,1,83,86

brewery wastewater,20 beet sugar wastewater,87 food waste,13

municipal solid waste,19 waste activated sludge89,90,99,103,104 or
leachate81 have also been investigated. When compared to
control conditions, the addition of CM to bioreactors treating
these complex wastewaters resulted in less accumulation of
VFAs, thus improving the efficiency of the AD process.
GAC and magnetite were the most common CM applied in

AD systems, followed by CNT, carbon cloth and biochar
(Figure 2/Table 1).
3.2. CM Inhibiting Methane Production. From all CM

tested, magnesium oxide, silver nanoparticles, ferrihydrite and
carbon black (amorphous carbon) were the only ones
inhibiting methanogenesis (Table 2).
The addition of carbon black nanoparticles (20 g/L) to

anaerobic sludge completely inhibited methane production

from glucose. In these cultures methanogens were more
affected than bacteria, and additional pure culture studies
showed that Methanosarcina barkeri completely lost activity
when growing with carbon black.105 The reasons behind the
inhibitory effect of carbon black were not investigated but
probably due to their small size, they may present
antimicrobial properties, similar to those reported for single
walled carbon nanotubes.106 High concentrations of silver
nanoparticles and magnesium oxide (500 mg/g TSS) inhibited
methane production from waste activated sludge in 26.5% and
98.9% relatively to the control, respectively, although the
microbial community composition was apparently not
affected.89 Both Zhou and co-workers84 and Kato and co-
workers24 reported the inhibition of methanogenesis from
acetate and ethanol (0.6−1.9 times comparing with the
control) in the presence of ferrihydrite. Indeed, one of the
applications of ferrihydrite is specifically the inhibition of
methanogenesis, as it was previously reported in several
studies.107−112 Several reasons have been suggested to justify
the inhibition by ferrihydrite: (1) the utilization of the primary
electron donors (i.e., acetate or hydrogen) available for
methane production by iron reducing bacteria,109,111,113 and/
or the diversion of electron flow from CO2 reduction
(methanogenesis) to Fe(III) reduction by methanogens
capable of Fe(III) reduction,114−116 thus shifting from
methanogenic to iron-reducing conditions, and (2) the
increase of the redox potential (to approximately −100 mV)
caused by the presence of Fe(III) oxides, which does not
benefit methanogenic reactions.84,117,118 Nevertheless, the
secondary iron minerals formed from microbial ferrihydrite
reduction, might also benefit methanogenesis.26,119 For
example, when magnetite is formed as the predominant
secondary iron mineral, the methane production rates from
acetate and ethanol increased by 30% and 135%, respectively,

Figure 2. Number of studies reporting the effect of different types of CM on methane production.
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compared with a control lacking ferrihydrite.26 These results
highlight the important role of iron biomineralization in the
biogeochemical cycling of carbon in diverse anaerobic
environments.
3.3. Relationship between CM, ORP, Electrical

Conductivity and Methane Production. Despite the high
number of research papers reporting the effect of CM on
methane production efficiency (Figure 2), the mechanisms by
which CM enhance methanogenic activity are still not known.
It was verified that in the presence of CM (specifically
multiwalled CNT) the methanogenic activity of pure cultures
of methanogens increased significantly, and that it was
correlated with the variation of the redox potential (ORP).18

Till date, this was the only study monitoring ORP during
methanogenesis with CM. In that work, higher concentrations
of multiwalled CNT resulted in a growth medium with a more

negative ORP, which benefited methanogenesis that ideally
occurs at ORP ranging from −200 mV and −400 mV.118

Nevertheless, Salvador and co-workers18 also observed that in
the absence of a reducing agent, the ORP increased (to values
reaching approximately −200 mV), having the opposite effect
verified in the assays performed with the reducing agent.
Surprisingly, without reducing agent, the methanogenic activity
of Methanobacterium formicicum still increased with increasing
concentrations of multiwalled CNT.
The electrical conductivity is another parameter that varies

with the presence of CM in methanogenic systems. The
electrical conductivity of anaerobic biomass, biofilms or
granules was reported to increase in the presence of CM,
namely CNT (27 times), stainless steel (14 times), GAC (3.5
times), ferroferric oxide (2.1 times), carbon cloth (2 times)
and biochar (1.5 times).78,79,81,92,98,103 This increase has been

Table 1. Summary of the Studies Reporting the Enhancement of Methane Production by CM

conductive
material

particle
size/μm

applied
concentration/

g/L common substrates
methane

improvementa reference

ferric oxyhydr-
oxide

1 to 2 1.8 real dairy wastewater 2.0 1

magnetite 0.01 to 0.3 0.01 to 25 acetate, ethanol, benzoate, butyrate, propionate, real and synthetic dairy
wastewater

1.3 to 3.6 1,16,17,23−25,27,78,83−86

iron oxide
nanoparticles

0.02 0.8 beet sugar industrial wastewater 1.3 87

ferroferric
oxide

0.01 to 0.3 10 synthetic wastewater 1.2 to 1.8 14,88

ferrihydrite ∼0.03 3.4 to 4.2 acetate, ethanol 1.1 24

hematite 0.02 to 0.3 0.022 to 10.9 acetate, ethanol, benzoate, sludge 1.3 to 2.2 24,25,84,89

iron powder 10 sludge 1.4 90

nanoscale zer-
ovalent iron

0.001 to
0.1

0.02 to 10.9 sludge 1.3 to 2.2 89,90

red mud 20 activated sludge from municipal wwtp 1.4 91

stainless steel 500 to
2000

25.7 synthetic wastewater 1.3 92

manganese 0.07 to 1.5 2 to 8 synthetic wastewater 4.4 93

polyaniline
nanorods

0.25 to 3 1.2 sucrose 2.0 94

graphene 0.03 to 2.0 ethanol, synthetic wastewater 1.2 to 1.5 95,96

multiwalled
CNT

0.010 to
0.2

0.1 to 5.0 H2/CO2, acetate, butyrate, beet sugar industrial wastewater 1.1 to 17 16,18,87

single-walled
CNT

0.001 1.0 sucrose, glucose 1.8 to 2 79,97

graphite 6 to 25 12 to 132
graphite
rods

synthetic complex waste and wastewater 1.0 to 1.3 13,80

GAC 841 to
2000

3.3 to 50 acetate, ethanol, butyrate, propionate, glucose, synthetic brewery
wastewater, synthetic dairy wastewater, activated sludge, organic
fraction of municipal solid waste, synthetic complex waste

1.1 to 18 8,13,15,19−21,79,83,98−100

powered acti-
vated carbon

149 to 177 5 synthetic brewery wastewater na 21

carbon felt 3 to 30 pieces synthetic wastewater (glucose), and synthetic complex waste 1.1 13,101

carbon cloth 10 to 20 pieces ethanol, synthetic wastewater, leachate from municipal solid waste
incineration, organic fraction of municipal solid, waste, synthetic
complex waste

1.1 to 10 13,19,74,80,81,102

biochar 60 to 700 0.3 to 42.7 ethanol, butyrate, propionate, sludge, synthetic wastewater 1.2 to 1.3 22,80,82,103,104
aNumber of times that methane production increases relative to the control.

Table 2. Summary of the Studies Reporting the Inhibition of Methane Production by CM

conductive material particle size/μm applied concentration/g/L substrate methane inhibitiona reference

ferrihydrite ∼0.03 2.2 to 4.2 acetate, ethanol 1.9 to 4.3 24,84

magnesium oxide <0.05 0.02 to 10.9 sludge 92.6 89

silver nanoparticles <0.1 0.02 to 10.9 sludge 1.4 89

carbon black 0.02 to 0.35 4 to 20 glucose 51.5 105
aNumber of times that methane production decreases relative to the control.
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justified by a presumable higher expression of electrically
conductive pili produced by bacteria which perform DIET,81

but also by cations released from these materials, as it was
reported for the case of biochar.103 However, the electrical
conductivity also increased in the presence of non-CM (e.g.,
plastic threads),92 which indicates that electrical conductivity
of bulk sludge is affected by materials with high electrical
conductivity but also by non-CM. Furthermore, the con-
ductivity seems to vary depending on the metabolism and
composition of anaerobic microbial communities, indepen-
dently of the presence of CM. The conductivity of enrichment
cultures previously stimulated with ethanol, and degrading
propionate and/or butyrate, was 5 fold higher, for propionate,
and 76 fold higher for butyrate, when compared with
nonstimulated enrichments (without previous contact with

ethanol).100 Zhao and co-workers100 related the increase in the
conductivity to the enrichment of Geobacter species in ethanol-
stimulated enrichments, which could transfer electrons directly
to acetoclastic methanogens. However, although Geobacter’s
relative abundance increased in enrichments stimulated with
ethanol (a common electron donor for several Geobacter
species), it represented less than 4% of the total bacterial
community. In the same cultures, Syntrophomonas and
Smithella species, well-known as butyrate and propionate
degraders,55,120 were far more abundant (representing
approximately 30% of the total microbial community).

3.4. The Need of Control Assays. To clarify the role of
the electrical conductivity on the enhancement of methane
production, control experiments with non-CM are needed.
However, to date, only few studies performed control

Table 3. Summary of the Studies Using Non-Conductive Materials

material inoculum substrate reported effects reference

polyester cloth (three pieces; 8 ×

20 × 0.1 cm3)
anaerobic
sludge

synthetic complex waste -high start-up period 19

-lower methane content (26%)

-incomplete degradation of VFAs

-lower total COD removal efficiencies (20% to 31%)

polyester cloth (3 pieces; 8 × 20
× 0.1 cm3)

anaerobic
sludge

organic fraction of
municipal solid waste

-no differences in methane production between polyester cloth and
nonamended control reactor

13

cotton cloth (20 × 10 × 0.05 cm,
400 cm2)

anaerobic
sludge

artificial wastewater
(butanol)

-high start-up period 102

silica-coated nanoFe3O4 (1.1 g/L) paddy soil butyrate -similar methane production in silica-coated nanoFe3O4 to the control
assay without any amendment;

78

plastic threads (25.7 g/L) anaerobic
sludge

artificial wastewater -4.5 times less methane production in the reactor with plastic than in
the reactor with stainless steel

92

-lower COD removal rate

-slightly higher sulfate removal

zeolite (33.3 g/L) anaerobic
sludge

acetate -no effect on methane production. 98

Figure 3. Number of times that methane production increases relatively to control conditions (data from the literature cited in Tables 1, 2 and SI
Table S1); (a) the best result for each CM; (b) average calculated values for each CM.
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experiments with non-CM (Table 3). For example, Li and co-
workers92 compared the efficiency of two UASB reactors
treating sulfate-containing wastewater, one amended with
plastic threads and the other with stainless steel. The results
showed that more methane was produced (7.5−24.6%) in the
reactor amended with conductive stainless steel, which was less
affected by the sulfate reduction than the reactor with insulated
plastic material, although the electric conductivity was higher
in both conditions when compared to the initial inoculum.92 In
another study, the anaerobic digesters supplemented with
conductive carbon cloth presented a higher capacity to resist
the acidic impacts, and an improved methane production than
digesters supplemented with nonconductive cotton cloth.102

However, both studies lack control assays without any material.
When both controls are performed, that is, controls with
nonconductive material and without material, it seems that
electrical conductivity is an important parameter. For example,
Dang and co-workers13,19 showed that in the presence of
polyester cloth (nonconductive material), methane production
was similar to the control with no material, and lower than
when CM are applied. Similarly, the addition of zeolite, as a
nonconductive control, did not affect methane production
from acetate by comparing to the control without material.98

Also, the syntrophic oxidation of butyrate to methane in a
paddy soil enrichment was significantly accelerated in the
presence of nanoFe3O4 (magnetite), but this effect disappeared
when magnetite was coated with silica that insulated the
mineral from electrical conduction.78 Nevertheless, another
study attributed the beneficial effect of carbon felt, during the
AD of molasses, to the increase of biomass retention rather
than to the conductive characteristics of the material.121 This
fact indicates that the support for biomass attachment provided
by the materials could also be an important parameter in the
enhancement of methane production.121 Indeed, Salvador and
co-workers18 showed that the positive effect provided by
multiwalled CNT on the methane production byM. formicicum
is dismissed when the multiwalled CNT are removed from the
culture media, once again pointing out for the importance of
the physical presence of the carbon material.
3.5. The Physical and Chemical Characteristics of CM

and Microbial Colonization. Independently of the applica-
tion, the physical and chemical characteristics of CM are of
utmost importance. Assays with similar CM with slightly
different modifications may return significantly different results
(Figure 3, Table 1). All materials are unique and even when
they present similar general characteristics, their physical and
chemical behavior and therefore the way they influence the
biological reactions, can be potentially different. Some of the
physicochemical characteristics of CM used in AD, namely the
BET surface area, the electrical conductivity and the pH of
point zero charge (pHpzc), are summarized in SI Table S3. The
basicity and acidity of the materials are correlated with the
chemical groups present at their surface, that is, materials with
high content of acidic groups at the surface such as phenols
and carbonyl/quinone groups are more acidic and materials
with low oxygen containing groups, present basic character.
The pHpzc gives the net charge of the material, as a function of
the solution pH: the surface of the materials becomes
positively charged at pH < pHpzc and negatively charged at
pH > pHpzc. In the case of magnetic nanomaterials, smaller
particle sizes increase their performance, due to the increase of
atoms on the surface and near the surface of the material,
which are prone to adsorb and react with other atoms or

molecules so as to attain surface stabilization. However, smaller
particles sizes increase the surface energy, decreasing stability
and leading to agglomeration and precipitation.122

It is known that bacterial activity may increase in the
presence of solids/physical supports, especially in very dilute
nutrient solutions.123 This may be related with the
concentration of nutrients in the surface of the solid by
adsorption,123,124 and by the retardation of the diffusion of
exoenzymes and hydrolyzates away from the cell,123 thereby
promoting the assimilation of nutrients which must be first
hydrolyzed. However, the fact that higher substrate and
nutrient concentrations can be found at the solid surface does
not explain per se better microbial activities.125 In addition, the
effect of the solids toward microbial activities depend on the
nature of the microorganisms, the type and concentration of
the substrates, and the nature of the solid surfaces.125

Surface roughness and surface free energy of solid materials
have a potential role on microbial activity of adhered cells.126

In general, microorganisms tend to adhere in larger extent to
roughest surfaces which provide a higher specific surface area
for cell adhesion. The protrusions from the rougher surfaces
also increase the contact frequency between cells and
surfaces.127 Surface free energy has a significant role in the
adsorption, adhesion, and wetting,128 affecting the phenomena
occurring at the solid−liquid interface. Habouzit and co-
workers129 found that low surface free energy materials, such as
polypropylene, stainless steel, and polyethylene, facilitate the
first stage of colonization of the support by the anaerobic
digester biomass. The low surface free energy materials were
found to be more easily colonized by methanogens.129

Regarding the application of CM in methane driven systems,
major improvements in methane production rates were
obtained with carbon based-CM, specifically with GAC,
multiwalled CNT and carbon cloth (Figure 3B). Indeed, best
results with CM were obtained with carbon-based materials
that present higher surface areas, although lower electrical
conductivities, when compared with metal-based CM (Figure
3, SI Table S3). However, there is no correlation between the
electrical conductivity and the enhancement in methane
production (R2 < 0.1, data not shown). Nevertheless, it is
important to note that the available values for electrical
conductivity are scarce which limits this analysis. On the other
hand, the initial rate and the long-term extent of synthetic
iron(III) oxides reduction were linearly correlated with the
oxide surface area.130 However, other factors such as crystal
structure, morphology, free energy, and particle aggregation
also had an important influence on microbial metal oxide
reduction rates.130

In addition, carbon based-CM had a similar role of humic
substances and soluble quinones during the biological
degradation of organic pollutants.131 Small amounts of
activated carbon, carbon xerogels, CNT, carbon fibers, biochar
and graphene, accelerated the electron transfer from an
electron donor to organic pollutants (as the final acceptors),
improving significantly the reduction rates. Some examples
include the reduction of azo dyes,30,131−136 nitrocom-
pounds,137−141 herbicides142 and pharmaceutical com-
pounds.143,144 The key factor is that these materials act as
electron shuttles by receiving and donating electrons either
biotically or abiotically. The electron shuttling via carbon
materials was initially ascribed to the existing quinone moieties
but recent studies showed that the shuttling effect is uncoupled
from the existence of quinones in the surface of the materials.
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Pereira and co-workers131 showed that higher rates of azo dye
reduction were obtained with activated carbon containing less
oxygen-containing groups, and that it was due to the high
content of electron rich sites on their basal planes (electrons π)
and by a low concentration of electron withdrawing groups.

4. EFFECT OF CONDUCTIVE MATERIALS ON
COMPLEX MICROBIAL COMMUNITIES

It is unquestionable that generally CM enhance the efficiency
of methane production, but the reasons why it happens remain
unclear. To better understand this phenomenon, the microbial
communities are often studied with the objective to (1)
identify the most important microbial players, (2) investigate
the interspecies microbial interactions; and (3) get insights
into the interspecies electron transfer mechanisms.
In most studies performed with CM, the microbial

community analysis is based on the taxonomic composition
obtained by sequencing the 16S rRNA genes. When using next
generation sequencing technologies such as Illumina sequenc-
ing or 454-pyrosequecing, also the relative abundance of the
microorganisms identified can be obtained. However, changes
in community composition do not directly inform changes in
the mechanisms of interspecies electron transfer. Nevertheless,
in a significant number of studies the improvement of
microbial activities in the presence of CM is usually justified
by the shift of IET to DIET. This conclusion appears as a
consequence of the detection of Geobacter species, which are
known to exchange electrons directly with acetoclastic
methanogens.6,8 In some studies, the enrichment of Geobacter
was verified closely attached to CM,1,15,23,80,145−147 suggesting
that the electron transfer mechanism in the consortia could
change to, or include DIET. However, in the majority of the
studies Geobacter species are present in low percen-
tages21,99−101 or even absent.14,17,19,81,94 Notwithstanding
these results, the conclusion that methane production is
enhanced by shifting the IET to DIET is often maintained.
Even when electroactive bacteria are not detected, other
microorganisms have been suggested to participate in DIET.
For example, it was suggested that Syntrophomonas sp. could
exchange electrons directly with Methanospirillum hungatei,
based on the fact that they were the most abundant
microorganisms in a carbon cloth stimulated consortia.81

However, this conclusion had no experimental support, and
fundamental studies performed with M. hungatei revealed its
inability to receive electrons directly from Geobacter.6

The focus on Geobacter species and the assumption that
DIET prevails in methanogenic environments amended with
CM, disregards the importance of other potential microbial
players. In fact, microorganisms closely related to typical
hydrogen forming and syntrophic bacteria were enriched in
assays performed with CM where methane production was
enhanced. For example, Syntrophomonas, Desulfotomaculum,
and Smithella were enriched with GAC;19,82,100 Syntrophomo-
nas with magnetite and hematite;16,24,78 Clostridium (∼50% of
the community) with polymerized conductive polyaniline
nanorods94 and with conductive carbon felt (from 28% to
41% of the community);101 Syntrophobacter with magnetite;
Sporanaerobacter (representing approximately 30% of the
bacterial community) with carbon cloth,13 and Syntrophomonas
also with carbon cloth (SI Table S2).81

Not all microorganisms are able to perform DIET, and the
research available suggests that this may be the case of the vast
majority of the anaerobic microorganisms. Experimental

evidence collected until date, point out for the inability of
some Syntrophomonas18 and Pelobacter species11 to participate
in DIET.
DIET does not always explain the enhancement of methane

production. For example, magnetite was found to accelerate
the oxidation of propionate by acting as an electron acceptor,
rather than promoting DIET.27 Similarly, Kato and co-
workers24 reported ferrihydrite reduction to ferrous ions by
Geobacter in methanogenic cultures.
It was also demonstrated that increasing concentrations of

multiwalled CNT, a carbon based conductive material,
promoted increasing methanogenic activities of four different
species of methanogens growing in pure cultures.18 Methane
production rates increased up to 17 times in pure cultures of
Methanobacterium formicicum.18 This finding proved that the
effect of CM toward microbial communities goes beyond the
interactions between different species of microorganisms. The
fact that these materials affect the activity of methanogens in
pure cultures, should be considered when interpreting the
effect of similar materials toward the same microorganisms
when growing in complex microbial communities.
As it was mentioned before, CM inhibited the methanogenic

communities in a minor number of cases (Table 2). High
concentrations of Ag and MgO nanoparticles (i.e., 500 mgAg/
gTSS and 500 mgMgO/gTSS), reduced the abundance of
bacterial and archaeal populations in 84% and 32% relatively to
the control, respectively.89 In addition, α-Proteobacteria, β-
Proteobacteria, Bacteroidetes, and Methanosaeta were less active,
and a significant decrease on enzymatic activities (e.g.,
proteases, acetate kinases and coenzyme F420) could be
detected in the reactors exposed to Ag and MgO nano-
particles.89 The supplementation of ferrihydrite also lead to
microbial community changes.24,84 For example, while
Methanosarcina spp. were abundantly detected both in
ferrihydrite24,84 and magnetite24 cultures, Methanobacterium
was only detected in the control and in ferrihydrite
supplemented cultures, being apparently inhibited by magnet-
ite.24

5. CONCLUSIONS AND FUTURE PERSPECTIVES

Generally, CM improve the conversion of organic waste to
methane by anaerobic microbial communities. Nevertheless,
some CM (i.e., ferrihydrite, carbon black, Ag, and Mg
nanoparticles) were reported to inhibit methane production.
Carbon-based CM stimulated methanogenic communities in a
larger extent than metal-based CM. However, it is hard to
compare the effect of different CM since they present different
physical and chemical characteristics (e.g., surface area, shape,
pore size and volume, electrical conductivity, pHpzc) and were
applied in different systems with distinct substrates, inocula,
and operational conditions.
The mechanisms behind the effect of CM are not well

understood but it seems that more than one factor is
responsible for the changes toward microbial activities. The
electrical conductivity of biofilms, the redox potential of the
growth medium, the specific surface area and the roughness of
the materials seem to be important factors. Control assays with
nonconductive materials are important for understanding the
effect of CM, but such controls were rarely performed.
More studies with pure cultures and cocultures need to be

conducted, as well as control assays. For example, studies with
defined cocultures and different CM with distinct electrical
conductivities and surface areas should help in the clarification
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of the role of these characteristics in the enhancement of
methane production. Additional molecular biology method-
ologies should also be employed in order to get more
functional data in addition to taxonomic information. For
instance, analyzing the taxonomy based in 16S rRNA collected
from RNA extracts in alternative to DNA extracts, measuring
enzymes activities or following protein expression, would help
to draw more reliable conclusions and to link microbial
identity to activity. Metagenomics, metatranscriptomics and
metaproteomics may be used to unravel microbial interactions
and activities in uncultivable microbial communities. In
addition, more studies should be performed in order to
understand which trophic groups are directly affected by CM,
if the methanogens, the bacteria or both.
A deeper microbial community analysis however, does not

discard the need to explore more extensively the system.
Measuring as much parameters as possible (e.g., redox
potential, electric conductivity, methane, hydrogen, formate,
among other parameters) and performing all necessary
controls.
Another important issue that should be addressed is the

economic and environmental impact of the continuous
addition of CM to bioreactors. In some cases, the price of
CM is very high, and the continuous addition is not
economically feasible. The use of magnetic CM may be an
interesting alternative since they can be easily recovered and
reutilized due to their magnetic properties. These nano-
composites of carbon and magnetic nanomaterials present a
high surface area, proper pore size and excellent catalytic
properties. Also, the growth of carbon nanofibers in the surface
of ceramic monoliths, and the immobilization of CM
(eventually chemically and/or physically modified) in silicon
foam may result in a superior macrostructured catalyst with
tailored properties for specific applications.
Despite the yet limited knowledge on this topic, the

application of CM appears as a good strategy to improve the
methane production rates. Their application turns anaerobic
systems more resilient to upsets caused by high organic loading
rates or toxic compounds, and increase the competitiveness of
AD in waste treatment and bioenergy production.
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