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Stellingen 

1. Met methanol als electronendonor zijn hoge snelheden van sulfiet- en sulfaatreduktie haalbaar 
in thermofiele (65°C) reaktoren. 

dit proefschrift 

2. In het temperatuurtraject van 30 tot 65°C bevindt zich een overgangstemperatuur waarbij de 
afbraak van methanol in niet-steriel bedreven anaerobe reactoren verschuift van inethanogeen 
naar sulfidogeen. 

dit proefschrift 

3. Gerapporteerde waarden voor de maximale groeisnelheid en groei-opbrengst van 
sulfaatreducerende bacterien dienen met de nodige voorzichtigheid te worden betracht, 
aangezien deze groeikinetische parameters veelal bij niet-constante sulfideconcentratie 
worden bepaald. 

4. Het benoemen van de door de Smul et al. gebruikte reactor als Expanded Granular Sludge 
Blanket reactor moet als 'wishful thinking' worden aangeduid. 

Smul, A. de, Dries, J. Goethals, L, Grootaerd, H., Verstraete, W. (1997). High rates of sulfate 
reduction in a mesophilic ethanol-fed expanded-granular-sludge-bed reactor. 
ApplMicrobiol.Biotechnol. 48, 297-303. 

5. De export van afval naar landen met minder strenge milieuwetgeving remt de ontwikkeling 
van nieuwe technologien voor milieusparende verwerking van dat afval. 

6. Het regelmatig gebruik van het f-teken als index bij auteursnamen in wetenschappelijke 
njdschriften kan bij nieuwkomers in de wetenschap tot de opvatting leiden dat ze een nogal 
ongezond beroep hebben gekozen. 

7. De vrijwel totale afwezigheid van varkens in het Nederlandse landschap is bevreemdend als 
wordt bedacht dat Nederland bijna evenveel varkens als mensen telt. 

8. Het kunnen uitlopen van een marathon is een betere indicatie voor een goede lichamelijke 
gezondheid dan het slagen voor menig medische keuring. 

9. Het gebruik van de lift in het Biotechnion is een onvrijwillige vorm van onthaasting. 

10. In Nederland wapperen 's zomers per vierkante kilometer meer Duitse vlaggen dan in 
Duitsland. 

Stellingen behorende bij het proefschrift "Methanol as electron donor for thermophilic biological sulfate 
and sulfite reduction ". 
Jan Weijma, Wageningen, 20 oktober 2000. 
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Abstract- Weijma. J. (2000). Methanol as electron donor for thermophilic biological 

sulfate and sulfite reduction. Doctoral Thesis, Wageningen University, The Netherlands. 

Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste and process streams by 

means of biological reduction with a suitable electron donor to sulfide, followed by partial 

chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in 

this thesis was to make this biological process more broadly applicable for desulfurization of flue-

gases and ground- and wastewaters by using the cheap chemical methanol as electron donor for the 

reduction step. Besides determining the selectivity and rate of reduction of sulfur oxyanions with 

methanol in bioreactors, also insight was acquired into the microbiology of the process. It was 

found that at pH 7.5 and thermophilic (65°C) conditions (applicable for flue-gas desulfurization), 

sulfate-reducing microorganisms ultimately outcompete methanogenic consortia for methanol in 

anaerobic high-rate bioreactors. Methane formation from methanol was quickly inhibited by 

imposing slightly acidic pH-values (6.7 instead of 7.5). Acetate represented a side-product from 

methanol at 65°C, accounting for up to 13% of the methanol degraded. The rate of acetate 

formation was linearly correlated to the rate of sulfate and sulfite reduction with methanol. At a 

hydraulic retention time (HRT) of 10 h, maximum reduction rates of 6 gSC^M/'.day"1 (100% 

elimination) and 4-7 gSO/'.I/'.day"1 (40-70% elimination) were attained simultaneously in the 

reactors, equivalent to a sulfidogenic methanol-conversion rate of 6-8 gCOD.L" .day"1 

(COD:Chemical Oxygen Demand). The resulting sulfide concentration of about 1800 mgS.L"1 (or 

the H2S concentration of 200 mgS.L"1 at pH 7.5) limited the rate of sulfate reduction at a HRT of 10 

h. At a hydraulic retention time of 3-4 h, maximum reduction rates of 18 gSC^M/'.day"1 (100% 

elimination) and about 12 gSO^M/'.day"1 (50% elimination) were attained, equivalent to a 

sulfidogenic methanol-conversion rate of 19 gCOD.I/'.day1. At this HRT, the sulfate reduction 

rate was limited by the biomass concentration of 9 to 10 gVSS.L"1 that maximally was retained in 

the reactor. The time needed to reach maximum process performance amounted to 40-60 days. 

From one of the reactors a thermophilic sulfate-reducing bacterium, Desulfotomaculum strain 

WW1 was isolated, that probably represented the most abundant sulfate reducer. In the reactor, 

strain WW1 is not confined to the use of methanol, as it also grows on methanol degradation 

products like acetate, formate and H2/CO2. The presence of high numbers of methanol-oxidizing, 

hydrogen-producing bacteria in the sludge indicated that hydrogen may represent an important 

electron donor for sulfate reduction in the sludge. In the cultures in which the presence of these 

species was demonstrated, the formation of acetate (about 15% of the methanol degraded) seemed 

to be strictly coupled to growth of the methanol-oxidizing species. This might explain the coupling 

of sulfide and acetate formation from methanol in the reactors. Methanol was not a suitable electron 

donor for mesophilic (30°C) sulfate reduction, relevant for bio-desulfurization of cold or slightly 

heated ground- or wastewater. Under mesophilic conditions, methanol was primarily degraded to 

methane. 
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Chapter 1 

General Introduction 

1.1 Sulfur dioxide emission 

Sulfur dioxide (S02) represents the main fraction of anthropogenic sulfur emissions 

worldwide. According to the U.S. Environmental Protection Agency (EPA), roughly 23 

million tons of SO2 are emitted annually in the United States. In the countries of the 

European Community, about 16.5 million tons of SO2 were emitted in 1990. Anthropogenic 

sulfur dioxide emission is mainly caused by combustion of sulfur-containing fossil fuels 

like coal and oil. Power plants account for nearly 70% of all SO2 emissions1. The second 

major source of sulfur dioxide originates from industrial combustion processes (boilers, 

process heaters, metallurgical operations such as roasting and sintering, coke oven plants, 

processing of titanium dioxide, pulp production, thermal treatment of municipal and 

industrial waste). Also some non-combustion processes add to sulfur dioxide emission, such 

as sulfuric acid production, specific organic synthesis processes, treatment of metallic 

surfaces and oil refining processes. Overall data (1990) for North America, Western, 

Central, Eastern Europe, and Central Asia indicate that 88% of total sulfur emissions 

originate from combustion processes, 5% from production processes and 7% from oil 

refineries. In terms of contribution by fuel type, coal-fired industrial and electricity-

generating plants account for more than 90% of all SO2 emitted by stationary fuel-

combustion sources. 

Sulfur dioxide (along with NOx) has a number of environmental effects. First, acid rain is 

formed when sulfur dioxide mixes with and dissolves in the water in clouds, eventually 

forming dilute sulfuric acid. Acid rain causes lake and soil acidification, forest die-off and 

corrosion of stone and metalwork. Furthermore, SO2 contributes to the formation of acid 

aerosols, which can cause a haze over large regions. It is believed that such haziness can 

substantially reduce average temperatures in affected areas13. In this way, SO2 could affect 

the earth's climate. S02 and related pollutants have also been linked to a number of human 

diseases4. The need for sulfur dioxide removal from flue-gases is therefore evident and 

acknowledged by many countries in treaties like 'The protocol to the 1979 convention on 

long-range transboundary air pollution on further reduction of sulfur emissions' of the 
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United Nations Economic Commission for Europe and the '1990 Clean Air Act 

Amendments' of the United States government. 

General options for reduction of sulfur emissions include energy management measures, 

increase of the proportion of non-combustion renewable energy sources (i.e. hydro, wind, 

etc.) to the total supply, fuel switching (e.g. from high- to low-sulfur coals and/or liquid 

fuels, or from coal to gas), fuel desulfurization and advanced combustion technologies (e.g. 

coal gasification combined with gas desulfurization). Another category of processes aims at 

removing already formed sulfur oxides, and is referred to as Flue-Gas Desulfurization 

(FGD) processes. FGD was already applied in the Battersea power plant in London in 1926, 

where it consisted of scrubbing the flue-gas with alkaline water86. The state-of-the-art 

technologies for flue-gas treatment processes are all based on the removal of sulfur dioxide 

by wet, dry or semi-dry (also referred to as wet and dry) absorption processes and catalytic 

chemical processes. In some cases, options for reducing sulfur emissions may also result in 

the reduction of emissions of CO2, NOx and other pollutants. 

Flue-gas treatment processes currently applied include: lime/limestone wet scrubbing 

(LWS); spray dry absorption (SDA); Wellman Lord process (flue-gas scrubbing with 

sulfite); ammonia scrubbing; and combined NOx/SOx removal processes (activated carbon 

process and combined catalytic removal). In the power generating sector, LWS and SDA 

cover 85% and 10% of the installed flue-gas desulfurization capacity, respectively. In LWS, 

aqueous lime or limestone slurries are contacted with the flue-gas in a scrubber. The sulfur 

dioxide dissolves in the aqueous phase and then reacts with hydroxide ions to form bisulfite 

(HSO3), which subsequently reacts with Ca2+ to form the poorly soluble CaS03. CaS04 

(gypsum) is also a product, as part of the bisulfite is oxidized to sulfate, due to the presence 

of oxygen in flue-gas. The resulting CaS03 and CaS04 mixture can be used in construction 

materials. However, impurities such as fly-ash and dust originating from the flue-gas may 

limit this application. Disposal of the waste then becomes the only alternative, resulting in 

additional costs and environmental pollution. Since about a decade, efforts have been made 

to develop a biotechnological alternative for conventional physico-chemical processes for 

removal of sulfur dioxide from flue-gases. This process is called Biotechnological Flue-Gas 

Desulfurization (Bio-FGD). In Bio-FGD, bacteria are used to fix S02 as elemental sulfur. In 

paragraph 1.2 this process is described in more detail. Because besides S02 also heat is 

transferred from the flue-gas to the scrubbing solution, it is attractive to operate the 

desulfurization process at (moderate) thermophilic conditions, so that no cooling is 

required. 
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1.2 Biological desulfurization 

In this paragraph, the biological desulfurization process is described in greater detail 

(paragraph 1.2.1) and the choice for methanol as electron donor for reduction of sulfur 

oxyanions is discussed (paragraph 1.2.2). 

1.2.1 Process description 

Biotechnological Flue-Gas Desulfurization makes use of the following conversions of the 

sulfur cycle: 

S02 +H20 

HS03" + l
A 0 2 

HSO3" + 6 [H] 

SO42' + 8 [H] 

HS" + l
A 0 2 

=> HSO3" + H+ 

=> S04
2" + H+ 

=> HS" + 3 H20 

=> HS" + 3 H20 + OH" 

=> S + OH" 

(1) 

(2) 

(3a) 

(3b) 

(4) 

Figure 1.1 shows the flow sheet for Bio-FGD. In the first step of biological flue-gas 

desulfurization, sulfur dioxide is scrubbed from the flue-gas with a bicarbonate solution 

(reaction 1). Presence of oxygen in the flue-gas results in oxidation of part of the sulfite into 

sulfate (2). In the subsequent step, sulfite and sulfate are reduced under anaerobic 

conditions with an added electron donor to sulfide by sulfate-reducing bacteria (3a and b). 

Thereafter, the produced sulfide is partially oxidized to elemental sulfur by autotrophic 

sulfur bacteria like Thiobacillus spp. in a micro-aerobic reactor with concomitant 

production of hydroxide (4). Separation of the solid sulfur particles from the medium 

enables the recovery of elemental sulfur as a valuable product. The remaining bicarbonate 

solution, with a pH of about 9, can be reused for scrubbing of sulfur dioxide. Because along 

with S02, also heat is transferred from the flue gas to the scrubbing solution, it is attractive 

to operate the desulfurization process at thermophilic conditions (50-65°C). 

Comparison of the Bio-FGD process with conventional lime/limestone wet scrubbing 

technologies shows that the Bio-FGD requires less input of energy and chemicals. Most 

products of conventional and biological desulfurization processes are reusable such as 

gypsum, sulfuric acid or sulfur. Site-specific factors such as market conditions and quality 

standards determine the economic value of these products. 
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Desulfurized gas 

Flue gas -

* Bleed 

Suliur sludge 

Scrubber Anaerobic Aerobic Plate 
reactor reactor separator 

Figure 1.1. Flow sheet Bio-FGD 

Apart from application in flue-gas desulfurization, sulfite- and sulfate-reducing bioreactors 

have potential application in other industrial desulfurization processes, including treatment 

of waste-gypsum36-50 and in precipitation of heavy metals32-116. Also waste- and 

groundwater polluted with sulfate can be treated using the biological desulfurization 

process outlined above. In these cases, the process should preferably operate in the 

mesophilic temperature range due to the lower temperature of these wastestreams. 

1.2.2 Choice for methanol as electron donor 

An important factor determining the economic feasibility of biological desulfurization is the 

cost of the electron donor needed for sulfate reduction in the anaerobic step. Formation of 

undesirable side-products like methane and acetate needs to be minimized. Options for 

electron donors include organic waste materials such as primary sewage sludge, spent yeast 

from breweries, dairy whey, molasses and bulk chemicals like H2, synthesis gas (a mixture 

of H2, C0 2 and CO), ethanol and methanol (Table 1.1). Organic waste has the advantage of 

low costs, but adequate control of the process may be difficult because of its complex 

composition. For instance, intermediates formed during degradation of organic waste may 

promote undesirable growth of methanogens. Also, incomplete degradation of organic 

compounds may deteriorate the performance of the sulfide-oxidizing bioreactor of the 

desulfurization process45. 
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The applicability of pure chemicals like lactate, ethanol, and acetate for sulfate reduction 

has been demonstrated in mesophilic laboratory-scale reactors (Table 1.1), but use of these 

chemicals on an industrial scale will probably be prohibitively expensive. Relatively cheap 

bulk chemicals synthesis gas or H2/C02 are better options in this respect. Moreover, 

reasonable to good sulfate elimination rates can be achieved with these substrates in 

mesophilic gas-lift reactors (Table 1.1). However, under thermophilic conditions 

(preferable for Bio-FGD) elimination rates with H2/C02 are lower, while it has been found 

that about half of the added hydrogen is used for methanogenesis, presumably due to good 

kinetic growth properties of thermophilic methanogens40. 

Table 1.1. Sulfate and sulfite elimination rates found in biological desulfurization processes 
with various electron donors. 

Electron 

donor 

molasses 

m.s.d. 

lactate 

acetate 

acetate 

ethanol 

syngas 

H2/C02 

H2/C02 

H2/C02 

CO 

T 

(°C) 

31 

30 

R.Td 

35 

33 

35 

30 

30 

30 

55 

30 

bioreactor 

type 

packed bed 

packed bed 

plugflow 

packed bed 

EGSBe 

UASBf 

gas-lift 

packed bed 

gas-lift 

gas-lift 

packed bed 

so4' '" removal 

(g.L'.day"1) 

6.5 

na 

0.41 

65 

9.4 

6 

10 

1.2 

30 

7.5 

2.4 

SO*2 

(g-L 

" removal 

/'.day'1) 

a 

na 

46 

na 

na 

na 

na 

na 

na 

na 

9.3 

na 

COD to 

H2S/CH4 (%/%) 

b 

nr 

100/0 

nr 

100/0 

nr 

nr 

100/0 

100/0 

100/0 

50/50 

100/0 

ref. 

66 

103 

32 

108 

22 

47 

39 

23 

38 

50 

23 

a) na = no sulfate or sulfite added; b) nr = not reported; c) m.s.d. = municipal sewage digest; d) R.T.= 
room temperature; e) EGSB = expanded granular sludge bed; f) UASB = upflow anaerobic sludge bed. 

In the present study, the use of methanol as an alternative electron donor for thermophilic 

sulfate reduction was investigated. Methanol is a relatively cheap bulk chemical and therefore 

an attractive substrate for use in biotechnological processes20. Methanol is for instance 

successfully used as electron donor in denitrification28 and it also has been proposed as 

electron donor in other sulfate-reducing processes34. Moreover, chemically synthesized 
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methanol contains little organic impurities, resulting in only a low extent of undesired 

biological side-reactions from these impurities. A low amount of impurities also makes 

additional treatment of biologically desulfurized wastewater redundant. Hence, methanol 

was selected as electron donor for reduction of sulfur oxyanions in our investigation. 

1.3 Microbiology of thermophilic anaerobic methanol degradation 

In this paragraph, the possible biological degradation routes of methanol are presented 

(paragraph 1.3.1). An overview of known sulfate reducers, methanogens and acetogens 

possibly involved in thermophilic methanol degradation is given in paragraphs 1.3.1, 1.3.2 

and 1.3.3, respectively. 

1.3.1 Anaerobic degradation of methanol 

Possible degradation pathways for methanol under anaerobic conditions are shown in 

Figure 1.2. Reaction stoichiometries and Gibbs free energy changes are shown in Table 1.2. 

Three groups of microorganisms are involved in anaerobic methanol degradation, viz. 

sulfate-reducing bacteria (SRB), methanogenic archaea (MA) and homoacetogenic bacteria 

(AB). Methanol can be used directly as carbon and energy source by SRB (conversion l)74, 

MA (conversion 5a)113 and AB (conversion 9)97. In addition, MA may reduce methanol to 

methane with H2 (conversion 5b). Therefore, SRB, MA and AB will compete for the 

available methanol in mixed cultures. Thermophilic SRB (e.g. Desulfotomaculum 

thermoacetoxidans
71 and MA77 may also compete for acetate (conversions 2 and 6), the 

product of methanol catabolism by AB (conversion 9). It has also been demonstrated that 

acetate can be oxidized to H2/C02 (conversion 11) under mesophilic101, as well as under 

thermophilic conditions141. Therefore, degradation of methanol to methane by a triculture 

consisting of a methylotrophic acetogen, acetate oxidizing species, and a hydrogenotrophic 

methanogen is theoretically possible. Furthermore, anaerobic bacteria may partially oxidize 

methanol to H2/C02 (conversion 10), when the H2 concentration is kept low by 

hydrogenotrophic sulfate reducers (conversion 3) or methanogens (conversion 7)19. In the 

mesophilic temperature range, even methanogens have been shown to produce H2/C02 from 

methanol when grown in the presence of SRB87. Thus, competition for H2 may take place 

as well. 

At a high hydrogen partial pressure, H2 may be consumed by homoacetogens129. As 

methanol oxidation to hydrogen is thermodynamically unfavourable at a high hydrogen 
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partial pressure, methanol oxidation followed by acetogenesis from H2/CO2 is not likely to 

occur. Therefore, this conversion is not included in Figure 1.2 and Table 1.2. Methanol 

conversion to formate (conversion 12) is thermodynamically unfavourable under standard 

conditions. To our knowledge, formate formation from methanol has not been reported in 

literature. However, besides hydrogen, formate can be important in methanogenic 

environments8'21. SRB (conversion 4)74 and MA (conversion 8)136 can subsequently use 

formate. Methanol degradation can even be more complex as formate conversion to 

hydrogen and acetate31 and methanol degradation to butyrate11 (not shown in Figure 1.2) 

may also occur. The above illustrates that mixed cultures may mineralize the relatively 

simple C]-compound methanol in a complex way. As a consequence, SRB and MA may not 

only compete for methanol, but also for hydrogen, acetate, and formate. 

Sulfide < 

S04
2" 

Formate- © 

Sulfide < 
© J 

SO/" @ 

- • Methane 

-Methanol-
© -•Methane 

© / X® 
so/ 

Sulfide < ® y Acetate ^ - > H 7 C 0 2 ^ — • Methane 

©I ©Lrso; 

Methane Sulfide 

Figure 1.2. Anaerobic methanol mineralization. Conversion numbers 
correspond to the numbers of reaction equations in Table 1.2 
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Table 1.2. Stoichiometry and Gibbs free energy changes at standard conditions and pH 7 of 

reactions possibly involved in anaerobic methanol degradation. Calculated from Thauer et al. 

(1977)112. 

Reaction AG°' (kJ/reaction) 

I) 4 CH3OH + 3 S04
2" => 4 HC03" + 3 HS" + 4 H20 + H+ -364 

2)CH3COO- + S042"=>2HC03- + HS- -48 

3)4H2 + S04
2"+H+=>HS" + 4H20 -152 

4) 4 HCOO" + S04
2" + H+ => HS"+4 HC03" -172 

5a) 4 CH3OH => 3 CH4 + HCO3" + H20 + it -316 

5b) CH3OH + H2 => CH4 + H20 -113 

6) CH3COO" + H20 => CH4 + HC03" -31 

7)4H2 + HC03+H+=>CH4 + 3H20 -136 

8) 4 CHOO + H20 + H+
 => CH4 +3 HC03" -132 

9) 4 CH3OH + 2 HCO3" => 3 CH3COO- + H+ + 4 H20 -220 

10) CH3OH + 2 H20 => 3 H2 + HC03" + H+ +23 

II) CH3COO- + 4 H20 => 4H2 + 2 HC03- + i f +104 

12) CH3OH + 2 HC03- => 3 HCOO- + H20 + i f +19 

1.3.2 Thermophilic sulfate reducing bacteria 

A common characteristic of sulfate-reducing bacteria is their ability to conserve energy by 

the reduction of sulfur oxyanions like sulfite, sulfate and thiosulfate. SRB vary widely in 

their morphological, physiological and phylogenetical characteristics. Table 1.3 summarizes 

some physiological characteristics of thermophilic SRB. The optimum pH for growth of 

known thermophilic sulfate-reducing eubacteria lies in the range of 6.5-7.5, and the 

optimum temperature in the range of 54-70°C. The upper temperature limit for growth of 

the known eubacterial SRB is 85°C. Most thermophilic SRB are able to grow at moderate 

or high NaCl-concentrations of up to 70 g.L"1. The archaeon Archaeglobus profundus has 

different optima (optimum pH: 6.0, optimum temperature: 82°C). Most isolated 

thermophilic eubacterial SRB belong to the genus Desulfotomaculum, that includes some 

mesophilic species. Genera only consisting of thermophilic species are Desulfacinum, 

Thermodesulfobacterium, Thermodesulforhabdus and Thermodesulfovibrio. All species 

except Thermodesulforhabdus norvegicus use hydrogen as electron donor. Some species 

need acetate as carbon source for growth on hydrogen. D. thermoacetoxidans produces 

acetate and sulfide while growing on an excess of H2/C02. Growth on formate with acetate 

as carbon source is common. Acetate is utilized only by a few species (Table 1.3). 

Methanol is utilization is even more rare, only a few Desulfotomaculum species grow on 

8 
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this substrate, but utilization of methanol was not tested for some species (Table 1.3). Use 

of sulfite and thiosulfate as alternative electron acceptor is common among SRB, while 

some species additionally use elemental sulfur (e.g. D. thermoacetoxidans). D. 

thermobenzoicum is capable of nitrate reduction to ammonium. Under sulfate limiting 

conditions, some thermophilic SRB ferment pyruvate (e.g. D. infernum, D. 

thermosapovorans, T. yellowstonii). 

Thermophilic Desulfotomaculum species have been isolated from various sources such as 

geothermal ground water18-62'74, cold marine sediment44, compost25 and oil field 

waters76-94. Only D. thermoacetoxidans
11 and D. thermobenzoicum

110 were isolated from 

enrichment cultures that originated from methanogenic digesters. The importance of the 

latter two species in their original habitat seems rather minor, as. enrichment procedures 

primarily select for SRB with a high maximum growth rate while in the methanogenic 

digesters (containing no or only low amounts of sulfate in the influent), the selection was 

mainly for sulfate reducers with a high affinity for sulfate or with the capacity of 

fermentative growth. 

It was suggested by Widdel124 that sulfate reduction in habitats with temperatures between 

50 and 65°C is carried out by Desulfotomaculum species, while Thermodesulfobacterium 

species may also play a role above a temperature of 60 to 65°C. Desulfotomaculum species 

have a broad substrate range. Common substrates include alcohols, organic acids, hexoses 

and benzoate. D.australicum, D.kuznetsovii, D.thermoacetoxidans and D. geothermicum are 

capable of complete oxidation of organic substrates to C02 . However, D. geothermicum 

does not grow on acetate. Appearance of spores is a clear indication that a sulfate-reducing 

isolate belongs to Desulfotomaculum, as this characteristic has not been observed for other 

SRB. Most thermophilic Desulfotomaculum species stain Gram-negative, although their cell 

wall has a typical Gram-positive structure. Phylogenetically, Desulfotomaculum species 

cluster with the branch of Gram-positive bacteria with DNA of low GC-content, and may 

be regarded as clostridia-like bacteria which have the additional capacity of dissimilatory 

sulfate reduction124. 

Two Thermodesulfobacterium species have been described to date. T. commune was 

isolated from sediment of a hot spring in Yellowstone National Park, USA133 and T. mobile 

originated from warm oil field water96. Both species have a limited substrate range; besides 

H2/C02 and formate, only lactate and pyruvate can serve as electron donor for sulfate 

reduction. The latter compounds are incompletely oxidized, to acetate. Phylogenetically, the 

genus branches near the root of the eubacterial tree and is therefore separate from other 
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Gram-negative SRB from the delta group of Proteobacteria or from Gram-positive 

Desulfotomaculum species125. 

Thermodesulfovibrio yellowstonii is the only species in this genus to date. It was isolated 

from a hydrothermal vent35. The only other growth substrates besides hydrogen and 

formate are lactate and pyruvate, which only are oxidized to acetate. T. yellowstonii 

represents a lineage that branches deeply within the Bacteria domain. 

Like many other thermophilic SRB, Thermodesulforhabdus norvegicus and Desulfacinum 

infernum were isolated from samples collected from oil field water7-90. Both species belong 

to the sulfate-reducing bacteria of the delta subdivision of the Proteobacteria. 

The capability of dissimilatory sulfate reduction is also found among hyperthermophilic 

archaea like Archaeglobus profundus
9
. Hyperthermophilic microorganismes are not able to 

grow below 60°C. Hyperthermophiles have mainly been isolated from submarine 

hydrothermal vents, oil field waters and continental solfataras, but never from anaerobic 

digesters. Sulfate reduction has only been reported for A. profundus and A. fulgidus. Sulfite 

and thiosulfate reduction has been reported for a number of other species107. 
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Table 1.3. Selected physiological characteristics of thermophilic SRB. 

Organism Cj and C2 growth MeOH T-range T, 

substrates tested 
opt 

(°Q (°Q 

pHopt ref. 

Archaeoglobus 

profundus 

Desulfacinum 

infernum 

Desulfotomaculum 

australicum 

Desulfotomaculum 

geothermicum 

Desulfotomaculum 

kuznetsovii 

Desulfotomaculum 

nigrifwans 

Desulfotomaculum 

thermoacetoxidans 

Desulfotomaculum 

thermobenzoicum 

Desulfotomaculum 

thermocisternum 

Desulfotomaculum 

thermosapovorans 

Desulfotomaculum 

strain T93B/T90A 

Thermodesulfo-

bacterium commune 

Thermodesulfo-

bacterium mobile 

Thermodesulfor-

habdus norvegicus 

Thermodesulfovibrio 

yellowstonii 

H2(+Ac) 

H2+C02, formate, 

Acf, EtOHg 

H2+C02, Ac, EtOH 

H2+C02, formate, 
EtOH 

H.+CO,. MeOH. Ac. 
EtOH 

H2+C02(+Ac), 
EtOH formate(+Ac), 

H2+C02, formate, 
Ac 

H2+C02, 
formate(+Ac), EtOH 

H2+C02, EtOH 

H2+C02, formate, 
MeOH. EtOH 

H2+C02, formate, 
MeOH. EtOH 

H2(+Ac) 

H2(+Ac), 
formate(+Ac) 

Ac, EtOH 

h2(+Ac), 
formate(+Ac) 

yes 65-90 82 

no 

yes 

yes 

yes 

no 

no 

40-65 60 7.1-7.5 90 

yes 40-74 68 7-7.4 62 

37-57 54 7.3-7.5 IS 

50-85 60-65 nr" 

30-70 55 

45-65 55-60 6.5 

74 

nr 10,52 

71 

yes 40-70 62 7.2 110 

yes 41-75 62 6.7 76 

yes 35-60 50 7.2-7.5 25 

yes 43-78 65 7.0 94 

45-85 70 7.0 133 

yes 45-85 65 nr 95,96 

no 44-74 60 69 7 

no 40-70 65 6.8-7.0 35 

a) MeOH: methanol; b) T-range: range of 

temperature; d) pHopt: optimum pH for growth; 

acetate; g) EtOH: ethanol; h) nr: not reported. 

growth temperature; c) Topt: optimum growth 

e) +Ac: acetate needed as carbon source; f) Ac: 
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1.3.3 Thermophilic methanogens 

Thermophilic methanol degrading methanogens isolated to date all belong to the genus 

Methanosarcina (Table 1.4). These Methanosarcina-strains probably all are M. 

thermophila
15

'
137

. Accordingly, these strains have very similar physiological 

characteristics. The optimum temperature for growth lies in the range of 50 to 57°C while 

no growth is possible beyond 65°C. M. thermophila TM-1 is the only hydrogen-utilizing 

species, but acetate can be used by all Methanosarcina strains. Most Methanosarcina 

species were isolated from anaerobic digesters80-113,138,142. The only other acetate-utilizing 

methanogenic genus is Methanothrix, for which the upper temperature for growth is 

70°C137. Thermophilic Methanothrix have been isolated mainly from anaerobic digesters. 

Hydrogenotrophic methanogenesis may occur at temperatures as high as 97°C107. A review 

on (hyper)thermophilic methanogenesis from H2/C02 can be found elsewhere64. In this 

thesis work, research has been done with the moderately thermophilic genus 

Methanobacterium. Species belonging to this genus are commonly isolated from anaerobic 

digesters114,135,136 \\\ Methanobacterium species grow autotrophically on H2/C02. In 

addition, some species use formate. The optimum pH for most moderately thermophilic 

methanogens lies around neutral values. 

1.3.4 Thermophilic acetogens growing on Q-compounds 

An overview of thermophilic homoacetogenic bacteria has been made by Lowe et al.64. For 

growth on methanol, C02 must be present as electron acceptor. The best characterized 

methanol degrading homoacetogens are Moorella thermoautotrophicum and M. 

thermoaceticum (Table 1.5). Some thermophilic acetogens are known to utilize sulfite or 

thiosulfate as electron acceptor37'131. However, none of the latter species use methanol as 

electron donor. About half of the known homoacetogenic Clostridia produce some butyrate11. 

However, among the described methanol degrading thermophiles, butyrate is a less common 

product54. 

12 



General introduction 

Table 1.4. Selected physiological characteristics of moderately thermophilic MA. 

Organism Growth substrates T-rangea Top t
b pH0pt

c ref. 

CO («C) 

Methanosarcina CHTI 55 MeOH 

Methanosarcina MP MeOH 

Methanosarcina MSTA-1 ' ———' 

methylamines 

Methanosarcina CALS-1 MeOH. Ac 

Methanosarcina H2/C02, Ac, MeOH. 

thermophila TM-1 methylamines 
Methanothrix sp. CALS-1 Ac 

Methanothrix . 

thermoacetophila 

Methanobacterium 

thermoautotrophicum 

Methanobacterium 

thermoformicicum 

H2/C02 

H2/C02, formate 

35-63 

30-60 

30-65 

30-60 

35-60 

45-65 

nrf-70 

40-75 

nr 

57 

55 

55 

55-58 

±50 

60 

65 

65 

55 

6.8 

6.5-7.0 

7 

6.5 

6-7 

6.5 

nr 

7.2-7.6 

7-8 

113 

80 

15 

138 

142 

139 

77 

134 

136 

a) T-range: range of growth temperature; b) Topt: optimum growth temperature; c) pHopt: optimum pH for 
growth; d) MeOH: methanol; e) Ac: acetate; f) nr: not reported. 

Table 1.5. Selected physiological characteristics of thermophilic methanol- and H2/CO2-

utilizing homoacetogens. 

Organism 

Moorella 

thermoautotrophicum 

Moorella 

thermoaceticum 

Clostridium 

thermocellum 

Acetogenium kivui 

Strain AG 

Cj growth 
substrates 

H2/C02, formate, CO, 

MeOl^/CO, 

H2/C02, formate, CO, 
MeOH/CO, 

MeOH /CO,, formate 

H2/C02, formate 

MeOH/CO, 

T-range 

(°C) 

36-70 

e 

nr 

nr 

50-73 

55-75 

1opt 

(°Q 

56-60 

55-60 

60-64 

66 

70 

pHopt 

5.8 

nr 

7 

6.4 

nr 

ref. 

61,129 

51,130 

64 

56 

19 

a) T-range: range of growth temperature; b) Topt: optimum growth temperature; c) pHopt: optimum 
pH for growth; d) MeOH: methanol; e) nr: not reported. 
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1.4 Sulfate/sulfite reduction and methanogenesis in anaerobic reactors 

Classic anaerobic treatment of wastewater primarily aims to convert organic substances to 

methane and carbon dioxide by methanogens, thereby reducing the COD-content of the 

wastewater. From this perspective, sulfate reduction is disadvantageous because it leads to 

unwanted formation of remaining COD in the form of sulfide in the effluent of the reactors. 

Apart from that, the build-up of hydrogen sulfide increases the risk of process failure as a 

result of inhibition by sulfide of bacteria involved in the degradation of organic waste. 

Other disadvantages of the presence of sulfide in methanogenic digesters are the malodor 

('rotten eggs') of hydrogen sulfide, the lower amount and quality of biogas and corrosion of 

metal and stone, as reviewed by Hao et al.33. However, in biological desulfurization 

processes methanogenesis should be avoided as it decreases the selectivity of sulfate 

reduction with the added electron donor. In paragraph 1.4.1 the factors that determine 

whether sulfate reduction or methanogenesis prevails in bioreactors are discussed. 

In order to attain high reduction rates of sulfur oxyanions in bioreactors, high biomass 

concentrations must be maintained, e.g. by self-immobilization of biomass as in upflow 

anaerobic sludge blanket reactors. Some examples from literature concerning self 

immobilization of sulfate-reducing biomass in reactors are presented in paragraph 1.4.2. 

Sulfite is an important constituent of the scrubber liquor in biological desulfurization of 

flue-gases. Introduction of sulfite may affect the performance of sulfate-reducing 

bioreactors, as will be discussed in paragraph 1.4.3. 

1.4.1 Competition between methanogens and sulfate reducers in bioreactors 

Competition between mesophilic MA and SRB has been studied quite extensively. Reviews 

on this subject have been presented elsewhere 16,42,83 Competition between methanogens 

and sulfate reducers in high-rate anaerobic reactors is not merely determined by growth 

kinetics, but also by immobilization properties of the various microorganisms, substrate 

diffusion limitations inside biofilms, environmental conditions such as hydrogen sulfide 

concentration, the composition of the medium, temperature and pH. In addition, the 

bacterial composition of the seed sludge and the applied hydraulic retention time3 may also 

be important. In this paragraph, general aspects of competition between MA and SRB 

(identified mostly in mesophilic systems) are discussed. Special attention will be paid to 

competition between thermophilic MA and SRB for methanol, hydrogen and acetate. The 

latter two substrates are possible degradations products of methanol under anaerobic 

conditions. 
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Thermodynamics 

A simple method to predict the outcome of competition between bacterial species for a 

common substrate is to calculate the Gibbs free energy change of the conversion the 

substrate. The species performing the conversion with the highest Gibbs free energy change 

presumably outcompete other bacteria. Based on such calculations, SRB should outcompete 

MA for substrates like methanol, acetate, hydrogen and formate (Table 1.2). However, this 

does not always correspond with findings from literature. For instance Gupta et al.30 found 

that methanol was solely used by methanogens in mesophilic chemostats. 

Growth kinetics 

The rate at which bacteria grow can be described by the classical Monod equation: 

S 

S + Ks 

in which: u. : specific growth rate 

S: substrate concentration 

Hmax : maximum specific growth rate 

Ks: affinity constant for substrate. 

For sulfate-reducing bacteria, the Monod-equation can be extended to: 

S S04
2" 

S + Ks SO4 + Kso» 

S04
2": sulfate concentrati 

KS042 •' affinity constant for sulfate 

According to Monod growth kinetics, growth only stops when all substrate is depleted. 

However, many bacteria, including MA and SRB, stop growing below a certain substrate 

'threshold' concentration17'63. In addition, sulfate reducers may encounter a threshold 

concentration for sulfate as well105. The Monod equation can be adapted to account for 

threshold concentrations85: 

(S - SO 

( S - S , ) + K s 

in which: S,= substrate threshold concentration. 
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For SRB, the equation becomes: 

(s- so (so4
2- - so4

2
t) 

H = Umax* * 

( S - S . + K,) (S04
2-S04

2- t)+KS042" 

in which: S04
2"t: sulfate threshold concentration 

The kinetic parameters of the Monod equation are conditional constants: they depend on 

environmental conditions such as pH and temperature. Growth kinetics may be used to 

explain the outcome of competition between microbial species in high-rate anaerobic 

reactors. For instance, Methanothrix species will dominate in thermophilic anaerobic sludge 

cultivated at low acetate concentrations because of their higher acetate affinity as compared 

to that of Methanosarcina
140

. It should however be kept in mind, that most reported values 

for kinetic growth properties were determined at optimal growth conditions in pure culture, 

and such optimal and well-defined conditions obviously do not prevail in bioreactors. 

The ratio p,nax/Ks is a useful parameter for comparing growth properties of bacteria on a 

common substrate. At substrate concentrations around or below the Ks, bacteria with a high 

Pmax/Ks-ratio have better growth properties than bacteria with a low pmax/Ks-ratio. 

As outlined in paragraph 1.3.1, common substrates for which MA and SRB may compete in 

the anaerobic degradation of methanol comprise methanol and methanol degradation 

products like hydrogen, formate and acetate. Also homoacetogens may compete with the 

MA and SRB for methanol. The kinetics of acetate and hydrogen degradation by 

mesophilic MA and SRB has been studied rather extensively16'83. Some relevant 

information about the growth kinetics of hydrogen and acetate utilizing thermophilic MA is 

also available (Table 1.6 and 1.7), but so far this is hardly the case for thermophilic SRB. 

Unfortunately, to date not for a single thermophilic sulfate reducer both the Ks- and nmax-

are known. In general it can be stated that the Ks-values for hydrogen are about 40 times 

lower for SRB than for MA, while the values for umax of MA are maximally about 10 times 

higher compared to those of SRB. Therefore, it looks reasonable to expect a higher umax/Ks-

ratio for hydrogen for thermophilic SRB than for MA. Consequently, SRB likely will 

outcompete MA at low hydrogen concentrations. At a high hydrogen concentration, the 

situation is reverse due to the high maximum specific growth rates of MA. For acetate the 

situation is much less clear, as no Ks values of thermophilic SRB have been reported to 

date. Growth kinetic data for thermophilic methanol-degrading sulfate reducers and 

homoacetogens are summarized Table 1.8. No data are available for methanogens. The 

limited amount of data does not allow to draw a conclusion on the outcome of the 
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competition for methanol. Because no growth kinetic data are available for growth on 

formate of thermophilic SRB and MA, a comparison of growth properties of these groups 

of bacteria is not possible. 

Table 1.6. Selected growth kinetic properties of thermophilic MA and SRB on acetate. 

Acetate degrading 

culture 

Methanogenic 

Methanosarcina 
thermophila TM-1 

Methanosarcina CALS-1 

Methanosarcina MP 

Methanosarcina MSTA-1 

Methanosarcina CHTI 55 

Methanothrix 

thermoacetophila 

Methanosaeta sp. P r 

Methanothrix sp. CALS-1 

T A M 

r-max 

(h-1) 

0.058 

0.058 

nr 

0.052 

0.085 

nr 

0.020 

0.028 

0.012 

Ks 

(mM) 

4.8 

nr 

nr 

11.4 

10 

nr 

nr 

<1.1 

0.85 

threshold 

(mM) 

1 

0.8-2.5 

nr 

4.1 

nr 

nr 

nr 

0.012-0.021 

0.025-0.075 

yield 

b 
nr 

nr 

nr 

3.1-4.6 

1.4 

nr 

nr 

nr 

nr 

Hmax/Ks 

(lf'.mM"1) 

0.012 

nr 

nr 

0.0046 

0.0085 

nr 

nr 

>0.025 

0.014 

ref. 

142 

70,140 

80 

15 

113 

77 

48 

139 

2 

Sulfate-reducing 

Desulfotomaculum 

thermoacetoxidans 
0.022 71 

a) yield expressed in g dry cells/mol acetate; b) nr = not reported. 
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Table 1.7. Selected growth properties of thermophilic MA, SRB and AB on hydrogen. 

Hydrogen degrading culture 

Methanogenic 

Methanobacterium 

thermoautotrophicum 

Methanobacterium Strain THF 

Sulfate-reducing 

Desulfotomaculum 

thermoacetoxidans 

Desulfotomaculum spp. 

Strain SR 

Thermodesulfobacterium 

Strain JSP 

Thermodesulfovibrio Strain 
RlHa3 

Homoacetogenic 

Moorella thermoautotrophicum 

Acetogenium kiwi 

P-max 

(IT1) 

0.14-
0.69 

c 
nr 

0.077 

nr 

0.052 

nr 

nr 

0.021 

0.35 

Ks 

(MM) 

80-120 

nr 

nr 

2 

nr 

2.4d 

1.9d 

nr 

nr 

threshold 

(Pa) 

5 

14 

nr 

0.01 

nr 

1.2 

0.5 

nr 

1000 

yield" 

0.6-1.6 

3b 

nr 

nr 

nr 

nr 

nr 

nr 

nr 

nr 

Hmm/Ks 

(h^.mM 1 ) 

0.0018-
0.004 

nr 

nr 

nr 

nr 

nr 

nr 

nr 

nr 

ref. 

102,111, 
134,98 

63 

71 

98 

19 

105 

105 

97 

56,17 

a) yield expressed in g dry cells/mol end product; b) under hydrogen limitation; c) nr: not 

reported; d) Km. 

Table 1.8. Selected growth properties of thermophilic SRB and 

AB on methanol. 

Methanol degrading 

culture 

Sulfate-reducing 

Desulfotomaculum 

kuznetsovii 

Coculture acetogen AG 
and sulfate reducer SR 

Homoacetogenic 

Strain AG 

Moorella 

thermoautotrophicum 

y-m&x 

(h-1) 

0.03 

0.011 

0.07 

0.077 

yield 

(g dry wt/mol acetate) 

a 
nr 

nr 

nr 

6-9 

ref. 

29 

19 

19 

97 

a) nr: not reported 
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Environmental conditions 

In bioreactors fed with an influent containing methanol, sulfite, and sulfate, inhibition may 

result from high concentrations of substrates or possible intermediates and products such as 

acetate and sulfide. A different susceptibility of SRB and MA towards these compounds 

may act as a selection criterion in bioreactors. Also the pH, temperature and presence of 

trace elements may affect the competition. All these factors are discussed below. 

Sulfide toxicity. Sulfate reduction results in production of hydrogen sulfide (H2S), which, 

at higher concentrations, can become quite inhibitory for microbial growth. H2S is a very 

weak acid (pKa of 7.0 at 30°C) and therefore at neutral values, the optimal pH range for 

most anaerobic microorganisms, sulfide is mainly present as H2S (hydrogen sulfide or free 

sulfide) and HS" (bisulfide). The sulfide ion (S2) only occurs (>1% of total sulfide) as 

important sulfide species at pH > 10, because the pKa of HS" is about 12 104. Hydrogen 

sulfide is considered to be the most toxic form of sulfide92, because of the neutrality of the 

H2S-molecule, which allows its easy diffusion through the lipid cell membrane into 

cytoplasm, where it reacts with cell components. The reversibility of sulfide inhibition, as 

observed by Okabe et al.78 and Reis et al., seems contradictory to this hypothesis as it may 

be expected that chemical reactions with cell components are irreversible. As sulfide is a 

characteristic end product of sulfate-reducing bacteria, it may be speculated that SRB have 

developed a high tolerance towards sulfide in order to prevent self-poisoning. However, this 

is not necessarily the case; hydrogen sulfide concentrations as low as 60 mgS.L"1 are 

already inhibitory for a thermophilic Desulfotomaculum-species
11

. Moreover, bacteria not 

capable of dissimilatory sulfate reduction such as methanogens may have a higher tolerance 

toH2SthanSRB67,H5. 

The presence of sulfide may affect SRB in several ways. For the mesophilic Desulfovibrio 

desulfuricans it was demonstrated that 250 mgS.L"1 of total sulfide lowers the growth rate 

and growth yield by 50%79. By contrast, the substrate utilization rate increased at higher 

sulfide concentration, showing that growth and activity were uncoupled. Uncoupling of 

growth and activity at higher sulfide concentrations was also observed for anaerobic 

sulfate-reducing and methanogenic sludge granules119. By increasing the total sulfide 

concentration, the cell size may decrease, as was shown for Desulfovibrio desulfuricans
1
*. 

This may partly explain the decreased cell yield at increasing sulfide concentrations. 

Literature regarding H2S inhibition levels at mesophilic conditions has been reviewed 

elsewhere16'33'83. The free H2S levels which are inhibitory for mesophilic methanogenesis 

vary from 50-400 mg.L"1. Complete inhibition of growth of mesophilic SRB has been 

observed at a H2S concentration of 85 mg.L"1 123 to 547 mg.L"1 91. No data are available on 
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sulfide inhibition of methanogens at thermophilic conditions. Complete inhibition of growth 

of thermophilic SRB may occur at total sulfide levels as low as 60 mgS.L"1 71 or as high as 

400 mgS.L"1 74. The variation in literature data regarding H2S-toxicity reflects the 

complexity of the matter, i.e. the influence of several factors, such as the type of bacterial 

species studied, growth substrate65 and time of exposure to sulfide. For undefined cultures, 

the discrepancies may also be a result of interference with competitive and mutualistic 

microbial interactions between individual species. Another cause of the discrepancies in 

literature may originate from neglecting pH and sulfide concentration gradients in 

biofilms57. 

The lack of uniformity in methods for quantifying sulfide inhibition, the many factors that 

affect sulfide inhibition and the possible interference with bacterial interactions and 

diffusion hardly justify comparison of literature data. In effect, based on literature data, it 

can not be predicted whether SRB or MA will be more affected by sulfide in a specific 

situation. 

Sulfate and sulfite toxicity. Sulfate is generally not toxic for anaerobic bacteria at 

concentrations up to 10 g.L"1 49,72 p o r m o s t wastewaters, as well as for the scrubbing 

solution from a Bio-FGD plant, sulfate toxicity is not relevant, as the concentration 

generally remains below this value. On the other hand, sulfite is very toxic for 

microorganisms and it is for that reason used as anti-bacterial agent, for example in wine 

processing. The mechanism of sulfite inhibition is not exactly known12. 

In pure cultures of SRB, complete inhibition of growth at concentrations as low as 40 

mg.L"1 (0.5 mM) sulfite was observed126. Methane production by Methanobacterium 

ruminantium decreased by a factor 2 at 100 mg.L"1 sulfite88. Sulfite may have two effects 

on the activity of methanogenic sludge. Puhakka et al.89 found that sulfite toxicity leads to a 

prolonged lag phase in methane production by anaerobic sludge in batch reactors at 

concentrations exceeding 250 mg.L"1. In addition, the rate of methane production decreased 

linearly to very low values in the range of 150 to 2500 mg.L"1 sulfite. However, after 

repeated sulfite addition to sludge, the toxicity effect may decrease due to growth of sulfate-

reducing bacteria or due to adaptation of the biomass. 

Methanol toxicity. Alcohols are toxic for microorganisms at higher concentrations, 

presumably due to the fact that they damage the cell membrane and due to end product 

inhibition of glycolytic enzymes24. Most bacteria are able to withstand ethanol 

concentrations of at least 10 g.L"1. As alcohol toxicity towards bacteria decreases with 

decreasing chain length, it may be speculated that methanol toxicity will not occur at 
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concentrations below 10 g.L"1 (0.3 M). This was confirmed for Moorella 

thermoautotrophicum and Moorella thermoaceticum as these species tolerate methanol 

concentrations up to 16 g.L"1 (0.5 M) 128,130. w i t n io g.L"1 methanol, 22 g.L"1 sulfate can be 

reduced to sulfide. As sulfate concentrations normally will be less than 6 g.L"1 in 

biodesulfurization of flue-gases, added methanol concentrations will normally not exceed 3 

g.L"1, which likely does not result in toxicity effects. 

Acetate toxicity. Methanol degradation by homoacetogens may result in accumulation of 

acetate, which is toxic for microorganisms at higher concentrations. Similar to sulfide, 

unionized acetate (acetic acid) is considered the most toxic form73. Van Lier60 found 50% 

inhibition of methane formation by thermophilic sludge occurred at an acetic acid 

concentration of about 1 mM, while they observed a 10 times lower susceptibility of 

mesophilic methanogenic sludge towards acetic acid. For thermophilic methylotrophic 

Methanosarcina spp., complete inhibition of growth was found at 9 mM acetic acid132. 

Inhibition by acetic acid may manifest in weakly buffered bioreactors producing acetate. At 

pH 6 and a temperature of 55°C, a concentration of 1 mM of undissociated acetate already 

is present at a total acetate concentration of 17 mM. This can be calculated using a pKa for 

acetic acid of 4.8 at 55°C 104. 

pH. SRB and MA may have different pH-optima or pH ranges for growth on common 

substrates. As the speciation of compounds like acetate, H2S and NH4
+ is affected by the 

pH, the effect of a pH change on the growth of SRB and MA may partially also result from 

a change in the concentration of these compounds. Visser et al.121 found for anaerobic 

sludge that thermophilic (55°C) SRB outcompete methanogens for acetate at pH 8.3-8.6, 

while the rates of methanogenesis and sulfate reduction at pH 7.6-7-9 were about equal. 

Minami et al.72 suggested that pH may have a large effect on the occurrence of 

methanogenesis or sulfate reduction from methanol. They found that sulfate reduction 

prevailed at pH 7.0-7.5 in a moderate thermophilic (53°C) methanol-fed bioreactor. At pH 

values between 6.2 and 6.8, sulfate reduction was suppressed and methanogenesis prevailed. 

Inhibition of SRB in the lower pH range may however also have resulted from elevated H2S 

concentrations. 

Temperature. Differences in optimal growth temperatures and growth temperature ranges 

may cause shifts in the microbial composition of mixed cultures upon a temperature 

change. A shift from a methanogenic to a sulfate-reducing population or vice versa also 

alters the anaerobic mineralization profile, as exemplified by a study of Visser et al.122. They 

found a rapid shift from methanogenesis to sulfate reduction after elevating the temperature of 

an acetate and sulfate fed UASB reactor from 30 to 55°C. A temperature increase from 37 to 
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55°C had the same effect93. No acetoclastic methanogens have been isolated growing 

beyond a temperature of 70°C137. It may therefore be speculated that acetoclastic 

methanogenesis does not occur in reactors beyond this temperature. As acetotrophic sulfate 

reduction is still possible up to at least 85°C (Table 1.3), the electron flow in acetate-rich 

environments may therefore be diverted from methane to sulfide as a result of a temperature 

increase from below 70°C to 70-85°C. The situation is similar for methanol; no 

methylotrophic methanogens are known that grow at temperatures above 65°C (Table 1.4), 

while the methanol-utilizing sulfate reducer Desulfotomaculum kuznetsovii was reported to 

grow up to 85°C74. Temperature may also affect SRB and MA indirectly, as temperature 

decreases the concentration of inhibitory H2S due to a lower pKa of H2S at increasing 

temperature. 

Trace elements. As essential constituents of cell components, in particular proteins, trace 

elements need to be available to microorganisms in order to facilitate growth. Bacteria 

compete for trace elements when these are limiting, and it may be expected that species 

with a low (or no) requirement or a high affinity for limiting trace elements will eventually 

dominate. Iron, cobalt, nickel, zinc and copper were identified as trace elements that are 

necessary to maintain maximum growth of methanogens106. Growth of mesophilic 

methylotrophic methanogens and homoacetogens was found to be optimal at an added 

cobalt concentration of 0.1 mg.L"1 27. In this case, cobalt requirement may be explained by 

the high content of corrinoids of methanol-grown methanogens and acetogens43-55-109. 

Corrinoids are cobalt-containing co-factors involved in the first step of methanol 

degradation in both trophic groups68-69. It is not known if corrinoids are involved in 

methanol degradation by SRB. As opposed to MA, little is known about trace element 

requirements of SRB. Under sulfate-reducing conditions, it may be speculated that trace 

metals like zinc and cobalt are growth-limiting as the concentration of these metals may be 

extremely low due to precipitation of insoluble metal sulfides. However, Parkin et al.84 

found that the concentration of trace metals in microbial cultures was independent of the 

sulfide concentration, which was explained by microbial production of chelating agents. 

Other factors affecting competition 

At a COD/sulfate-ratio of 1.7 of the influent of the anaerobic reactors SRB outcompete MA 

under mesophilic conditions, while the opposite is true for a ratio above 2.7 14. Time is 

another important factor in the competition between SRB and MA in anaerobic reactors 

with high sludge retention times, as the microbial composition of anaerobic sludge changes 

only slowly due to the relatively low growth rates of SRB and MA. Therefore, it may take 
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very long periods of time (years) until sulfate reduction dominates over methanogenesis 

when SRB are present in low numbers in the seed sludge of anaerobic reactors82. This 

demonstrates the need for patience when studying microbial competition in anaerobic 

reactors. The seemingly contradictory results in the literature concerning competition 

therefore can be attributed -at least partially- to a different time scale of experiments. 

Better adhesion properties of MA compared to that of SRB were used to explain the 

decrease of sulfate reduction in favor of methanogenesis following an increase of the liquid 

upward velocity in an UASB reactor81. 

Diffusion limitation may also affect competition. Nielsen75 showed that sulfate-reducing 

activity in biofilms that are only several hundred um thick, is limited by sulfate diffusion 

into the biofilm at sulfate concentrations below 50 mg.L"1. This observation might, in some 

cases, represent an explanation for the relatively poor capacity of the SRB to compete with 

methanogenic bacteria in anaerobic bioreactors with sludge retention based on 

immobilization. 

1.4.2 Self-immobilization of sulfate-reducing biomass 

Stable performance of high-rate anaerobic reactors, as used in this study, relies on 

maintaining a high biomass concentration in the reactor. This can be achieved by biomass 

retention within the reactor or by sedimentation and recycling of washed-out biomass. 

UASB (upflow anaerobic sludge bed) reactors rely on retention of well settleable biomass 

inside the reactor. Preferably, the biomass in such reactors should consist of sludge granules 

(macroscopically smooth, round to oval shaped spheres up to 5 mm in size). Such granules 

have good settling characteristics. The increased liquid upflow velocities typical for EGSB 

(expanded anaerobic sludge bed)-reactors provide a selection pressure for development of 

granules58 as non-granular sludge particles with poor settling properties will wash out. The 

biomass must however have the intrinsic ability to form granules, otherwise granulation 

will not occur, irrespectively of the selection pressure. The mechanism of granulation has 

not been elucidated entirely, though many factors involved have been identified, as 

reviewed by Schmidt and Ahring". Two factors presumably involved in granulation will 

not prevail in upflow reactors in which SRB are virtually the only metabolically active 

species. First, growth of methanogens of the genus Methanosaeta, which presumably 

initiates or at least enhances granulation41, will not occur. This may explain the lack of 

granulation in a completely sulfidogenic UASB120, while in reactors which produced 

methane in addition to sulfide, granulation proceeded satisfactorily. By contrast, Omil et 

al.81 did find granulation in a UASB producing only sulfide, although the formed 
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sulfidogenic granules had a much lower strength compared to methanogenic granules. 

Apparently, Methanosaeta species are beneficial, but not strictly necessary for granulation. 

Secondly, acidifiers will also be absent in anaerobic reactors in which sulfate-reducing 

bacteria use the added electron donors directly for sulfate reduction. Vanderhaegen118 

indicated that acidifiers are also important in the granulation process. This is supported by 

findings of Uemura and Harada117 and van Lier59 who reported granulation of thermophilic 

methanogenic sludge when sucrose or glucose was added to the influent. 

1.4.3 Sulfite reduction 

Sulfur dioxide easily dissolves in water (at 15°C, 45 L of S0 2 dissolves in 1 L of water) to 

form sulfurous acid. The pKa of HS03" in water is 7.2 at 25oC , 0°. Sulfite reduction is 

energetically more favorable than sulfate reduction. On biochemical level, this is 

manifested by the ATP demanding activation of sulfate to adenosine-5'-phosphosulfate 

(APS) by ATP-sulfurylase, which is followed by APS reduction to form sulfite and AMP. 

Sulfite is directly suitable as electron acceptor for the SRB. A review of the biochemistry of 

sulfate reduction can be found elsewhere127. Use of thiosulfate as terminal electron acceptor 

is energetically also more favorable than the use of sulfate, as thiosulfate reduction requires, 

similar to sulfite reduction, no ATP-dependent activation53. This may explain the 

preferential use of thiosulfate over sulfate as electron acceptor in fresh water sediment46. 

Thiosulfate reduction by SRB may lead to higher cell yields compared to sulfate reduction5. 

Disproportionation 

Bak and Pfennig6 were the first to describe the disproportionation of sulfite and thiosulfate 

to sulfide and sulfate by the sulfate-reducing bacterium Desulfovibrio sulfodismutans 

according to the following stoichiometry: 

S203
2" + H20 => SO42" + HS" + H+ (AG°'= -21.9 kJ/mol S203

2") 

4 SO32" + H+ => 3 S04
2"+ HS" (AG0' = -58.9 kJ/mol S03

2") 

Later it was found that many SRB are able to disproportionate sulfite and thiosulfate53. 

J0rgensen and Bak46 demonstrated that disproportionation and thiosulfate reduction may 

occur simultaneously. Even disproportionation of elemental sulfur by SRB has recently 

been demonstrated26. For growth of disproportionating SRB known thus far, acetate is 

needed as carbon source. Whether methanol can be used as carbon source by 

disproportionating bacteria is not known. 
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Sulfite reduction in anaerobic reactors 

Although it is toxic, sulfite is readily reduced to sulfide and causes no toxicity related 

problems in anaerobic bioreactors when an active sulfate-reducing population is present. 

However, peaks in the sulfite loading rate or low activity of the SRB (e.g. at the start-up) 

may lead to accumulation of sulfite in the bioreactor, and accordingly, to inhibition of the 

biomass. The process performance may even be impaired for a long time when sulfite 

inhibition is irreversible. To prevent sulfite toxicity during start-up, one might introduce 

only sulfate until a substantial sulfate- (and sulfite) reducing population is present. 

Alternatively, aerating wastewater prior to anaerobic treatment might be applied to oxidize 

sulfite to the non-toxicant sulfate. 

Sulfite addition to sulfidogenic bioreactors may lead to the chemical formation of 

thiosulfate53: 

4 HS03" + 2 HS" => 3 S2O32" + 3 H20 (AG°'= -167 kJ/mol) 

Van Houten et al.40 detected about 15 mg.L"1 (0.13 mM) thiosulfate in a thermophilic 

bioreactor fed with H2/C02, sulfite and sulfate. The rather low thiosulfate concentration led 

to the conclusion that the rate of sulfite reduction was higher than the chemical conversion 

rate of sulfite with sulfide to thiosulfate. An alternative explanation could be that the rates 

of thiosulfate formation and reduction are about equally high. 
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1.5 Scope of this thesis 

The aim of the research described in this thesis was to study the use of methanol as external 

electron donor for biological desulfurization of flue-gases and ground- and wastewaters. In 

such a process methanol is used as external electron donor for anaerobic biological 

reduction of sulfur oxyanions to hydrogen sulfide. 

The main part of the thesis is dedicated to sulfate and sulfite reduction with methanol at 

thermophilic (65°C) conditions, applicable for biological desulfurization of hot flue-gases. 

In Chapter 2 the selectivity of thermophilic sulfate reduction with methanol in bioreactors is 

investigated, while in Chapter 5 experiments are described that aimed to increase the 

selectivity, i.e. to inhibit methane formation from methanol. Chapters 3 and 4 focus on the 

microbiology of the thermophilic process, giving insight in the way methanol is degraded 

by the sulfate-reducing community in the bioreactor. In Chapters 6 and 7 the maximum 

attainable rates of thermophilic sulfite and sulfate reduction in anaerobic bioreactors of the 

EGSB-type (EGSB: Expanded Granular Sludge Bed) are determined. Results on mesophilic 

(30°C) sulfate reduction with methanol, relevant for bio-desulfurization of cold or slightly 

heated ground- or wastewater, are presented in Chapter 8. Chapter 9 presents an overall 

discussion of the results dealing with thermophilic sulfate and sulfite reduction. 

Expanded Sludge Bed reactors were used in this study for continuous reactor experiments, 

because these reactors provide a good contact between biomass and medium as a result of 

the imposed high upflow liquid velocity58. As a result, mass transfer limitations, which are 

expected because mixing due to biogas bubbles is preferably absent, may be overcome. 
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Chapter 2 

Thermophilic sulfate reduction and 
methanogenesis with methanol in a high-rate 

anaerobic reactor 

2.1 Abstract 

Sulfate reduction outcompeted methanogenesis at 65°C and pH 7.5 in methanol and sulfate-

fed Expanded Granular Sludge Bed reactors operated at hydraulic retention times (HRT) of 

14 and 3.5 hr, both under methanol limiting and methanol overloading conditions. After 

100 and 50 days for the reactors operated at 14 and 3.5 hr respectively, sulfide production 

accounted for 80% of the methanol-COD consumed by the sludge. The specific 

methanogenic activity on methanol of the sludge from a reactor operated at HRTs of down 

to 3.5 h for a period of 4 months gradually decreased from 0.83 gCOD.gVSS'.day"1 at the 

start to a value of less than 0.05 gCOD.gVSS'.day"1, showing that the relative number of 

methanogens decreased and eventually became very low. By contrast, the increase of the 

specific sulfidogenic activity of sludge from 0.22 gCOD.gVSS"1.day"1 to a final value of 

1.05 gCOD.gVSS'.day"1 showed that sulfate-reducing bacteria were enriched. Methanol 

degradation by a methanogenic culture obtained from a reactor by serial dilution of the 

sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly 

from methanol was not important. This methanogenic culture degraded H2/C02 and 

formate, but not acetate, to methane in the presence of vancomycin. These results indicated 

that methanol degradation to methane occurs via the intermediates H2/CO2 and formate. 

The high and low specific methanogenic activity of sludge on H2/CO2 and formate, 

respectively, indicated that the former substrate probably acts as the main electron donor for 

the methanogens during methanol degradation. As sulfate reduction in the sludge was also 

strongly supported by hydrogen, competition between sulfate-reducing bacteria and 

methanogens in the sludge seemed to be mainly for this substrate. Sulfate elimination rates 

of up to 15 gSO^M/'.day"1 were achieved in the reactors. Biomass retention limited the 

sulfate elimination rate. 

A modified version of this chapter has been published in Biotechnol. Bioeng. (2000) 67, 354-363. 
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2.2 Introduction 

Methanol can be used under thermophilic conditions as carbon and energy source by 

sulfate-reducing bacteria (SRB)11 methanogenic archaea (MA)19 and homoacetogenic 

bacteria (AB)16. As a result, these microorganisms will compete for the available methanol 

in mixed cultures. In anaerobic reactors with biomass retention, this competition is not only 

determined by growth kinetics, but also by immobilization properties, substrate diffusion 

limitations inside biofilms and environmental conditions such as hydrogen sulfide 

concentration, temperature and pH2>14. The bacterial composition of the seed sludge and the 

applied hydraulic retention time (HRT)1 may also be important. To increase this complexity 

even more, thermophilic SRB (e.g. Desulfotomaculum thermoacetoxidans
9
)and MA12 may 

also compete for acetate, the product of methanol catabolism by AB. Furthermore, 

acetogenic bacteria may partially oxidize methanol to hydrogen and carbon dioxide, when 

the hydrogen concentration is kept low by hydrogenotrophic sulfate reducers or 

methanogens3. This implies that, in addition to competition for methanol and acetate, there 

may also be competition for hydrogen between SRB and MA in mixed microbial cultures 

growing on methanol. 

So far, little information is available about methanol degradation with sulfate under 

thermophilic conditions in anaerobic high-rate reactors. With methanol as the only 

substrate, Minami et al.10 found that, at moderate thermophilic (53°C) conditions, sulfate 

reduction with methanol was stimulated at pH 7.0-7.5 in a packed-bed reactor, while 

methanogenesis prevailed at pH 6.2-6.8. Addition of cobalt stimulated methanogenesis and 

acetogenesis from methanol under mesophilic conditions4. The present study was initiated 

to assess the use of methanol for sulfate reduction in a high-rate anaerobic reactor at the 

lowest possible production of methane and acetate. To suppress methane and acetate 

formation, cobalt was omitted from media in our experiments. An operational temperature 

of 65°C was chosen to prevent growth of methanol consuming Methanosarcina species, 

which have never been reported to grow at or beyond a temperature of 65°C 13,19,25 

The objective of the experiments described in this chapter was to determine the outcome of 

the competition between SRB, MA and AB in an EGSB-reactor operated at 65°C and at a 

pH of 7.5, using an influent containing methanol as the sole carbon and energy source and 

sulfate as the external electron acceptor. Special attention was paid to the degradation route 

of methanol. 
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2.3 Materials and Methods 

Reactors. For the continuous experiments, glass EGSB-reactors with a working volume of 4 

L were used. A schematic drawing is presented in Figure 2.1. The reactor was equipped 

with a double wall through which water, heated to 65°C in a Haake waterbath (Haake, 

Karlsruhe, Germany), was circulated. The pH in the reactor was maintained at 7.5±0.1 by 

automatic pH control, adding 0.1 N NaOH when necessary. The pH was measured with a 

sulfide-resistant pH-electrode (type Flushtrode, ThIS Scientific, Sliedrecht, The 

Netherlands) connected the pH control unit. The pH-electrode was checked every week and 

recalibrated when necessary. 

Biogas was collected in a gas-solid-liquid separator and then led through a waterlock filled 

with a 3 N NaOH solution and a column filled with soda lime pellets to remove H2S and 

C0 2 from the gas, before the gas flow was measured with a Mariotte flask or a wet-type 

precision gas meter (Schlumberger Industries, Dordrecht, The Netherlands). Effluent 

recycling was applied to increase the liquid upward velocity. For the medium flow and the 

recycling flow, peristaltic pumps (type 505 S, Watson Marlow, Falmouth, UK) and 

Marprene (Watson Marlow) tubing were used. The lower 5 cm of the reactor was filled 

with glass Raschig rings (1 cm) to evenly distribute the influent over the sludge bed. 

'© 

^ 

© 

1 
r@ 

LEGEND: 

1. Medium 
2.Methanol-Stock 
3. Influent 
4.Glass Raschig rings 
5.Expanded sludge bed 
6. Waterbath 
7. Gas-liquid separator 
8. Effluent 
9. Effluent recirculation 

10. Biogas 
11. Sodium hydroxide 3 N 
12. Soda lime pellets 
13. Wet test gasmeter/Mariotte flask 

© 
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Two EGSB-reactors (I and II) were used for the continuous experiments. In all experiments, 

the ratio COD/sulfate in the influent was kept at about 0.67 (gCOD per gS04
2"), so 

theoretically 100% sulfate elimination can be achieved with all added methanol being 

utilized. The volumetric methane production rate, expressed as gCOD.L"1 .day"1, was 

calculated from the flows and methane concentrations in the biogas and in the effluent. The 

methane concentration in the effluent was calculated from the methane concentration in the 

biogas, assuming equilibrium between biogas and medium in the reactor, using a gas-liquid 

distribution coefficient of 40.8 24. The sulfide production rate was calculated in a similar 

way. The hydrogen sulfide concentration in the biogas was calculated from the hydrogen 

sulfide concentration in the liquid (H2S and HS"), assuming equilibrium between gas and 

liquid hydrogen sulfide concentrations. A dissociation constant for H2S of 6.6 17 and a 

dimensionless gas-liquid distribution coefficient of 0.67 24 were used for calculations. The 

acetate production rate was calculated from the effluent flow and acetate concentration. 

EGSB-I was inoculated with about 40 gVSS elutriated sludge from a pilot plant for sulfate 

reduction of scrubber liquid from a flue-gas scrubber of a coal-fired power plant in 

Geertruidenberg, The Netherlands. This sludge was kindly provided by Biostar, Balk, The 

Netherlands and had been cultivated on an ethanol/methanol (95/5%) mixture and 

sulfate/sulfite at 55°C. The ash content of this sludge was 44% (percent of dry weight), the 

remainder was VSS. EGSB-I was started at a HRT of 14 h, an OLR of 2.3 gCOD.L'.day"1 

and a Sulfate Loading Rate (SLR) of 3.4 gS04
2".L"1.day"1. Methanol and sulfate influent 

concentrations were 1.27 gCOD.L"1 and 1.9 gS04
2".L"1, respectively. At day 135, the OLR 

and SLR were doubled to 4.5 gCOD.L'.day"1 and 6.2 gS04
2".L"1.day"1 respectively, by 

doubling the influent methanol and sulfate concentrations. The liquid upward velocity 

ranged from 3.0 to 4.2 m.h"1. 

EGSB-II was inoculated with about 20 gVSS of thermophilic sludge that had been 

cultivated on methanol and sulfate for 6 months, and 20 gVSS of the same sludge used for 

inoculation of EGSB-I. EGSB-II was started at a HRT of 11 h which was decreased to 6 h 

at day 25 and to 3.5 h at day 33. Influent methanol and sulfate concentrations were 2.6 

gCOD.L"1 and 3.84 g.L"1, respectively. A liquid upward velocity (vup) of 3 rn.li"1 was applied, 

which was increased to 6 m.h"1 at day 32. From day 53 to 67 the vup was temporarily increased 

to 8-10 rn.li"1. Acetate was added to the influent of EGSB-I during day 96-102 at a 

concentration of 0.3 gCOD.L"1. 

Media. Reactors were fed with a basal medium consisting of (g.L*1): NaCl (7), 

MgCl2.6H20 (1.2), KC1 (0.5), NH4C1 (0.3), CaCl2 (0.15), Na2S04 (2.8 or 5.6), KH2P04 

(0.2), and a trace element solution (1 mL.L"1) containing (mg.L1): FeCl2.4H20 (1500), 
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MnCl2.4H20 (100), ZnCl2 (70), H3B03 (62), Na2Mo04.2H20 (36), NiCl2.6H20 (24), 

CuCl2.2H20 (17), EDTA (500) and HC1 37% (7 mL.L"1). Cobalt was not present as trace 

element. Demineralized water was used to prepare media and stock solutions. A stock 

solution containing methanol (5 M) was pumped into the influent with a Gilson Minipuls3 

Peristaltic Pump. After day 60 for EGSB-I, and during the whole experiment in EGSB-II, 

the methanol-stock also contained yeast extract (2 g.L"1), resulting in an influent 

concentration of 20 mg.L"1. All chemicals were of analytical grade and supplied by Merck 

(Darmstadt, Germany) except for yeast extract that was obtained from Life Technologies 

(Paisley, Scotland) and methanol that was obtained from Labscan Ltd. (Dublin, Ireland). 

The anaerobic medium used for activity assays had a similar composition as the reactor 

influent. However, 1 mL.L"1 resazurine solution (0.5 g.L"1), 50 mL.L"1 bicarbonate/sulfide 

solution, containing 80 g.L"1 NaHC03 and 12 g.L"1 Na2S.7-9H20 and 30 mL.L"1 phosphate 

solution (27.2 g.L"1 KH2P04 and 35.7 g.L"1 Na2HP04.2H20) were added to the medium, for 

redox potential control and pH-buffering. Na2S04 was either omitted from the medium or 

added at a concentration of 2.8 g.L"1. Methanol, acetate and formate were added from 

concentrated stock solutions, to give concentrations of 1.4, 1.3 and 0.25 gCOD.L"1, 

respectively. The pH of the medium was adjusted to pH 7.5 by addition of a few drops of 

NaOH (0.1 N). When acetate, methanol, or formate were tested as electron donor, the 

headspace in the vials consisted of N2/C02 (80/20 v/v). When hydrogen was the tested 

electron donor, nitrogen was replaced by H2. Conversion factors for converting gCOD to 

mol are: methanol: 1/48 mol.gCOD"1; acetate: 1/64 mol.gCOD"1; formate: 1/16 

mol.gCOD"1; hydrogen: 1/16 mol.gCOD"1; sulfide: 1/64 mol.gCOD"1. 

The medium for incubations with diluted sludge for enrichment of methanogens had the 

same composition as the medium used in activity assays except that sulfate was omitted. 

Basal media and stock solutions were autoclaved before use. Vancomycin (Sigma, St. 

Louis, USA) was filter-sterilized before use and added to a concentration of 2 g.L"1 when 

inhibition of eubacteria (e.g. sulfate reducers and acetogens) was desired. 

Activity assay. Activity assays were carried out in 120 mL-vials containing 50 mL 

anaerobic medium and 0.5-2 gVSS.L"1 sludge. During the assay, the vials were placed in a 

waterbath with shaker (100 rpm) at 65°C. When H2/C02 was the substrate, the vials were 

placed horizontally in the waterbath to optimize mass transfer of hydrogen from gas to 

liquid. After 30 to 60 min of acclimatisation at 65°C in anaerobic medium, the sludge was 

transferred to a vial with fresh anaerobic medium. The sludge was acclimatized because a 

short (<30 min) lag phase in methane and/or sulfide production was sometimes observed in 

the preincubations. Samples were taken from the liquid (0.5 mL) and gas (0.2 mL) phase 
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for analysis of methanol, acetate, formate, sulfide and methane. The specific acetogenic, 

methanogenic and sulfidogenic activities were calculated from the linear increase (taking at 

least three measurements) of the amount of acetate, methane and sulfide in the vials and the 

amount of VSS at the end of the assay. The length of the incubations was 4-6 hr. Growth 

was considered negligible in the assay. The sulfide concentration in the headspace was 

calculated from the total sulfide concentration in the liquid (unionized H2S and HS"), using 

a dissociation constant for H2S of 6.6 17 and a dimensionless gas-liquid distribution 

coefficient of 0.67 24. Equilibrium between gas and liquid hydrogen sulfide concentrations 

was assumed. Activity assays were carried out in duplicate. 

Methanogenic enrichment culture. Fresh sludge was diluted in a dilution series in liquid 

medium with methanol (1.4 gCOD.L"1), but without sulfate. The highest dilution showing 

methane formation (dilution 105) was transferred to fresh methanol containing medium with 

and without vancomycin (2 g.L"1). Vancomycin inhibits eubacterial growth (SRB and MA) 

by blocking the polymerization of N-acetylmuramic acid and acetylglucose amine units to 

peptidoglycan (Nicklin et al. 1999), while archaea (MA) are not affected. The culture was 

also transferred to media with vancomycin (2 g.L"1) and acetate (1.3 gCOD.L"1), formate 

(0.25 gCOD.L"1) or H2/C02 (80/20 v/v, 1 arm.). 

Analyses. The volatile suspended solids (VSS) concentration in reactors at the start and at 

the end of experiments was calculated from the total volume of the wet sludge and the VSS 

content of a sample from the sludge. During the experiments, the VSS concentration in 

reactors was estimated from the volume of the static sludge bed and the VSS content of a 

sample from the sludge with a known volume. VSS was determined according to Dutch 

Standard Methods (NEN 32355.3). 

Samples for methanol and VFA analysis were centrifuged at 17000 g for 5 min., diluted 

with a 3% formic acid solution (final concentration formic acid 1-2%), and stored at 4°C. 

Methanol and acetate were determined by gas chromatography using a Hewlett Packard 

model 5890 equipped with a 6 m X 2 mm glass column packed with Supelco port, 100-120 

mesh, coated with 10% Fluorad FC 431 (3M). The flow rate of the carrier gas (nitrogen 

saturated with formic acid) was 40 mL.min"1, and the column pressure was + 3 bar. The 

column temperature was 80°C, the injection port and the detector temperature were 200°C 

and 280°C, respectively. Propionate and butyrate were analysed in the same way as 

methanol except that the temperatures of the column, the injector port and the flame 

ionization detector were 130, 200 and 280°C, respectively. 
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Formate was determined by high performance liquid chromatography (LKB) with a 

Chrompack organic acid column (temperature, 60°C) at a flow rate of 0.60 mL.min"1 with 

0.01NH2SO4aseluent. 

Composition of the biogas from the reactor (CO2, CH4 and N2) was determined with a gas 

chromatograph (Fisons Instruments GC 8000) equipped with two columns: 1.5 m x 1/8 inch 

Teflon packed with Chromosorb 108 (60-80 mesh) and 1.2 m x 1/8 inch stainless steel 

packed with molecular sieve 5A (60-80 mesh). The columns were connected in parallel 

with a split of 1:1. Helium was used as carrier gas. The total carrier gas flow rate was 45 

mL.min"1. The temperature of the columns, injection port and thermal conductivity detector 

were 40, 110 and 100°C, respectively. 

Hydrogen was determined with a gas chromatograph (Hewlett Packard 5890), using a 1.5 m 

x 1/8 inch stainless steel column packed with molecular sieve 5A (60-80 mesh). The 

temperature of this column, injection port and thermal conductivity detector were 40, 125 

and 110°C, respectively. Argon was used as carrier gas at a flow rate of 20 mL.min" . 

In the activity assay, methane was measured on a 406 Packard gas chromatograph equipped 

with a thermal conductivity detector (TCD), 100 mA. The gases were separated with argon 

as the carrier gas on a molecular sieve column (13X, 1.8 m by 1/4 inch, 60-80 mesh) at 

100°C. 

The total sulfide concentration is defined as the sum of H2S, HS" and S2" sulfide species. 

The total sulfide was determined colorimetrically using the methylene blue method20. 

The samples for sulfate analysis were diluted (1:40) with a 30 mM mannitol solution and 

after centrifugation they were stored at -18°C until analysis. Sulfate was analysed by high-

pressure liquid chromatography. Ions were separated on a Dionex column (Ionpac AS9-SC) 

with an eluent consisting of 1.8 mM Na2C03 and 1.7 mM NaHC03 at a flow rate of 1 

mL.min"1 at room temperature. The anions were detected with suppressed conductivity. 
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2.4 Results 

Continuous experiments 

The performance of EGSB-I is shown in Figure 2.2A-C. One week after the start-up, 

already a high rate of sulfate reduction and methanogenesis was observed. The methane 

production rate reached a maximum of 1.4 gCOD.L"1.day"1 at day 18, while the sulfide 

production rate at that day amounted to 0.46 gCOD.L"1.day"1 (Figure 2.2A). 

Methanogenesis still dominated at day 18, accounting for 75% of total COD-conversion, 

while SRB only used 24% of the COD (Figure 2.2C). After day 18, the sulfide production 

rate increased steadily at the expense of the methane production rate; at day 79 the MA and 

SRB used 34 and 65% of the consumed methanol, respectively. Temporary deviations from 

this trend during short periods subsequent to days 40, 53 and 71 very likely reflect a higher 

sensitivity of the sulfidogenic biomass as compared to the methanogenic biomass towards 

temperature drops to room temperature for 0.5-1 day as occurred at days 40 and 53, and 

towards a 5-hour methanol-starvation period at day 71. At day 80 the operation was 

interrupted and the sludge was removed from the reactor for determination of the wet 

volume and VSS-content of the sludge. The operation of the reactor was resumed at the 

same day, but with only 60 vol.% of the sludge. The results in Figure 2.2 reveal that it took 

3 weeks until the sulfide production rate recovered to the level evident on day 79, whereas 

the methane production rate only recovered to about 50% of the level found at that day. The 

shift in methanol utilization from MA to SRB from then onwards continued until SRB and 

MA accounted for 82 and 16% of the electron flow at day 135, respectively. During most of 

the period between day 0-135, the reactor was underloaded. In order to assess the 

competition between SRB and MA at higher methanol concentrations, the OLR and SLR 

were doubled at day 135 to 4.5 gCOD.L"1.day"1 and 6.2 SO^'.L'.day"1, respectively, by 

doubling the influent methanol and sulfate concentrations. Table 2.1 shows that within two 

days, the methane and sulfide production rates increased from 0.3 gCOD.L"1.day"1 to 0.5 

gCOD.L"1.day"1 and from 1.7 to 2.5 gCOD.L'.day"1, respectively. The acetate production 

rate remained very low at a value of 0.04 gCOD.L'1.day"1. After elevation of the methanol 

load on day 135, the effluent methanol concentrations varied between 0.7 to 1.3 gCOD.L" . 

Under these overload conditions, the methane production remained stable at 0.5 gCOD.L" 

'.day'1, while the sulfide production varied between 2.0-2.9 gCOD.L"1.day"1, resulting in a 

total sulfide concentration in the effluent ranging from 568 to 829 mgS.L"1 (Figure 2.2B). 

The relative electron flow towards sulfide and methane formation remained constant 

beyond day 137. During the experiment, the total of sulfide and sulfate (expressed as mol 

42 



Competition for methanol in bioreactor 

S.L'.day"1) leaving the reactor deviated less than 15% from the sulfate entering the reactor 

(data not shown). The acetate production rate increased slightly during the first 10 days of 

overloading, reaching a maximum of 0.15 gCOD.L/'.day"1 at day 145, but it then decreased 

to a value of around 0.10 gCOD.L'.day"1 between day 149 and 155. The maximum acetate 

production calculated on the basis of the data contributed only 6% of the methanol 

conversion. Propionate and butyrate concentrations remained around or below the detection 

limit during the entire experiment, while formate could never be detected (data not shown). 

The hydrogen partial pressure in the biogas fluctuated between 20 and 75 Pa. 

Table 2.1. Performance of EGSB-I before and after doubling the OLR and SLR on day 135. 
TSeff: Total sulfide in effluent; MeOHefr: methanol in effluent; Aceff: acetate in effluent VMC: 
volumetric methanogenic COD-conversion; VAC: volumetric acetogenic COD-conversion; 
VSC: volumetric sulfidogenic COD-conversion. 

TSeff MeOHrff Acefr VMC VAC VSC MeOH removal S04
2 removal 

day (mgS.L1) (gCOD.L1) (gCOD.!/1 (gCOD.gVSS-'.day1) (%) (%) 

135 

137 

494 

729 

0.07 

0.96 

0.02 

0.02 

0.3 

0.5 

0.04 

0.04 

1.7 

2.5 

95 

65 

78 

58 
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Figure 2.2. Performance of EGSB-I, operated at a HRT of 14 h. During day 1-135 an 
organic loading rate (OLR) of 2.3 gCOD.I/'.day"1 and a sulfate loading rate (SLR) of 3.4 g 
SO^M/'.day"1 were applied, which were increased during day 135-155 to 4.5 
gCOD.I/'.day"1 and 6.2 S04

2".L"1.day"1 respectively. 
A. Volumetric COD-conversion rate of sulfide (•), methane (o), acetate (A), imposed 
OLR (—) and sum of volumetric COD-formation rates of sulfide, methane and acetate 
( - - ) • 

B. Effluent concentrations of sulfide (•), methanol (o) and acetate (A). 
C. Percentage COD-conversion to sulfide (•), methane (o), and acetate (A). 
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The competition between SRB and MA at lower HRTs was studied in EGSB-II. Within 10 

days after start-up at a hydraulic retention time of 11 h and an OLR of 5 gCOD.L"1 .day"1, 

the methane and sulfide production already attained a value of 2.9 and 0.6 gCOD.L"1.day"1, 

respectively (Figure 2.3 A). A rapid decrease of the methane production rate, from 3.0 to 0.7 

gCOD.L" .day"1, was observed between day 11 and 19, while at the same time the sulfide 

production rate increased from 1.3 to 3.6 gCOD.L"1.day"1. The methane production rate 

recovered during the period from day 25 to 30 after the OLR was increased from 5.0 to 9.0 

gCOD.L"1.day"1 by reducing the HRT from 11 to 6 h at day 25. The HRT was decreased 

further to 3.5 h at day 33, which resulted in an increase of the OLR to 16 gCOD.L"1.day"1. A 

10-h interruption in the methanol feed occurring at day 37 caused a temporary inhibition of 

the sulfide production rate, but the system recovered within a few days, while the methane 

and acetate production rates remained unaffected. The acetate and methane production rate 

reached a maximum of 1.4 and 3.9 gCOD.L^.day"1, respectively at day 38 and then both 

declined to less than 0.4 gCOD.L"1.day"1 after day 60, also at the relatively high methanol 

concentrations of 0.7 to 1.5 gCOD.L"1 prevailing in the reactor after day 45. On the other 

hand, the sulfide production rate increased from 3.8 gCOD.L"1.day"1 at day 24 to 9.7 

gCOD.L"1.day"1 at day 42. From day 60 onwards until the termination of the experiment at 

day 129, the electron flow was almost exclusively directed towards sulfide. In this period, 

only 5 to 16% of the consumed methanol was converted to methane and acetate, while the 

remainder was used for sulfate reduction, resulting in a total sulfide concentration of 

239-651 mgS.L"1 (Figure 2.3B). Acetate was added to the influent during day 96-102 at a 

concentration of 0.3 gCOD.L"1, in order to assess a possible stimulatory effect of acetate as 

carbon or energy source for the MA and SRB. The results in Figure 2.3A show that adding 

acetate did not stimulate the methane production rate. The calculated acetate consumption 

in this period amounted only to about 0.06 gCOD.L"1.day"1, which means that the acetate 

production rate in fact was negative, as shown in Figure 2.3A. Due to the large fluctuations 

in the sulfide production rate, from 3.8 to 8.9 gCOD.L"1.day"1 in the pseudo steady state 

after day 60, no clear effect of the acetate addition on the sulfide production rate could be 

observed. The sludge concentration after termination of the experiment on day 129 was 7.1 

gVSS.L"1. Based on this value and the sulfide production in the reactor on day 129, a 

specific sulfidogenic activity of 0.95 gCOD.gVSS"1.day"1 can be calculated. This value 

corresponds well with the measured value of the specific activity of 1.05 ± 0.07 

gCOD.gVSS'.day"1 of the sludge on day 129. 
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Figure 2.3. Performance of EGSB-II. The operation of EGSB-II was started at a 
HRT of 11 h, which was decreased to 6 h at day 25, and to 3.5 h at day 33. Influent 
methanol and sulfate concentrations were 2.6 gCOD.L"1 and 3.84 g.L"1, respectively. 
A. Volumetric COD conversion rate of sulfide (•), methane (o), acetate (A), OLR 
(—) and sum of volumetric COD-conversion rate of sulfide, methane and acetate 

( - - - ) • 

B. Effluent concentrations: (•) sulfide; (o) methanol; (A) acetate. 
C. Specific activity of sludge as assessed in batch assays: (•) sulfidogenic; (o) 
methanogenic; (A) acetogenic. Bars represent standard deviation. 
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The competition between SRB and MA in EGSB-II could be followed more closely by 

regular assessment of the specific sulfidogenic activity (SSA), the specific methanogenic 

activity (SMA) and the specific acetogenic activity (SAA) of freshly sampled sludge using 

methanol (1.4 gCOD.L'1) and sulfate (1.9 g.L"1). The results, shown in Figure 2.3C, reveal a 

significant increase in the SSA from 0.22 to 1.05 gCOD.gVSS'.day"1 between day 11 and 

129, and a drop of the SMA from 0.83 gCOD.gVSS'.day"1 at day 11 to values less than 

0.03 gCOD.gVSS_1.day"' at day 129. Also after crushing of the sludge, no methanogenic 

activity was measured at day 129. The specific acetogenic activity (SAA) remained low 

throughout the experiment with a value of about 0.05-0.10 gCOD.gVSS"1.day"1. The flow of 

electrons generated by methanol oxidation in activity assays differed from the electron flow 

found in the reactor. E.g. a calculation made on basis of the data in Figure 2.3A and 3B 

shows that in the activity assay performed at day 58 with sludge from EGSB-II, the 

production of acetate, methane and sulfide accounted for respectively 5, 23 and 72% of the 

amount of methanol converted, while at the same day in the reactor these values amounted 

to 2, 4 and 94%, respectively. 

Specific methanogenic and sulfidogenic activities of sludge with acetate, H2/C02 and 

formate 

In order to assess whether or not the SRB and MA compete for degradation products from 

methanol like acetate, H2/C02 and formate, the specific sulfidogenic and methanogenic 

activities with H2/C02 (80/20 v/v, 1 arm.), acetate (1.3 gCOD.L"1) and formate (0.25 

gCOD.L"1) in the presence of 1.9 g.L"1 sulfate was determined regularly. Results are 

presented in Table 2.2. For comparison, the specific activities with methanol are also 

included in Table 2.2. Acetate was not degraded in the assays carried out at day 24 and 59, 

and no methanogenic activity was observed with acetate. Moreover, the measured SSA with 

acetate was also low on these days (0.06 gCOD.gVSS'.day"1). It was confirmed 

experimentally that acetate at the applied concentration of 1.3 gCOD.L"1 was not inhibitory 

for sulfate reduction or methanogenesis with methanol (data not shown). 

High values for the SMA and SSA were found with hydrogen as electron donor. While the 

SMA with H2/C02 gradually decreased from 1.4 to 0.2 gCOD.gVSS"'.day"1 between day 47 

and day 129, the SSA increased from 0.78 to 1.48 gCOD.gVSS"'.day"1 in the same period. 

Using formate, the SMA at day 24 amounted to only 0.04 gCOD.gVSS^.day"1, while at day 

129 no methanogenic activity could be detected with this substrate. Without substrate and 

sulfate, the sludge still produced 0.05 gCOD-CH4.gVSS"1.day"1 at day 53, which is close to 

the SMA found with formate at day 24. Contrary to the low SMA, the sludge exerted a high 

47 



Chapter 2 

specific sulfidogenic activity of 0.39 gCOD.gVSS'.day"1 on formate at day 24, which had 

increased to 0.87 gCOD.gVSS'.day"1 at day 129. Formate and sulfate were degraded in the 

expected stoichiometry of 4:1 (data not shown). 

Table 2.2. Specific methanogenic and sulfidogenic activities (gCOD.gVSS"'.day"1) of fresh 
sludge from EGSB-II with sulfate (1.9 g.L"1) and methanol (1.4 gCOD.L"1), acetate (1.3 
gCOD.L"1), formate (0.25 gCOD.L"1), H2/C02 (80/20 v/v, 1 atm.). 

substrate 

methanol 

acetate 

formate 

H2/C02 

none 

substrate 

methanol 

acetate 

formate 

H2/C02 

none 

24 

a 

0 

0.04±0.01 

-

-

24 

-

0.06±0.00 

0.39±0.01 

-

-

specific methanogenic activity 

47 

0.49±0.03 

-

-

1.39±0.04 

0 

47 

0.46±0.00 

-

-

0.78±0.06 

0.21±0.02 

(gCOD.gVSS-'.day1) 

day 

58 59 

0.22±0.00 

0 

-

0.79±0.03 

0 

94 

0.16±0.02 

-

-

0.42±0.04 

-

specific sulfidogenic activity 

(gCOD.gVSS'.day1) 

day 

58 59 

0.72±0.07 

0.06b 

-

0.48±0.12 

0.08±0.01 

94 

0.98±0.11 

-

-

1.26±0.12 

-

129 

<0.03 

-

0 

0.20±0.04 

-

129 

1.05±0.07 

-

0.87±0.03 

1.48±0.18 

-

a) not determined; b) single measurement. 

Substrates for methanogenic culture obtained from sludge 

Substrate utilization by MA was investigated in more detail for a mixed methanogenic 

culture grown on methanol, which was obtained from the sludge cultivated in EGSB-II 

through serial dilution. The sludge was taken from the reactor at day 67. As follows from 

the results shown in Table 2.3, H2/C02 and formate supported methanogenesis in the 

presence of vancomycin (a specific inhibitor of eubacteria), but no methanogenesis was 

found with methanol and acetate. During methanol degradation in the absence of 
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vancomycin, hydrogen was detected as an intermediate in the culture at a partial pressure of 

50-100 Pa. 

Table 2.3. Methane formation in methanogenic culture obtained through 
serial dilution (dilution factor 105) of a sludge sample taken from EGSBII 
at day 67, with methanol, formate and H2/CO2 in the presence of 
vancomycin. 

Substrate 

(initial concentration) 

methanol (1.4 gCOD.L"1) 

methanol (1.4 gCOD.L"1) 

H2/C02 (80/20 v/v, 1.7 atm.) 

acetate (1.3 gCOD.L"1) 

formate (0.32 gCOD.L"1) 

Vancomycin 

(2 g-L"1) 

no 

yes 

yes 

yes 

yes 

CH4-production after 10 days 

(gCOD.Lmedium" ) 

0.84 

0 

1.3 

0 

0.15 

Inhibition of methanol degradation at high hydrogen partial pressure 

The previous results indicate that methanol oxidation to H2/C02 and the subsequent 

methanogenesis and sulfate reduction from H2/CO2 could play a significant role in methanol 

degradation in the sludge. It can be calculated that at hydrogen pressures exceeding 6500 

Pa, oxidation of methanol to H2/C02 at 65°C becomes thermodynamically unfavorable17. 

Applying a high hydrogen partial pressure to the sludge should therefore inhibit methanol 

oxidation to H2/CO2. The effect of high hydrogen partial pressures on the specific methanol 

degradation rate (SMDR) was assessed on day 94 in activity assays with fresh sludge 

removed from EGSB-II. In the presence of methanol and sulfate, the SMDR amounted to 

0.92 ± 0.05 gCOD.gVSS"1.day"1, but when the sludge was simultaneously exposed to 

methanol and H2/C02 (1 arm., 80/20 vol./vol.), a SMDR of 0.41 ± 0.04 gCOD.gVSS'Vday"1 

was found (Table 2.4), which is 55% less. The specific sulfidogenic activity with merely 

methanol amounted to 0.98 + 0.11 gCOD.gVSS"'.day"1. As a SMDR of 0.41 ± 0.04 

gCOD.gVSS"'.day"1 was found at a high hydrogen partial pressure, it can be concluded that 

the methanol flow to sulfide decreased 60% in the presence of a high hydrogen partial 

pressure. 
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Table 2.4. Specific methanogenic (SMA), sulfidogenic (SSA) and acetogenic (SAA) 
activities (gCOD.gVSS"1.day") and specific methanol degradation rates (SMDR, 
gCOD.gVSS"\day"r) of fresh sludge taken from EGSB-II at day 94 with methanol (1.4 
gCOD.L"1), and with methanol (1.4 gCOD.L"1) and H2/C02 (80/2 0 v/v, 1 arm.). 

substrate 

methanol 

methanol + H2/C02 

SMA SSA SAA 

(gCOD.gVSS-'.day1) 

0.16+0.02 

0.55± 0.02 

0.98±0.11 

1.41+0.12 

0.06±0.01 

0.10±0.03 

SMDR 

0.92± 0.05 

0.41+0.04 

Development of sludge 

The seed sludge used for inoculation of EGSB-I and -II consisted of granules with a 

diameter of up to 3 mm and a large (about 30% of the wet volume) fraction of disperse 

biomass. As a result, in the first days of the continuous experiments, a significant fraction 

(20-30%) of the sludge washed out from the reactor. During the course of the experiments, 

the granules slowly disintegrated. Along with this disintegration, sludge particles became 

covered with a fluffy cotton-like material, presumably consisting of newly formed biomass. 

Sludge particles were loosely linked to each other forming aggregates, sometimes up to a 

length of 3 cm, where the fluffy sludge material seemed to act as a 'glue' (Figure 2.4). 

Surprisingly, these voluminous aggregates did not wash out from the reactor at the applied 

high liquid upward velocities of 3 to 6 m.h"1. On the other hand, the rather fluffy nature of 

these biomass aggregates led to a high expansion of the biobed, even up to 300-400% at an 

upflow liquid velocity of 3 m.h"1. Occasionally, the voluminous biomass aggregates clotted 

together in larger entities until ultimately the whole sludge bed seemed aggregated. This 

occurred especially in periods of low biogas production. Applying high upward liquid 

velocities of 6 to 10 m.h"1, as exposed to EGSB-II during day 53-67 could not prevent such 

a sludge bed aggregation. Sludge bed aggregation led to channelling. Disruption of the 

sludge bed could be accomplished by applying a very high upward velocity (50 m.h"1) for a 

few minutes, or by gently stirring, using a piece of rubber tubing. 
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Figure 2.4. Sludge aggregate from EGSB-II. 
The aggregate consists of loosely linked 
granules and flocculent sludge particles. Bar 
represents 2 mm. 

Figure 2.5. 
Filamentous sludge floe from 
EGSB-II. Bar represents 2 mm 

Morphologically, the sludge remained heterogeneous during the whole period of the 

experiments; it consisted of (disintegrated) granules and small particles (separately or held 

together in aggregates) and filamentous and fluffy floes. After removal of the sludge from 

the reactor at the termination of experiments, it turned out that it contained large 

filamentous floes up to several cm in size, which were mechanically rather strong (Figure 

2.5). 

The height of the static sludge bed decreased only significantly during the first week of 

operation when there was severe sludge washout, and when sludge was discharged from the 

reactors. As the VSS content of the sludge bed remained fairly constant after the first week 

of operation at a value of 60 ± 10 gVSS.L"1 of sludge, there appeared to be no net biomass 

accumulation in the reactors. Installation of an external settler during day 78-129 in EGSB-

II, from which settled biomass particles were recycled to the reactor once per day, did not 

result in significantly higher biomass concentrations or sulfidogenic production rates 

mainly because recycled biomass particles washed out again within a few hours. 

Methanosarcina and Methanosaeta morphotypes could not be observed in the sludge using 

phase contrast microscopy. Fluorescence microscopy of freshly sampled sludge taken from 

EGSB-II at day 51, when methane production in the reactor was still relatively high, 

revealed a dominance of rod-shaped methanogens resembling Methanobacterium species, 

estimated at >90% of the total number of methanogens. The remainder of the methanogens 

were almost exclusively coccoid in shape. 
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2.5 Discussion 

The results obtained in EGSB-I and -II clearly reveal that methanol is efficiently used by 

the mixed microbial communities present in thermophilic anaerobic reactors as carbon and 

electron source for sulfate reduction and only for a minor extent for acetate and methane 

production. Ultimately, methanogenesis becomes almost completely suppressed, at 

methanol concentrations in the reactor ranging from less than 0.02 to 1.7 gCOD.L" , and at 

hydraulic retention times ranging from 3.5 to 14 hr. The remaining methanogenesis 

presumably mainly results from growing dispersed thermophilic methanogens, which still 

are present due to their low doubling time6. Acetogenesis accounted for maximally 8% of 

the total amount of methanol converted, only when conditions in the reactors were altered 

from underloading to overloading. 

The rather pronounced drop of the methane production capacity in the continuous reactors 

probably results from the gradual decline of the fraction of methanogens in the sludge, 

because the specific methanogenic activity of the sludge from EGSB-II was found to 

deteriorate. The nearly complete loss of methanogenic activity of the sludge from EGSB-II 

on methanol indicates that the relative number of methanogens indeed became very low. On 

the other hand, the gradual increase of the specific sulfidogenic activity of sludge from 

EGSB-II on methanol to a final value of 1.05 gCOD.gVSS'.day"1 (Table 2.2) reveals a 

clear enrichment of sulfate-reducing bacteria. The relative electron flow from methanol 

oxidation to sulfate reduction in activity assays was usually lower than the values deduced 

from the performance of the EGSB, while the relative electron flow to methane in activity 

assays was usually higher compared to that in the reactor. These discrepancies can be 

attributed to the lower methanol concentrations prevailing in EGSB-reactors as compared to 

the methanol concentrations applied in the activity assays, and to the different mixing 

regimes prevailing in both systems, resulting in different substrate transport rates. But 

unrepresentative sampling of sludge from the sludge bed for use in activity assays also 

could be a reason. 

The rapid increase in sulfide production at the expense of methanogenesis that occurred 

during a period of methanol limitation in EGSB-II (day 11-19), and the recovery of the 

methane production after elevating the methanol load (day 25-30), indicates that the SRB 

have a higher affinity than the MA for their common substrate(s). Apparently, substrate 

kinetics play an important role in the fate of methanol in the reactor. 

The inhibition of growth by vancomycin of the methanol degrading methanogenic culture 

obtained from EGSB-II, reveals that methanol did not serve as the direct precursor for 
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methane, which means that no competition for methanol exists between SRB and MA in the 

sludge. This was supported by the absence of Methanosarcina species in the sludge, 

because the only methanol degrading methanogens isolated from anaerobic digesters to date 

belong to the genus Methanosarcina
21

. The absence of any Methanosarcina morphotypes in 

the bioreactors operated at 65°C is in line with observations made by Zinder et al.25. They 

were not successful in growing Methanosarcina cultures at 65°C. In this work it was found 

in activity assays, with sludge from EGSB-II, that acetate was not degraded and that no 

methane and only little sulfide was formed from acetate, compared to the control assay 

conducted with methanol. The observed small sulfide production on acetate presumably 

results from endogenous electron donors present in the sludge. The presence of endogenous 

electron donors was confirmed by the results of activity assays without substrate, carried 

out at days 47 and 58. The assessed SSA at these days amounted to 0.21 and 0.08 

gCOD.gVSS'.day"1, respectively. The absence of any acetate degradation also means that 

oxidation of acetate to H2/CO2, as observed by other authors in thermophilic methanogenic 

sludge15 and a thermophilic co-culture26 did not occur. However, acetate may act as a vital 

carbon source to enable growth of SRB3. Apparently, methanogens in the EG SB-reactors 

use substrates other than acetate and methanol. These substrates could be H2/C02 and/or 

formate, because the methanogenic culture obtained from EGSB-II used these substrates in 

the presence of vancomycin. This also confirmed that the methanogens were not affected by 

vancomycin. The abundance, in the sludge, of methanogens resembling Methanobacterium, 

which are known to grow only on H2/C02 or formate22, also indicates that methane is 

mainly formed from H2/C02 or formate. Moreover, the detection of hydrogen in the 

headspace of the methanogenic culture also confirms the intermediary role of hydrogen 

during methanogenic methanol degradation. Hydrogenotrophic methanogens were indeed 

present in high numbers, as shown by the high specific methanogenic activity (SMA) on 

H2/C02. Because of the relatively low SMA on formate, which was about 14 times lower 

than the SMA on methanol, formate is presumably not an important precursor for methane 

in the sludge. 

The measured high specific sulfidogenic activity on hydrogen of sludge from EGSB-II 

shows that this substrate was also suitable as electron donor for sulfate reduction. Since 

hydrogen apparently is the main electron source for the methanogens in the sludge, very 

likely the competition between SRB and MA for hydrogen plays an important role in the 

fate of electron equivalents derived from methanol. This would explain why sulfate 

reduction ultimately dominates over methanogenesis in the reactors, because it is well 

known that SRB outcompete MA for hydrogen when sufficient sulfate is present5-21. This 

presumably can be attributed to more favourable kinetic parameters of SRB14 '23 or a lower 
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hydrogen threshold level8 over MA. Although the results suggest a key role for hydrogen in 

the competition between SRB and MA in the reactor, it is still unclear to which extent 

methanol is directly consumed by sulfate reducers or first converted to hydrogen and 

formate before being used for sulfate reduction. However, the observed 60% inhibition of 

sulfidogenic methanol degradation in activity assays at a high hydrogen partial pressures 

suggests that hydrogen, formed through methanol oxidation, indeed may act as a major 

electron donor for sulfate reduction in the sludge. Methanol oxidation to H2/CO2 coupled to 

hydrogenotrophic methanogenesis and sulfate reduction has been demonstrated for a 

thermophilic co-culture of a methylotrophic acetogen and a hydrogenotrophic methanogen 

or sulfate reducer3. 

The observed high efficiency of methanol utilization for sulfate reduction, and the 

concomitant appreciable sulfide production rates of 5 to 10 gCOD.L^.day"1 achieved in 

EGSB-II, show that thermophilic sulfate reduction with methanol is feasible. The maximum 

value of the sulfide production rate corresponds with a sulfate elimination rate of 15 

gS04
2".L"1.day"1, which is twice as high as the value found by van Houten et al.6 who used 

H2/C02 for thermophilic sulfate reduction in gas-lift reactors. The observed large 

fluctuation in the sulfide production most likely results from periodical substrate limitation 

prevailing in heavily aggregated zones of the sludge bed. Apparently, the hydraulic mixing 

in EGSB-reactors is insufficient for preventing such an extent of aggregation and thus for 

maintaining a good contact between biomass and medium, even at upflow liquid velocities 

of 10 m.h"1. Furthermore, the results also clearly demonstrate that in fact the sludge 

retention in the EGSB-reactors was poor, because biomass concentrations never exceeded 4 

and 7 gVSS.L"1 in EGSB-I and -II respectively. As the EGSB-concept is based on the use 

and maintenance of well settleable (granular) sludge, which is easily retained in the reactor 

in an expanded, well-mixed sludge bed, EGSB-reactors apparently are not the proper 

system for thermophilic sulfate reduction with methanol. The biomass concentration rather 

than the sulfide concentration limits the sulfate elimination rate in EGSB-II at day 129, 

because the calculated specific sulfidogenic activity in the reactor amounted to 0.95 

gCOD.gVSS'.day"1, which is very close to the maximum specific sulfidogenic activity of 

the sludge of 1.05±0.07 gCOD.gVSS'.day"1 assessed in activity assays on that day. 

Apparently, inhibition by the total sulfide concentration (512 mgS.L"1) or by the free 

hydrogen sulfide concentration (57 mgS.L"1) was not important on day 129. 
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Chapter 3 

Isolation and characterization of a methanol-
utilizing, sulfate-reducing bacterium isolated from 

a thermophilic sulfidogenic bioreactor 

3.1 Abstract 

From anaerobic sludge cultivated in a thermophilic (65°) sulfate-reducing bioreactor 

(EGSB-II, Chapter 2) fed with methanol as electron donor, a sulfate-reducing bacterium 

(strain WW1) was isolated with methanol as sole carbon and energy source. On most 

substrates, strain WW1 is rod shaped (2-5 urn x 0.8 um), non-motile, gram-negative, and 

formes central spores that cause distension of cells. However, during growth on H2/CO2, 

lactate or pyruvate, cells are 8 to 12 times as long, and spores were never found. Optimum 

growth occurred around pH 7.5 and a temperature of 65°C. Strain WW1 was identified as a 

Desulfotomaculum-species by its morphology and 16SRNA-sequence. In the sludge, strain 

WW1 is not confined to the use of methanol, as the strain also grows on anaerobic 

degradation products of methanol, like acetate, formate and H2/C02. Growth of strain WW1 

on methanol and sulfate already stops at a total sulfide concentration of 220 mgS.L" , while 

growth on hydrogen and sulfate is possible up to 640 mgS.L"1 of total sulfide. Thus, the 

high sulfide levels (up to 700 mgS.L"1) produced in the bioreactor might be explained by 

assuming growth of strain WW 1-like sulfate reducers on hydrogen rather than on methanol. 
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3.2 Introduction 

As described in Chapter 2, a high rate of sulfate reduction with methanol as electron donor 

was found in thermophilic (65°C) high-rate bioreactors, while only a minor part of the 

methanol was converted to methane and acetate. In the bioreactor, the sulfate-reducing 

bacteria (SRB) may not only use methanol as electron donor for sulfate reduction, but also 

products of methanol degradation products, e.g acetate and hydrogen1. Only a few of the 

known thermophilic SRB are able to use methanol and acetate as electron donor, while all 

described thermophilic SRB except Thermodesulforhabdus norvegicus use hydrogen as 

electron donor (Chapter 1). However, some species need acetate as carbon source for 

growth on hydrogen. 

In this chapter, the isolation is described of a sulfate reducer originating from anaerobic 

sludge that was cultivated in a thermophilic (65°C) upflow reactor fed with an influent 

containing methanol and sulfate (EGSB-II, Chapter 2). By characterizing the isolf#ed 

sulfate reducer insight is gained into the microbiology of thermophilic sulfate reduction 

with methanol and accordingly, the microbial conversions of methanol in the process. 

3.3 Materials and methods 

Source of organisms. Strain WW1 originated from anaerobic sludge that was cultivated in 

a thermophilic (65°C) laboratory-scale expanded granular sludge bed (EGSB) reactor. The 

medium fed to the EGSB-reactor had a similar composition as the medium used for 

enrichment and cultivation of WW1, except for vitamins and the trace element cobalt. 

Methanol and sulfate concentrations of the reactor influent were 56 mM and 42 mM, 

respectively. The pH in the reactor was controlled at 7.5. The sludge sample was taken after 

day 79 of operation, when 92% of the consumed methanol was used for sulfate reduction, 

while only 6 and 2% of the methanol was used for methane and acetate formation, 

respectively. More details of the description and operation of the reactor can be found in 

Chapter 2 (EGSB-II). Methanobacterium thermoautotrophicum AH was from our own 

laboratory strain collection. 

Media and cultivation. The basal liquid culture medium contained (g.L" ): NaCl (7), 

NaHC03 (4), Na2S04 (2.8), MgCl2.6H20 (1.2), KC1 (0.5), NH4C1 (0.3), KH2P04 (0.2), 

CaCl2 (0.15), Na2S.7-9H20 (0.3), yeast extract (0.02 mg.L"1) and a trace element solution (1 

mL.L1) containing (mg.L"1): FeCl2.4H20 (1500), CoCl2.2H20 (190), MnCl2.4H20 (100), 
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ZnCl2 (70), H3BO3 (62), Na2Mo04.2H20 (36), NiCl2.6H20 (24), CuCl2.2H20 (17), EDTA 

(500) and HC1 37% (7 mL.L"1). Additionally, vitamins were added from a concentrated 

stock solution13. Solid media were prepared by addition of 1.5% granulated agar to 20 mL 

of liquid medium in agar shake tubes. Liquid cultures were routinely grown at 65°C in 

117-mL serum vials with butyl rubber stoppers and aluminum crimp seals. The vials 

contained 50 ml basal medium and a gas phase of 1.7 bar N2/C02 (80:20, v/v). In case 

H2/C02 was tested as growth substrate, nitrogen in the gas phase was replaced by hydrogen. 

Substrates were added from concentrated stock solutions that were sterilized by heat before 

use, except for pyruvate that was filter-sterilized. Routinely, the pH of the medium was 7. 

By varying the C0 2 concentration in the headspace and adding a few drops of 0.1 N HC1 or 

NaOH, the pH of the medium could be adjusted within the range 5.5-8.5. In all growth 

experiments in liquid medium, the inoculum size was 10%. To test syntrophic growth on 

methanol, cells were inoculated in a dense culture of exponentially H2-grown cultures of 

Methanobacterium thermoautotrophicum AH in the same liquid medium as described 

above, but without sulfate. Before inoculation, the gas phase was changed to N2/C02 and 

methanol was added. Growth experiments were conducted at least in duplicate. 

Isolation. Fresh sludge was taken from a thermophilic sulfate-reducing bioreactor fed with 

methanol as sole energy- and carbon source. Under a nitrogen atmosphere, 2 mL of sludge 

was disintegrated using a mortar. The sludge was brought in an anaerobic tube, and after 5-

fold dilution with medium, the sludge was further disintegrated by pressing it repeatedly 

through a syringe needle (Microlance 3, 0.6 x 25 mm). Serial dilutions of the sludge were 

made in liquid media containing 30 mM methanol, 2 mM acetate, and 20 mM sulfate. The 

highest dilution showing growth at 65°C was designated SRC-11 (sulfate-reducing culture 

from 10u times diluted sludge). Repeated serial dilution and subsequent incubation in 

liquid medium further purified the culture. The resulting purified culture was diluted in agar 

(1.5% Agar Noble) shake tubes. Colonies from the highest dilution were again diluted in 

agar shake tubes. This procedure was repeated two times until a pure culture was obtained. 

Purity was checked by inoculating the culture in medium containing 10 g.L'1 yeast extract 

(BBL-Becton Dickinson, Cockeyesville, MD, USA) or 15 g.L"1 Wilkins-Chalgren anaerobe 

broth (Oxoid, Basingstroke, UK) and incubation at 30 and 65°C under anaerobic and 

aerobic conditions. After incubation, the cultures were examined microscopically. 

16S RNA Sequence analysis. For the genetic characterization of strain WW1, 

chromosomal DNA was isolated from a liquid culture as described previously4. The 16S 

rDNA gene was selectively amplified by PCR, using oligonucleotide primers 

complementary to conserved regions of the eubacterial 16S rDNA. The following primer 
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pair was used: 5' ACCTAATACGACTACTATAGGGAGAGTTTG-ATCCTGGCTCAG 

3' (positions 8-27, E. coli numbering) and 5' ATTGTAAAACGACGGCCAGT-

GGTTACCTTGTTACGACTT 3' (positions 1492-1510, E. coli numbering). The PCR 

amplification products were sequenced with an amplified Biosystems model 373A DNA 

sequencer by using the Taq DyeDeoxy terminator cycle sequencing method and custom 

primers based on conserved regions. 

The assembled DNA sequence was aligned with the equivalent 16S rDNA sequences of 

closely related strains found in the GenBank database using CLUSTAL W. A phylogenetic 

tree was constructed from a distance matrix based on the neighbour-joining method11 as 

implemented in the program TREECON9. No correction method was applied and tree 

topology was re-examined by using bootstrap analysis (100 trees). 

Analysis of cell compounds. Isolation and purification of DNA was carried out according 

to standard protocol5. The G+C content of the genomic DNA was determined by thermal 

denaturation method8. Gram-staining was done according to standard procedures2. 

Analytical methods. Samples for methanol and VFA analysis were centrifuged at 17000 g 

for 5 min., diluted with a 3% formic acid solution (final concentration formic acid 1-2%), 

and stored at 4°C. Methanol and acetate were determined by gas chromatography using a 

Hewlett Packard model 5890 equipped with a 6 m x 2 mm glass column packed with 

Supelco port, 100-120 mesh, coated with 10% Fluorad FC 431 (3M). The flow rate of the 

carrier gas (nitrogen saturated with formic acid) was 40 mL.min"1, and the column pressure 

was ± 3 bar. The temperature of the column, injection port and detector were 80, 200, and 

280°C, respectively. Propionate and butyrate were analysed in the same way as methanol 

except that the temperatures of the column, the injector port and the flame ionization 

detectors were 130, 200 and 280, respectively. 

Methane and hydrogen were measured on a 406 Packard gas chromatograph equipped with 

a thermal conductivity detector (TCD), 100 mA. The gases were separated with argon as 

the carrier gas on a molecular sieve column (13X, 1.8 m by 1/4 inch, 60-80 mesh) at 100°C. 

The total sulfide concentration is defined as the sum of H2S, HS", and S2" sulfide species. 

The total sulfide was determined colorimetrically using the methylene blue method14. 
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3.4 Results 

Isolation and morphological characterization 

A sulfate-reducing culture was obtained from the 1 x 10H-fold dilution of disintegrated 

anaerobic sludge, inoculated in medium containing methanol, sulfate and a low amount of 

acetate. The culture did not show methane formation, nor formation of acetate. By 

repeatedly using the agar shake method pure sulfate-reducing cultures were obtained. One 

of these, designated strain WW1, was used for further study. The morphology of WW1 

depended on the substrate tested. During growth on sulfate and substrates other than 

H2/C02, lactate or pyruvate (see below), cells were rod shaped (2-5 um x 0.8 urn), and 

formed central spores, causing distension of the cells (Figure 3.1). During growth on sulfate 

and H2/CO2, lactate or pyruvate, cells were 8 to 12 times as long (width unchanged) and 

spores were never found (Figure 3.1). Cells stained Gram-negative, but electron 

microscopical examination the strain revealed a typical Gram-positive cell wall structure 

(not shown). 
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Figure 3.1. Phase contrast photomicrographs of strain WW1 growing on methanol plus 
sulfate (left graph) and H2/CO2 and sulfate. Bar =10 |xm. 

Growth and substrate utilization 

The optimum growth temperature for strain WW1 was 7.6, while growth still occurred at 

pH 6.3 and pH 8.3. Strain WW1 grew optimally between 62 and 68°C, but little growth 

occurred at 45 and 75°C. The substrate and electron acceptor range of strain WW1 is 

summarized in Table 3.1. 
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Table 3.1. Compounds tested as growth substrate or electron 
acceptor for strain WW1. The concentrations of all substrates was 
20 mM, except methanol which was 50 mM. 

Utilized in the presence of 20 mM sulfate: 

Methanol, H2/CO2 (excess, 80/20 v/v), ethanol, propanol, butanol, 
isobutanol, formate, propionate, butyrate, succinate, fumarate, lactate 
and pyruvate 

Tested, but not utilized in the presence of 20 mM sulfate: 

Benzoate, isopropanol, fructose and glucose 

Utilized as electron acceptor: 

Sulfite (5 mM), thiosulfate (5 mM) 

Tested, but not utilized as electron acceptor: 

Nitrate (10 mM) 

Although strain WW1 was isolated on sulfate, methanol and acetate, the strain was able to 

grow on sulfate and either methanol or acetate alone. No acetate was formed during growth 

on methanol. Both methanol (30 mM) and acetate (2 mM) were degraded when incubated 

together, but sulfide production was not higher than with methanol alone. WW1 could grow 

autotrophically on H2/C02 and sulfate. Acetate was not formed during growth on H2/C02. 

Acetate and methanol were not degraded in the presence of an excess of H2/C02. On 

methanol, acetate, and H2/C02, sulfide formation did not proceed exponentially. Therefore, 

calculation of the maximum specific growth rate on these substrates was not possible. 

Incubation of the culture with methanol and Methanobacterium thermoautotrophicum strain 

AH (no sulfate) resulted in only a low methane formation. However, the original culture 

that was obtained by serial dilution of the anaerobic sludge, did form high amounts of 

methane after incubation with methanol and M. thermoautotrophicum strain AH. Results on 

this newly assembled culture are presented in Chapter 4. 

Sulfide toxicity 

Growth of strain WW1 on methanol or acetate was rather poor; in 20 days only 200 to 300 

mgS.L"1 (6 to 9 mM) of total sulfide was produced at an initial pH of 7, after which the 

sulfide concentration no longer increased. Sulfide formation in 5 other pure sulfate-

reducing cultures (of which the morphology strongly resembled that of strain WW1) 

obtained from culture SRC-11 also proceeded up to maximum levels of around 300 

mgS.U1. 
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In contrast with methanol, with H2/C02 all added sulfate 640 mgS.L"1 (20 mM) was reduced 

within 16 days by strain WW1. At initial concentrations of 220 mgS.L"1 (7 mM) total 

sulfide, no growth occurred with methanol and sulfate. Elevating the initial pH from 7 to 

7.5 and 8, did not result in formation of higher sulfide concentrations. Poor growth of strain 

WW1 was not caused by toxicity of impurities of the commercial sodium sulfide that was 

used for reduction of the medium, as suggested by Widdel15, because replacing commercial 

sodium sulfide with sterile biogenic sulfide (obtained by filter-sterilizing effluent from 

reactor EGSB-II, Chapter 2) did not improve formation of sulfide. Also, addition of 

autoclaved sludge (1 mL.L"1) from the reactor from which strain WW1 was isolated, or 

filter-sterilized sludge supernatant (20 mL.L"1), did not stimulate sulfide formation. 

G+C-content. The G+C-content of the DNA of strain WW1 amounted to 49.6 mol%. 

Phylogenetic analysis of 16S rDNA sequences. Using 6 primers, a nearly complete 

sequence consisting of 1403 basepairs of the amplified 16S rDNA gene of strain WW1 was 

obtained. On the basis of 16S rDNA sequences, strain WW1 was most similar to 

Desulfotomaculum thermocisternum (99% similarity value) and Desulfotomaculum 

australicum (98% similarity value) (Figure 3.2). The result of the phylogenetic analysis 

based on the nucleotide sequence of the 16S rDNA gene clearly indicate that strain WW1 is 

a member of the genus Desulfotomaculum. 
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Figure 3.2: An unrooted phylogentic tree based on the results of 16S 
rDNA sequence comparisons showing the relationship of 
Desulfotomaculum strain WW1 with other Desulfotomaculum species. 
Bootstrap values (> 50) expressed as percentages are shown at the 
branch points. Roman numerals refer to the cluster and subclusters of 
the Desulfotomaculum species as described by Stackebrandt et al.^. 

3.5 Discussion 

The isolation of strain WW1 from the highest methanol degrading, sulfate-reducing serial 

dilution of disintegrated anaerobic sludge strongly indicates that this microorganism is the 

most abundant sulfate reducer involved in methanol degradation in the sludge. In the 

sludge, strain WW1 may not be confined to the use of methanol, as the strain also grows on 

anaerobic degradation products of methanol, like acetate and H2/C02. However, acetate did 

not serve as sole electron donor for sulfate reduction in the sludge from which strain WW1 

was isolated (Chapter 2). Strain WW1 uses acetate in the presence of methanol, but not in 
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the presence of H2. Therefore, the lack of acetate consumption by the sludge might be 

explained by assuming that hydrogen is the main electron donor for sulfate reduction in the 

sludge. The presence of methanol oxidizing, hydrogen-producing bacteria in the highest 

methanol degrading, sulfate-reducing serial dilution of the sludge supports this hypothesis. 

The methanol oxidizing species likely is not strain WW1, as the latter was not able to grow 

on methanol in co-culture with M. thermoautotrophicum AH. The methanol-oxidizing 

species is currently under study in our laboratory. The results support our hypothesis stated 

previously that methanol oxidation to H2/C02, and subsequent sulfate reduction with H2, 

plays an important role in the sludge (Chapter 2). In this scenario, strain WW 1-like sulfate 

reducers act as the hydrogen scavengers. 

With respect to pH and temperature, strain WW1 was well adapted to the environmental 

conditions prevailing in the reactor, as optimum pH (7.5) and temperature (62-68°C) of 

strain WW1 coincided with the imposed conditions in the reactor (pH 7.5, 65°C). Strain 

WW1 did not grow on methanol at initial total sulfide concentrations above 220 mgS.L"1 (7 

mM), indicating sulfide toxicity. Toxicity seemed to be related to the total sulfide 

concentration rather than the H2S concentration, as elevating the pH of the culture to 7.5 

and 8 did not relieve inhibition. The total sulfide concentration in the original habitat of 

WW1 amounted to values as high as 700 mgS.L"1 (22 mM). The difference with the sulfide 

inhibition level of WW1 may be explained by assuming that hydrogen acts as the main 

electron donor in the sludge, as with this substrate growth of strain WW1 at 640 mgS.L"1 

(20 mM) was still possible. Apparently, the metabolism of methanol in strain WW1 is much 

more sensitive towards sulfide than the hydrogen metabolism, e.g. due to high sensitivity of 

enzymes involved in methanol conversion. In addition, factors may be present in the sludge 

that protect strain WW1 from sulfide toxicity. These factors must be heat labile and not 

permeable through sterilization filters, as autoclaved sludge or filter-sterilized sludge 

supernatant did not stimulate growth. 

Taxonomy. The topology of the phylogenetic tree constructed was almost indentical with 

earlier data concerning Desulfotomaculum species3'6'7'10-12. Strain WW1 was located in 

subcluster Ic, consisting of closely related thermophilic Desulfotomaculum species with 

similarity values of more than 93%. 
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Chapter 4 

Interspecies hydrogen transfer in a thermophilic 
methanol-degrading culture obtained from a 

sulfate-reducing bioreactor 

4.1 Abstract 

In the bioreactor-experiments described in Chapter 2, sulfate-reducing bacteria may either 

directly use the added methanol for reduction of sulfate, or they may use intermediates from 

methanol degradation like hydrogen, formate and acetate. In this chapter it is shown that 

bacteria able to oxidize methanol to hydrogen (and presumably C02) most likely are present 

in high numbers in the bioreactor. This indicates that hydrogen may represent an important 

intermediate in sulfidogenic methanol degradation at 65°C. 
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4.2 Introduction 

To gain insight in the microbial conversions of methanol in a thermophilic (65°), sulfate-

reducing bioreactor, the dominant microorganisms from this reactor are studied. A sulfate-

reducing culture (culture SRC-11) growing on methanol, sulfate and a small amount of 

acetate was obtained from 10n-fold diluted anaerobic sludge cultivated in the EGSB-

reactor described in Chapter 2 (EGSB-II). From culture SRC-11, the thermophilic sulfate-

reducing strain WW1, as described in Chapter 3, was isolated. Strain WW1 appeared to be 

a Desulfotomaculum spp. able to use methanol and possible anaerobic degradation products 

of methanol, viz. hydrogen, formate and acetate as electron donor for sulfate reduction. 

Therefore, methanol in culture SRC-11 may be either directly used as electron donor for 

sulfate reduction by strain WW 1-like microorganisms or it may first be degraded to 

intermediates like hydrogen, formate and acetate by for instance homoacetogens, followed 

by sulfidogenic oxidation of such intermediates. The occurrence of such a methanol 

degradation route would imply the presence of species in culture SRC-11 that degrade 

methanol to such intermediates. 

The objective of the work described in this chapter is to investigate the occurrence of 

organisms possibly involved in the conversion of methanol to hydrogen and acetate. 

4.3 Materials and methods 

Origin of the bacterial cultures. Culture SRC-11 originated from anaerobic sludge 

cultivated in a thermophilic sulfate-reducing bioreactor fed with methanol, as described in 

more detail in Chapter 3. Methanobacterium thermoautotrophicum AH was from our own 

laboratory strain collection. The thermophilic sulfate reducer strain SR was isolated in our 

laboratory2. 

Media and cultivation. Media and cultivation were largely as described in Chapter 3. 

Unless stated otherwise, media contained methanol (30 mM), acetate (2 mM), yeast extract 

(20 mg.L"1) and sulfate (20 mM) as substrates. Liquid cultures were incubated at 62°C. 

When inhibition of sulfate reducers or methanogens was desired, molybdate and 

2-bromoethanesulfonate (sodium salts), respectively, were added from concentrated stock 

solutions. The stock of 2-bromoethanesulfonate was filter-sterilized before use and the 

stock of molybdate was heat-sterilized. Routinely, the inoculation size of the cultures was 

10%. Growth experiments were conducted at least in duplicate. 
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Solid media had the same composition as liquid media. In addition, 1.5% agar Noble (soft 

agar shake tubes) or 3% Bacto-agar or granulated agar (Hungate roll-tubes) was added. 

Solid media were incubated at 62°C. Agar media were sterilized at 115°C, 40 min. 

Analytical methods. Analysis of methanol, volatile fatty acids (VFA) and sulfide in liquid 

samples and methane and hydrogen in the headspace of vials were conducted as described 

in Chapter 3. 

Other methods. Gram-staining was done according to standard procedures3. 

Phylogenetic analysis 

DNA extraction. Nucleic acids were extracted using a direct lysis protocol modified from 

More et al.6 as described previously4. Cells (50 mL) were harvested by centrifugation and 

cell pellets were transferred into 2-mL screw cap tubes. Approximately 1 g of sterilized 

(170°C for 4 h) zirconia beads (0.1 mm diameter; Biospec products Inc., Bartlesville, Ok, 

USA), 800 ul Na-phosphate buffer (120 mM, pH 8), and 260 uL SDS-solution (10% SDS, 

0.5 M Tris/HCl, pH 8.0, 0.1 M NaCl) were added to the cells, and resuspended 

homogeneously by vortexing. Cells were lysed for 45 s by shaking in a cell disruptor 

(FP120 FastPrep, Savant instruments Inc., Farmingdale, NY, USA) at a setting of 6.5 m s"1. 

After centrifugation (3 min at 12,000 x g) the supernatant was collected, and the soil-beads 

mixture was extracted a second time by resuspension in 700 uL phosphate buffer. Proteins 

and debris were precipitated from the supernatant by adding 0.4 volumes of 7.5 M 

ammonium acetate, followed by incubation on ice for 5 min. After centrifugation at 12,000 

x g for 3 min nucleic acids were precipitated by addition of 0.7 volumes of isopropanol, 

followed by centrifugation at 12,000 x g and 4°C for 45 min. Subsequently, the DNA pellet 

was washed with 70% ethanol at 4°C, and dried under vacuum. Finally, DNA was 

resuspended in 200 uL Tris-EDTA buffer (10 mM Tris-base, 1 mM EDTA, pH 8). 

PCR amplification. For PCR amplification a SSU rRNA-based primer set was used, i.e. an 

"Universal" primer set targeting all life which was modified from Weisburg et al. by using 

533f (GTGCCAGCAGCCGCGGTAA) and 907r (AATTCCTTTGAGTTT) (Escherichia 

coli positions 515-533 and 907-9222 as forward and reverse primers, respectively. Primers 

907r had a GC-clamp (cgcccgccgcgccccgcgcccggcccgccgcccccgcccc) at its 5' end. 

PCR buffer (20 mM Tris-HCl, pH 8.3, 50 mM KC1), 1 U AmpliTaq DNA polymerase 

(Perkin Elmer Applied Biosystems, Weiterstadt, Germany), 0.5 uM of each primer, 100 uM 

of each deoxynucleoside triphosphate (Amersham Life Science, Braunschweig, Germany), 

and 1 uL of template DNA were added to a total reaction volume of 50 uL at 4°C. 
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Amplifications were started by placing cooled (+4°C) PCR tubes immediately into the 

preheated (94°C) thermal block of a Mastercycler Gradient thermocycler (Eppendorf, 

Hamburg, Germany). The thermal cycling profile consisted of an initial denaturation of 3 

min at 94°C, followed by 28 to 32 cycles of 30 s at 94°C, 30 s at an annealing temperature 

of 60 to 50 °C (touch down in 20 0.5°C increments), and 45 s at 72°C (elongation), and 5 

min at 72°C for the last cycle. 

Aliquots (5 uL) of PCR products were analyzed by electrophoresis on 3% agarose gels, 

stained with ethidium bromide. Gels were photographed with an imaging system (MWG 

Biotech, Germany). 

Denaturing gradient gel electrophoresis. DGGE was carried out as described previously in 

detail with minor modifications13. PCR-products were separated using a DCode System 

(Bio-Rad, Munich, Germany) on 1-mm thick polyacrylamide gels (6.5% w/v acrylamide:bis 

acrylamide (37.5:1); Bio-Rad) prepared with and electrophoresed in 0.5 x TAE, pH 7.4 

(0.04 M Tris-base, 0.02 M sodium-acetate, 1 mM EDTA) at 60°C, and constant voltage. A 

denaturing gradient of 80% (vol/vol) denaturant corresponded to 6.5% acrylamide, 5.6 M 

urea and 32% deionized formamide. Gels were poured on GelBond PAG film (FMC 

Bioproducts, Rockland, ME, USA) to avoid gel distortion. A denaturant gradient of 35 to 

70% was used, and gels were elctrophoresed at 150 V for 5h. Gels were stained with 

1:50,000 (vol/vol) SYBR-Green I (Biozym, Hessisch-Oldendorf, Germany) for 30 min, and 

scanned with a Storm 860 phosphor imager (Molecular Dynamics, Sunnyvale, CA, USA). 

Extraction of PCR products from DGGE gels. We visualized DGGE bands in SYBR Green 

I-stained gels with blue light (%> 400 nm) using a Dark Reader transilluminator (Clare 

Chemical Research, Ross on Wye, UK). Individual DGGE bands were sampled by excising 

a small core with a sterile 200 uL pipette tip, reamplified, and reanalyzed by DGGE to 

verify band purity. 

Sequencing of DGGE bands. Reamplified PCR products of excised DGGE bands were 

purified using the EasyPure DNA purification kit (Biozym, Hessisch-Oldendorf, Germany). 

Concentration and purity of PCR products were determined by absorption at 260 nm and 

280 nm of a 1:20 dilution in H20 with a GeneQuant spectrophotometer (Pharmacia Biotech, 

Uppsala, Sweden). Sequencing reactions were performed using the ABI Dye-terminator 

cycle sequencing kit (Perkin Elmer Applied Biosystems,) with 30-180 ng template DNA as 

specified by the manufacturer. Cycle sequencing products were purified from excess dye 

terminators and primers using Microspin G-50 columns (Pharmacia Biotech, Freiburg, 
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Germany), and analyzed with an ABI 373 DNA sequencer (Perkin Elmer Applied 

Biosystems). 

Sequences were analyzed using the Lasergene software package (DNASTAR, Madison, 

WI, USA). 16S rDNA sequences were aligned and phylogenetically placed with the ARB 

software package14. Evolutionary distances between pairs of sequences were calculated by 

using the Jukes-Cantor, and Felsenstein equations16 implemented in the ARB package. 

Sequences were compared to those available in GenBank using the BLAST search 

algorithm1. Phylogenetic trees were constructed by using the neighbor joining algorithm 

supplied by the ARB software package14. 

4.4 Results 

Origin of starting culture SRC-11 

The starting culture SRC-11 originated from a thermophilic (65°C) sulfate-reducing 

bioreactor that was fed for several months with methanol as the sole carbon and energy 

source (EGSB-II, Chapter 2). Culture SRC-11 comprised the highest (1 x 1011) liquid 

dilution of crushed, flocculent anaerobic sludge from this reactor that showed growth at 

65°C in a medium containing methanol (30 mM), acetate (2 mM), yeast extract (20 mg.L"1) 

and sulfate (20 mM). Culture SRC-11 did not degrade methanol in the absence of sulfate, 

indicating that methanol degrading homoacetogens and methanogens were not present in 

the culture. 

Demonstration of interspecies hydrogen transfer in culture SRC-11 

The ability of culture SRC-11 to oxidize methanol to H2/C02 was tested by inoculation 

(10%) into an exponential-phase H2-grown culture of M. thermoautotrophicum strain AH 

with methanol (30 mM), acetate (2 mM) and yeast extract (20 mg.L"1). The resulting culture 

formed substantial amounts of methane. After several transfers in sulfate-free medium a 

stable culture was obtained that degraded methanol to methane and acetate (Figure 4.1). 

From the data in Figure 4.1 it can be calculated that approximately 70% and 30% of the 

degraded 25 mM methanol was used for formation of methane and acetate, respectively. 

Because the original culture SRC-11 did not form methane from methanol in the presence 

or absence of sulfate after prolonged incubation, it is clear that methane formation in the 

new culture indeed was due to the presence of M. thermoautotrophicum strain AH. Thus, in 

the new culture methane is formed from H2/C02, as M. thermoautotrophicum strain AH can 

73 



Chapter 4 

only grow on this substrate. The culture did not degrade acetate (20 mM) and formate (20 

mM) to methane. Furthermore, methanol was not degraded when the methanogen was 

inhibited by 10 mM 2-bromoethanesulfonate. 
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Figure 4.1. Methanol degradation in culture SRC-11 in the presence of M. 
thermpautotrophicum strain AH without sulfate. Symbols: (o> methanol, (•) methane, 
(A) acetate, (•) hydrogen pressure headspace. The methane concentration is expressed 
as mmol methane produced per L of medium. 

Attempts to obtain a methanol degrading methanogenic co-culture 

The newly assembled methanol-degrading methanogenic culture was purified in several 

serial liquid dilutions. In the purified culture, besides M. thermoautotrophicum strain AH, 

two morphologies were distinguished in high numbers. Cells of morphotype 1 were Gram-

negative, non-motile rods (2-5 um x 0.8 um) with or without central spores. Cells of 

morphotype 1 were obtained in pure culture from culture SRC-11, and one strain was 

designated WW1, as described in Chapter 3. Strain WW1 appeared to be a 

Desulfotomaculum spp. that could grow on methanol, acetate, hydrogen and formate in the 

presence of sulfate. Cells of morphotype 2 were non-motile rods, sometimes occurring in 

pairs, and were 1-2 um x 0.2-0.5 um in size. The relative number of morphotypes 1 and 2, 

and M. thermoautotrophicum strain AH in the culture amounted to approximately 10%, 
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30% and 60%, respectively. The culture was serially diluted in agar-shake tubes with 

methanol (30 mM), acetate (2 mM) and yeast extract (20 mg.L"1), with the aim to obtain a 

defined co-culture of methanol-oxidizing species and the methanogen. Colonies only 

formed in tubes with 1 x 10'-103-fold diluted culture. Also repeated dilution of the colonies 

failed to yield a co-culture as all three morphotypes remained present. Attempts to inhibit 

growth of cells resembling the sulfate-reducing strain WW1 by addition of 1 mM 

molybdate, a specific inhibitor of sulfate reduction, also failed as molybdate was found to 

completely inhibit growth of the culture. However, when the same amount of molybdate 

was added to a growing culture, methanol consumption and methane formation proceeded 

as in controls without addition of molybdate (data not shown). From these results we 

concluded that sulfate-reducing activity or presence of specific sulfate-reducing species is 

required to initiate methanogenic growth of the culture on methanol. 

Transfer of methanol-oxidizing activity from methanogenic to a sulfate-reducing 
culture 

In a subsequent effort to obtain a defined co-culture of a methanol-oxidizing species and a 

hydrogenotroph, the methanogen was replaced with hydrogenotrophic sulfate reducer. The 

heterotrophic sulfate-reducing strain SR, isolated in our laboratory a few years ago, was 

selected for this purpose. Strain SR is not able to grow on methanol or acetate plus sulfate, 

which makes strain SR suitable to replace M. thermoautotrophicum strain AH as 

hydrogenotroph in the methanol-degrading culture. Furthermore, strain SR is a small vibrio 

and can therefore easily be distinguished by means of light microscopy from morphotype 1 

and M. thermoautotrophicum strain AH. The methanogenic methanol degrading culture was 

repeatedly diluted in dense cultures of strain SR with methanol (30 mM), acetate (2 mM), 

sulfate (20 mM) and 20 mg.L"1 yeast extract. Acetate was added as carbon source for strain 

SR. After 3 subsequent dilution series, morphotype 1 was no longer observed in the culture. 

In addition, the culture did not form any methane from methanol or H2/C02 in the presence 

or absence of added sulfate, indicating that M. thermoautotrophicum strain AH had been 

diluted from the culture. Instead, methanol (28 mM) was used for sulfide formation (15 

mM) and acetate formation (3 mM), as shown in Figure 4.2. Thus, 75% and 15% of the 

methanol-COD (COD: chemical oxygen demand) was used for sulfate reduction and acetate 

formation, respectively, while 10% of the degraded methanol remained unrecovered. 

Morphotype 2 was still present in the culture, although in relatively low numbers, while the 

growth of a large number of vibrio's indicated growth of strain SR. These results show that 

indeed strain SR had replaced the methanogen as hydrogenotroph in the methanol-oxidizing 

culture, and the sulfate-reducing culture was designated MOSC (methanol-oxidizing 
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sulfate-reducing culture). Besides morphotype 2 and the vibrio-shape, a third morphology 

(morphotype 3) had appeared in the culture, viz. a thin rod clearly distinct from morphotype 

2. This species presumably was a contaminant in the culture. It later appeared that this 

contaminant probably was already present in our culture of strain SR even though this 

culture seemed to be microscopically pure. 

Growth of culture MOSC on methanol was not retarded when acetate and yeast extract 

were omitted (8 subsequent transfers). Clearly, strain SR used part of the acetate present in 

the inoculum or the acetate produced during growth of culture MOSC as carbon source. In 

roll-tubes with Bacto-agar and granulated agar that were inoculated with up to 1 x 105-fold 

diluted culture MOSC, disc-shaped colonies formed within one week. These colonies 

consisted of cells of Morphotype 3 that probably grew on agar constituents, as similar 

colonies were also observed in agar dilutions without methanol and acetate. In the dilution 

series with Bacto-agar medium two other colony types were observed after 2 weeks 

incubation in the 1 x lO'-fold dilution: colony type 1 was dark coloured while type 2 

appeared more brownish. It should be noted that the true colour was difficult to assess due 

to darkening of the agar at 62°C. The striking feature of these colonies was that type 1 was 

always overlapping with a type 2 colony. Microscopic examination of these overlapping 

colonies revealed that they consisted of vibrio-shaped cells (strain SR) and morphotype 2. 

As colonies consisting of cells of morphotype 3 were also present in high numbers in higher 

dilutions, it was not surprising that inoculation of overlapping colonies into liquid media 
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resulted in cultures that morphologically strongly resembled the original culture MOSC, 

with Morphotype 3 still present. Thus, a defined co-culture was not obtained. 

Attempts to grow culture MOSC on methanol in the absence of sulfate 

Several homoacetogens are known to produce hydrogen from methanol in the presence of 

hydrogenotrophs3>4'8. Therefore, it was tested if the methanol-oxidizing species in culture 

MOSC could be enriched as homoacetogens growing on methanol, which would facilitate 

its isolation. However, methanol was not degraded in culture MOSC in the absence of 

sulfate. Also in growing cultures of MOSC methanol degradation stopped as soon as sulfate 

(5 mM) was depleted. Under sulfate limitation, the hydrogen partial pressure in the 

headspace, which amounted to less than 50 Pa when sulfate was still present, accumulated 

to a final value of 1300 Pa. Culture MOSC also did not degrade methanol in the absence of 

sulfate at 55 and 70°C. 

Phylogenetic analysis of culture MOSC 

By assessment of the phylogenetic position of the microbial species in culture MOSC, it 

was aimed to gain more information on the type of species present in the culture. For this 

purpose, a partial phylogenetic characterization of the species in culture MOSC was 

conducted. First, 16S rDNA PCR products (fragments of approximately 400 bp) obtained 

from culture MOSC were separated by denaturing gradient gel electrophoresis (DGGE). 

The resulting three partial 16S rDNA-bands were purified by again subjecting these bands 

to DGGE (Figure 4.3), followed by sequencing the DNA. Comparing the partial 16S 

rDNA-sequence of the purified bands with known sequences revealed a strong (99%) 

homology of the DNA in the three bands with partial 16S rDNA-sequences of 

Coprothermobacter proteolyticus, Thermodesulfovibrio sp. TGE-P1 and Clostridium strain 

PB, respectively. 
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Figure 4.3. Purification of DGGE-bands from enrichment culture MOSC and their phylogenetic 
affiliation as based on BLAST comparisons of partial 16S rDNA-sequences. 

4.4 Discussion 

The formation of high levels of methane from methanol in the culture assembled from 

culture SRC-11 and M. thermoautotrophicum strain AH obviously strongly supports the 

occurrence of interspecies hydrogen transfer. Presumably, methanol is oxidized directly to 

hydrogen and not first to acetate and formate, as the latter substrates did not support 

methane formation in the assembled culture. Methanol oxidation to hydrogen and C02 has 

been reported for several co-cultures consisting of a homoacetogen and a hydrogenotrophic 

methanogen or sulfate reducer3'4'8. In all these cases, the methanol-oxidizing species grows 

homo-acetogenically on methanol in pure culture, while methanol is degraded to both 

H2/C02 and acetate in the presence of a hydrogenotroph. Also in our methanol-degrading 

methanogenic culture acetate was formed, but no acetogenic activity was detected in the 

culture when the methanogen was inhibited by BRES. Also when the methanogen was 

replaced by a hydrogenotrophic sulfate reducer strain SR, acetate was formed from 

methanol in the resulting culture MOSC, but again acetogenesis stopped when activity of 

the hydrogenotroph stopped due to sulfate depletion. From these results it appears that 

methanol oxidation coupled to hydrogen formation is coupled to the formation of acetate. 

The possibility that hydrogen consumption by M. thermoautotrophicum strain AH and 

strain SR is coupled to acetate formation can be ruled out as these species do not form 

acetate during growth on H2/C02. The question arises whether the hydrogen forming 

species concomitantly produces some acetate, analogous to the previously described 

homoacetogens in co-culture with hydrogenotrophs, or that other species, depending on the 

methanol oxidizers for their growth, produce the acetate. As the methanol-oxidizing 

cultures were still undefined, this question remains to be solved. 
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The crude phylogenetic analysis of culture MOSC indicated that the culture consists of a 

Thermodesulfovibrio-Mke species, a species phylogenetically resembling the proteolytic 

Coprothermobacter proteolyticus
n, and a species closely related to the Clostridium strain 

PB7. Possibly, strain SR represents the species closely related to the undescribed 

Thermodesulfovibrio strain TGE-P1, because strain SR morphologically (vibrio-shape) and 

physiologically (growth on hydrogen and sulfate but not on methanol and sulfate) 

resembles other species of this genus. The physiological role of the species closely related 

to the Coprothermobacter proteolyticus in the culture is not clear. When it also represents a 

proteolytic species, it might not have any role in methanol oxidation or sulfate reduction in 

culture MOSC, but just grow on proteins released in the medium due to e.g. cell decay. 

Possibly, this species represents the contaminant growing on agar constituents that was 

found in culture MOSC. However, some physiological function, such as providing essential 

nutrients (e.g. vitamins) for the methanol oxidizer or sulfate reducer, can not be excluded. 

Thus, the molecular-biological analysis of culture MOSC suggests that it consists of three 

species, of which two are species closely related to the non-methanol degrading genera 

Thermodesulfovibrio and Coprothermobacter, respectively. When the MOSC culture 

indeed consists of 3 species, this would indicate that the remaining third species, closely 

related to Clostridium strain PB, represents the methanol-degrading bacterium. 

Interestingly, the thermophilic (optimum 58°C) Clostridium strain PB is able to grow 

homoacetogenically on methanol4, but it is not known if this species is able to oxidize 

methanol to H2 and C02 . However, this bacterium has been shown to oxidize acetate to H2 

and C0 2 in co-culture with a hydrogenotrophic methanogen. It therefore seems that besides 

a phylogenetic relationship, there is also some physiological resemblance between the 

presumable methanol-oxidizing species in culture MOSC and Clostridium strain PB. 

Because we did not obtain the methanol-oxidizing species in culture MOSC in pure culture, 

it is not possible to make a more detailed comparison with that strain. 

Unfortunately, the results obtained so far do not allow for a conclusive identification of the 

species present in culture MOSC and of their role in the culture. Further research is needed 

to elucidate these questions. 
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Chapter 5 

Optimization of sulfate reduction in a methanol-
fed thermophilic bioreactor 

5.1 Abstract 

Several methods were tested to optimize sulfate reduction and minimize methane formation 

in thermophilic (65°) Expanded Granular Sludge Bed (EGSB) reactors fed with a medium 

containing sulfate and methanol. Continuous addition of 2 g.L"1 2-bromoethanesulfonate 

(BRES) was ineffective as complete inhibition of methanogenesis was obtained for two 

days only. Lowering the pH from 7.5 to 6.75 resulted in a rapid irreversible decrease of 

methane formation, and a concomitant increase in sulfate reduction. Inhibition of 

methanogens by sulfide at pH 7.5 was only effective when the total sulfide concentration 

was above 1200 mgS.L"1. Methanol limiting conditions favoured sulfate reduction over 

methanogenesis. High methane production at pH 7.5 only occurred when the amount of 

sulfate was limited or when the sulfate-reducing capacity of the reactor was low. For 

practical applications, a relatively short exposure to a slightly acidic pH alone, or in 

combination with operating the reactor at an organic loading rate (OLR) close to the 

maximum volumetric sulfidogenic production rate, seems to be the most effective strategy 

for a rapid development of sulfidogenic biomass with nearly complete inhibition of 

methanogenic activity. 

A modified version of this chapter has been submitted to Wat.Res. 
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5.2 Introduction 

In Chapter 2 it was shown that methanol can be efficiently used as electron donor and 

carbon source for thermophilic (65°C) sulfate reduction. However, a strong competition 

between sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) may occur for a 

considerable period of time (up to 5 months) when unadapted sludge is used as inoculum 

for the anaerobic reactor. Formation of methane is undesirable as it adversely affects the 

process economics due to the inefficient use of methanol. 

One method to minimize methanogenesis is the use of agents that selectively inhibit growth 

of methanogens. A widely used inhibiting agent of methanogens is 2-bromoethanesulfonate 

(BRES), which functions as a competitive inhibitor of the methyl-CoM reductase complex 

(CoM), which is a key enzyme of methanogens5. Chloroform is another inhibitor of 

methanogens2, but this compound is less selective as it may also inhibit SRB7. 

Competition between SRB and MA can also be steered by making use of a differential 

response of their growth rates to changes in environmental conditions1. The tolerance of 

SRB and MA towards the toxic unionized (hydrogen) sulfide can, for example, be quite 

different3. Free hydrogen sulfide is considered the most toxic form of sulfide6 presumably 

because it can easily diffuse through the lipid cell membrane into the bacterial cytoplasm, 

where it can react with cell components. SRB and MA may also have a different pH-

optimum for growth on common substrates. As the speciation of the weak acid hydrogen 

sulfide into H2S, HS", and S2" is affected by the pH, the effect of a change in pH on the 

growth of SRB and MA may be the result of a change in the concentration of free hydrogen 

sulfide. In Chapter 2 it was found that at a temperature of 65°C and pH 7.5, SRB gradually 

outcompete MA for methanol in continuously operated anaerobic EGSB-reactors in which 

sulfide was produced up to a concentration of 1100 mgS.L"1, corresponding to a free 

hydrogen sulfide concentration of about 120 mgS.L"1. It was however not clarified if 

inhibition by hydrogen sulfide played a role in the competition between MA and SRB. 

The objective of the research described in this chapter is to find the proper conditions to 

selectively inhibit or minimize methane formation in thermophilic anaerobic reactors fed 

with methanol and sulfate, so that SRB do not have to compete with MA for methanol, or 

products from methanol catabolism like H2 and acetate. 
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5.3 Materials and methods 

Reactors. Two 4-L EGSB-reactors (I and II) were used for continuous experiments. A 

detailed description of the reactor and mineral medium composition of the influent were 

presented in Chapter 2. The upward liquid flow was 3 m.h"1 in all experiments. The EGSB-

reactors were kept at a temperature of 65°C. Automatic pH control was applied, adding 0.1 

N NaOH or 0.1 N HC1 when necessary. The pH was controlled at a value of 7.5, unless 

stated otherwise. 

A stock solution containing 5 M methanol (Labscan Ltd., Dublin, Ireland) was pumped into 

the influent with a Gilson Minipuls3 peristaltic pump at a flow rate necessary to obtain the 

desired influent concentration. Yeast extract (Life Technologies, Paisly, Scotland) was 

dissolved in the methanol stock solution to give a concentration of 20 mg.L"1 in the influent. 

In EGSB-I, experiments were carried out to assess the effect of BRES and pH variations on 

methane formation. EGSB-I was inoculated with 2.5 L elutriated sludge from a pilot plant 

for biological sulfate reduction of scrubber liquid from a flue-gas scrubber of a coal-fired 

power plant (Amercentrale, Geertruidenberg, The Netherlands). This sludge is further referred 

to as Amer sludge. Amer sludge was kindly provided by Paques Bio Systems (Balk, The 

Netherlands), and was developed at 55°C on a medium containing ethanol (accounting for 

about 95% of the chemical oxygen demand or COD), methanol (accounting for about 5% of 

the COD) and sulfate/sulfite. EGSB-I was started at an hydraulic retention time (HRT) of 

13 h, an organic loading rate (OLR) of 2.2 gCOD.L"1.day"1 and a sulfate loading rate (SLR) 

of 3.4 gS04
2".L"'.day"1. BRES (sodium salt of 2-bromoethanesulfonic acid, Acros Organics, 

New Jersey, USA) was added to the influent from day 9 to 18 at a concentration of 2 g.L"1. 

The pH in the reactor was lowered from 7.5 to 7.15 on day 45, and further reduced to 6.75 

on day 55. The pH was reset at 7.5 on day 83. 

EGSB-II was used for assessment of the effect of the sulfide concentration and the 

COD/sulfate ratio on methane and sulfide production. EGSB-II was inoculated with 500 

mL Amer sludge and 500 mL Amer sludge that had been pre-adapted to methanol and 

sulfate for several months at pH 7.5 and a temperature of 65°C. EGSB-II was operated at a 

HRT of 4 h. During the first week, the sulfate concentration in the influent amounted to 

0.50 g.L"1, while the methanol concentration in the influent was kept at a value of 1.6 

gCOD.L1, resulting in an OLR of 8 gCOD.L"1.day"1 and a SLR of 2.6 gS04
2".L"1.day"1. On 

day 8, the methanol concentration was increased to 2.8 gCOD.L"1 in order to prevent 

substrate limitation, giving an OLR of 15 gCOD.L"1.day"1 from that day onwards. From day 

21 to day 54, Na2S (Merck, Darmstadt, Germany) was added to the influent from a 
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concentrated stock solution. By adjusting the flow of the sulfide stock solution, the sulfide 

concentration in the reactor could be controlled. The sodium concentration in the reactor 

was kept at 125 ± 10 mM during Na2S-addition by adjusting the NaCl concentration of the 

influent. At day 62 the SLR was increased from 2.6 to 19.8 gSO^.L'.day"1, while the OLR 

was kept at 15.4 gCOD.l/'.day"1. At day 68 the OLR was decreased to 9.2 gCOD.L'.day"1, 

and further decreased to 6.6 gCOD.L'.day"1 at day 72. At day 78, the OLR was reset at 15.4 

gCOD.L'.day1. 

The inoculation material that was used in batch assays for determination of sulfide toxicity 

(see below), was obtained from an EGSB-reactor which had been inoculated with 220 mL 

elutriated Amer sludge and 200 mL Amer sludge that already had been adapted to methanol 

and sulfate for 3 months in an EGSB-reactor. Operating conditions for this reactor were the 

same as for EGSB-II except that an OLR of 8.5 gCOD.L'.day1 and a SLR of 13 

gS04
2".L"1.day"1 were applied. Sludge was taken from this reactor ut day 7 and day 31 for 

assessment of the effect of sulfide on the specific methanogenic and sulfidogenic activity, 

respectively. The volumetric sulfidogenic and methanogenic COD-conversion rates in the 

EGSB-on day 7 were 4.3 and 1.2 gCOD.L'.day'1, respectively, while at day 31, these 

values amounted to about 2.6 and 1.2 gCOD.L'.day', respectively. 

Activity assay. Batch assays were carried out in 117-mL vials for determination of the 

specific sulfidogenic and methanogenic activity at various sulfide concentrations. The vials 

contained 50-mL medium and a gas phase of 67 mL. The mineral medium used for activity 

assays had a similar composition as the reactor influent and was described in Chapter 2. 

Na2S04 was omitted from the medium when the specific methanogenic activity was 

measured or added to a concentration of 3.8 g.L"1 in case the specific sulfidogenic activity 

was determined. Methanol and yeast extract were added from concentrated stock solutions, 

to give initial concentrations of 1.0 gCOD.L"' and 20 mg.L"' respectively. Prior to 

inoculation, sodium sulfide was added from a concentrated stock solution that was 

neutralized with HC1. Total sulfide concentrations ranged from 30 to 2500 mgS.L" . 

Depending on the applied Na2S concentration, the NaCl-concentration in the medium was 

adjusted in order to keep the Na+ concentration at the same value in all bottles. The pH of 

the medium was adjusted, if necessary, to a value of 7.4-7.6 by addition of a few drops of 

HC1 or NaOH (0.1 N). Calculation of the specific methanogenic and sulfidogenic activities 

was done as described in Chapter 2. 

Analyses. A detailed description of the analytical procedures for determination of 

methanol, acetate, sulfide, sulfate, biogas composition and VSS were described in Chapter 

2. Bromide was analysed with the same method as sulfate. The H2S concentration was 
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calculated from the measured total sulfide concentration and pH using a pKa-value for H2S 

of6.6at65°C8. 

5.4 Results 

Effect of BRES addition 

One week after start-up of EGSB-I, the methane and sulfide production amounted to 1.7 

and 0.4 gCOD.L" .day" , respectively (Figure 5.1). Methanogenesis ceased completely 

within two days after starting addition of BRES (2 g.L"1) on day 9. Despite the continuous 

addition of BRES, already at day 11 some methane was formed again, and subsequently the 

methane production recovered to a maximum value of 0.9 gCOD.L/Vday"1 at day 15. 

Detection of bromide in the effluent from day 9 to 18 indicated breakdown of BRES. The 

sulfide and acetate production increased strongly by BRES addition to maximum values of 

2.6 and 1.3 gCOD.I/'.day"1, respectively, on day 13. The organic and sulfate loading rates 

were temporarily increased to 4.8 gCOD.I/'.day"1 (day 12-14) and 6.8 gSO^'.I/'.day"1 (day 

12-18), respectively, on day 12 to prevent methanol and sulfate limitation. The acetate 

production decreased from day 13 onwards, and on day 18 acetate could no longer be 

detected in the effluent, while the sulfide production had decreased to 1.4 gCOD.l/'.day1. 

Termination of BRES addition on day 18 had no immediate effect on methane, acetate and 

sulfide production, but from day 18 onwards the methane production increased gradually 

until a relatively constant level of about 1.1 gCOD.L/'.day"1 was reached at day 27. In a 

second experiment with the same seed sludge and using an identical experimental system, a 

pulse of chloroform was injected in the reactor to give a concentration of 10 pJVI. 

Surprisingly, chloroform selectively inhibited sulfate reduction in this experiment and 

therefore it seemed to be an ineffective agent for inhibition of methanogenesis (data not 

shown). 

Effect of pH 

The effect of lowering the pH from 7.5 to 7.15 on methane and sulfide production from 

methanol was studied in EGSB-I during day 45 to 54. The results in Figure 5.1 reveal that 

within one day after the pH drop, the methane production decreased by 25% as compared to 

methane production at pH 7.5 on day 44. Concomitantly, the free H2S-concentration 

increased from 24 to 58 mgS.L"1. The subsequent adjustment of the pH to 6.75 at day 55 

resulted in a further increase of the free H2S-concentration of 63 to 104 mgS.L"1. Within 2 
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days, an additional 38% decrease of the methane production was observed, and the overall 

inhibition of the methane production from day 45 to 57 amounted to 76%. In case the 

inhibition merely would be caused by the increased free H2S-concentration, a 50% 

inhibition value of 79 mgS.L"1 can be estimated from these data. Following the quick drop 

in the methane production from day 55 to 57, it further decreased slowly from 0.3 

gCOD.L"'.day"' at day 57 to 0.05 gCOD.L"1.day"1 at day 82. The methane production did 

not recover when the pH was reset to 7.5 from day 83 to 87. The sulfide production 

increased gradually during the period of lowered pH from 0.9 gCOD.l/'.day"1 at day 45 to 

about 2.0 gCOD.L/'.day"1 at day 81. By the increase of the pH at day 83 the sulfide 

production further increased to 2.4 gCOD.l/'.day"1 at the end of the experiment on day 87, 

corresponding to a sulfate elimination efficiency of 90%. 
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Figure 5.1. Volumetric sulfidogenic (•), methanogenic (o), and acetogenic (A) COD-
conversion rates in EGSB-I. EGSB-I was started at an HRT of 13 h, an OLR of 2.2 
gCOD.L'.day"1 and a SLR of 3.4 gS04

2".L"1.day"1. From day 12 to day 14 the OLR was 
increased to 4.8 gCOD.L'.day"1 and from day 12 to day 18 the SLR was increased to 6.8 
gSO/.L'.day"1. Arrows indicate start BRES 2 g.L"1 addition (day 9); termination BRES 
addition (day 18); pH reduced from 7.5 to 7.15 (day 45); pH reduced from 7.15 to 6.75 
(day 55); pH increased from 6.75 to 7.5 (day 83). 
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Effect of sulfide 

Batch experiments were conducted to elucidate the effect of sulfide on the specific 

methanogenic and sulfidogenic activity of the sludge. The specific methanogenic activity 

decreased linearly with the total sulfide concentration in the range of 200-1600 mgS.L*1 at 

pH 7.5 (Figure 5.2A). The results show that 50% inhibition occurs at a total sulfide 

concentration of 980 mgS.L"1. On the other hand, sulfide had a positive effect on the 

specific sulfidogenic activity, because an increase of approximately 40% was found in the 

sulfide concentration range 50-900 mgS.L"1 (Figure 5.2B). The effect of sulfide on the 

specific sulfidogenic activity in the range 900-2500 mgS.L"1 is less clear due to the 

observed large variation in the specific sulfidogenic activity. However, the results of the 

assays indicate that the methanogenic activity is selectively at total sulfide concentrations 

ranging from 200 to at least 900 mgS.L"1. 
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Figure 5.2. Effect of total sulfide concentration on specific sulfidogenic (A) and methanogenic 
(B) activity of anaerobic sludge with methanol as electron donor, as assessed in batch assays. 

Complementary to the batch experiments, the effect of sulfide on the methanogenic activity 

of the sludge was investigated in EGSB-II, which was fed with an influent containing 

methanol and sulfate. Sulfate (0.5 g.L"1 in the influent) was almost completely reduced in 

EGSB-II from day 3 onwards, accounting for a consumption of 0.34 gCOD.L"1. For the 

remainder of the methanol, no substrate competition occurred between methanogens and 

sulfate reducers. This enabled us to assess the effect of external sulfide addition on the 

methane production independently from substrate competition effects. Furthermore, 

imposing organic overloading conditions to the system ensured that sulfide inhibition did 
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not interfere with effects of methanol limitation. Sulfide addition was started at day 21 

when the methane production had been relatively stable for a week at 5 gCOD.L'Vday"1 

(Figure 5.3). Inhibition of the methane production was not observed in the period from day 

22 to 25, when sulfide addition led to a total sulfide concentration of 600-700 mgS.L"1. On 

the contrary, even a clear increase in the methane production occurred from 5.2 

gCOD.L'.day"1 at day 22 to 6.1 gCOD.L/'.day"1 at day 25. A subsequent elevation of the 

sulfide load, resulting in a total sulfide concentration of about 1250 mgS.L"1 between day 27 

and 29, led to a steady decrease of the methane production from 5.6 to 4.9 gCOD.L'.day"1. 

The methane production decreased further at approximately the same rate to a final value of 

4.0 gCOD.I/'.day"1 upon elevating the total sulfide concentration in the reactor to 1550-

1800 mgS.L"1 between day 31 and 34. In the subsequent period, the total sulfide 

concentration was decreased to 1250 mgS.L"1 on day 35 and to 900 mgS.L"1 at day 36, and 

from then onwards until day 52 the sulfide concentration was kept between 800 and 1000 

mgS.L"1. Under these conditions, the methane production initially (day 36 to day 41) 

remained relatively stable, but from day 41 onwards it steadily recovered until a value of 

6.3 gCOD.L'Vday"1 was reached at day 52. At day 54 the external addition of sulfide was 

stopped, leading to a drop of the sulfide concentration to the level resulting from sulfate 

reduction alone. As a result, from day 54 onwards the methane production increased further 

until a value of 8.4 gCOD.I/'.day"1 was reached at day 61. 
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Effect of COD/sulfate ratio 

As mentioned previously, EGSB-II was operated under sulfate-limiting conditions from day 

4 to 61 as indicated by the measured low sulfate concentrations of 0.05 g.L*1 in the effluent. 

At day 62 the sulfate concentration in the influent was increased from 0.5 to 3.8 g.L"1, and 

accordingly the COD/sulfate ratio dropped from 5.6 to 0.78 gCOD/gS04
2". As shown in 

Table 5.1, a sulfate concentration of 2.2 g.L"1 was present in the effluent from day 62 to 67, 

indicating that sulfate was no longer limiting. The elevated sulfate load had an 

instantaneous and profound effect on the sulfide and methane production (Figure 5.4). The 

average sulfide production increased from 2.2 gCOD.L"1.day"1 during day 59-61 to 6.4 

gCOD.L"1.day"1 during day 62-67, whereas the average methane production decreased from 

8.4 to 5.4 gCOD.L_1.day ' (Figure 5.4 and Table 5.1). 

Competition for reducing equivalents between sulfate-reducing bacteria and methanogens 

was even more profound by reducing the OLR at day 68 to 9.2 gCOD.L"1.day"1, resulting in 

a COD/sulfate ratio of 0.46. This decreased OLR had little effect on the sulfide pro'1-"'" 

By contrast, the methane production immediately dropped from 5.4 gCOD.L"1 

day 62-67 to 3.6 gCOD.L"1.day"1 during day 68 to 71. From day 68 onwar j 

production remained stable at an average value of 3.5 gCOD.L"1.day"1 (Figu* . day 

72 when the OLR was further reduced to 6.6 gCOD.L"1.day"1, resulting in a Cu .//sulfate 

ratio of 0.30. Following the second lowering of the OLR, also the sulfide production 

became affected; it decreased from 7.3 gCOD.L"1.day"1 on day 71 to 5.8 gCOD.L"1.day"1 on 

day 72, while the methane production decreased further from 3.4 gCOD.L"1.day"1 on day 71 

to 1.6 gCOD.L"1.day-1 on day 72. Methanol became limiting in the period from day 72 to 

day 77, as indicated by the low methanol concentration in the reactor of 0.03 gCOD.L" in 

this period (Table 5.1). 

The overall decrease of the methane production due to the two imposed drops in the OLR 

amounted to 70%. In order to assess whether this decrease was reversible, the OLR was 

increased to 15.4 gCOD.L"1.day"1 at day 78, restoring the methanol overloading conditions 

from this day onwards (Table 5.1). The methane production recovered only to 3.1 

gCOD.L"1.day"1, which is 40% less than the 5.4 gCOD.L"1.day"1 that was achieved between 

day 62 and day 67, when the same OLR was applied. On the other hand, the sulfide 

production fully recovered. Thus, by imposing methanol limiting conditions for 10 days to 

the sludge, a partial irreversible and selective decrease of the methane production was 

achieved. 

The acetate production remained relatively low compared to the sulfide and methane 

production throughout the operation of EGSB-II, as it amounted to a maximum of only 0.7 
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gCOD.L'.day1, and the acetate production became even less (0.2 gCOD.L'.day"1) in the 

period from day 72-77, when methanol-limiting conditions prevailed (Figure 5.4). 

Surprisingly, acetate production did not recover during day 78 to 88, when the methanol 

limitation was ended. 
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Figure 5.4. Effect of sulfide on volumetric sulfidogenic (•), 
methanogenic (o), and acetogenic (A) COD-conversions in EGSB-
II. EGSB-II was operated at a HRT of 4 h and was started at an 
OLR of 15.4 gCOD.L'.day"1 and a SLR of 2.6 gSO^.L'.day1. 
Arrows: (1) SLR increased to 19.8 gS04

2".L"'.day"1 at day 62; (2) 
OLR decreased to 9.2 gCOD.L'.day"1 at day 68; (3) OLR 
decreased to 6.6 gCOD.L"'.day"' at day 72; (4) OLR increased to 
15.4 gCOD.L-'.day1 at day 78. 
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Table 5.1. Performance of EGSB-II under sulfate limiting and methanol limiting conditions. 
MeOHeff, Sulfate^: methanol and sulfate concentration in effluent. VSC, VMC, VAC: 
volumetric sulfidogenic, methanogenic and acetogenic COD-conversion rates, respectively. 

OLR(gCOD.L'.day') 

SLRCgSCVM/'.day"1) 

COD/S04
2 (g/g) 

MeOHeff (gCOD.L1) 

S04
2-eff(g.L1) 

VSC (gCOD.gVSS'.day1) 

VMC (gCOD.gVSS'.day1) 

VAC (gCOD.gVSS'.day1) 

59-61 

15.4+0.1 

2.6±0.0 

5.9 

0.37 

0.05 

2.2±0.0 

8.4+0.1 

0.7 

62-67 

15.4+0.0 

19.8±0.0 

0.78 

0.40+0.01 

2.2±0.1 

6.4+0.7 

5.4±0.0 

0.6±0.0 

day 

68-71 

9.2±0.1 

19 .8±0.0 

0.46 

0.13+0.01 

a 

7.1±0.2 

3.5+0.2 

0.510.0 

72-77 

6.6±0.0 

19.6+0.0 

0.34 

0.03+0.01 

-

5.0±0.9 

1.6+0.8 

0.2+0.1 

78-88 

15.4±0.2 

16.4+0.6 

0.93 

0.47±0.16 

-

6.3+0.8 

3.1+0.5 

0.1±0.1 

a) -: not determined. 

5.5 Discussion 

The experiment carried out in EGSB-I clearly revealed that BRES is not a suitable 

compound for a durable inhibition of methanogenesis. Although temporarily methane 

production ceased completely, methane production already started to recover within 3 days 

after continuous addition of BRES was started. This possibly may be attributed to 

degradation of BRES, as indicated by the appearance of bromide in the effluent. The data 

do not allow an unambiguous explanation for the observed temporary increase in both the 

sulfide and acetate production after start of BRES addition because interactions between 

SRB, MA and AB on substrate level were not resolved. Moreover, BRES contains 

additional COD-value and the sulfonate moiety may have been reduced to sulfide. The 

results obtained with EGSB-I also revealed that chloroform inhibits SRB instead of MA. 

Recently, also Scholten7 found inhibition of SRB in a freshwater sediment by chloroform. 

Decreasing the pH from 7.5 to 7.15 and subsequently to 6.75 apparently is effective for a 

rapid and selective inhibition of methanogenesis. As a change in pH around neutral values 

strongly affects the free H2S concentration, this inhibition may be caused by the increased 

free H2S concentration, viz. from 24 to 104 mgS.L"1, rather than from the drop of the pH. 
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On the other hand, results from EGSB-II showed that methane production remained 

unaffected by a H2S concentration ranging from 90 to 110 mgS.L"1 at pH 7.5, despite the 

fact that this reactor had been seeded with a similar inoculum and had been operated under 

almost identical conditions. Based on this observation, the reduced methane production 

following the pH drop more likely is the result of inhibition by the low pH rather than of 

hydrogen sulfide inhibition. The sulfidogenic COD conversion rate doubled in the period of 

low pH, apparently benefiting from the reducing equivalents that no longer were consumed 
4 

by MA. Minami et al. found that sulfate reduction becomes stimulated between pH 6.2 and 

6.8, while in pH range 7.0 to 7.5 methanogenesis prevailed under thermophilic (53°C) 

conditions in a packed-bed reactor fed with methanol and sulfate. These contrasting results 

show that even relatively small changes in the experimental system may have a strong 

impact on the anaerobic degradation of methanol. Returning the pH to 7.5 did not result in a 

recovery of methane production within a period of 5 days. Such a period is short compared 

to the long solid retention times typical for high-rate anaerobic reactors, and it may be 

speculated that methanogenesis may recover on the long term. On the other hand, SRB 

almost completely outcompeted MA at pH 7.5 using identical reactors, seed sludge and 

operating conditions (Chapter 2). Consequently, it can be expected that methane production 

remains low once sulfate reduction predominates at pH 7.5. The pH drop of 7.5 to 6.75 for 

accomplishing a 76% inhibition of methane production requires only a low amount of acid. 

Therefore, temporarily imposing slightly acidic pH-values represents a practical and 

feasible method for selective and durable suppression of methanogenesis in a full-scale 

process. 

Under sulfate limiting conditions, a 35% decrease of the methane production was observed 

in EGSB-II over a 10-day period at a total sulfide concentration ranging from 1200 to as 

high as 1700 mgS.L" at pH 7.5. Subsequent lowering of the total sulfide concentration to 

values between 800-1000 mgS.L"1 resulted in a gradual and complete recovery of the 

methane production within 2 weeks. These results show that high (1200 to 1700 mgS.L"1) 

total sulfide concentrations must be maintained for several weeks in order to achieve a 

considerable decrease of methanogenic activity. In reactors seeded with sludge exerting a 

low specific sulfidogenic activity, such high sulfide concentrations can only be achieved by 

applying very long hydraulic retention times for prolonged periods, which is not very 

practical. It still remains unclear why methanogenesis increases in a continuous reactor at a 

total sulfide concentration ranging from 800 to 1000 mgS.L"1, while in batch reactors under 

similar environmental conditions a 40 to 50% inhibition of the specific methanogenic 

activity was observed in the same concentration range. It is rather unlikely that these large 

differences can be attributed exclusively to differences in hydraulic mixing conditions in 
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the batch and continuous reactor or to small differences in the applied environmental 

conditions. 

Keeping the OLR close to the maximum volumetric sulfidogenic conversion rate in the 

reactor minimizes methane formation at pH 7.5. Upon the transition from sulfate limiting to 

non-sulfate limiting conditions and subsequently imposing a lower OLR under non-sulfate 

limiting conditions, a 90% decrease of methane production was found in EGSB-II. It is 

relevant to note that the reactor remained overloaded with methanol during the transition 

from sulfate limiting to non-sulfate limiting conditions, as the methanol concentration in the 

effluent remained at 0.4 gCOD.L"1. Therefore, the decrease of the methane production 

following the transition cannot be attributed to kinetic limitations of methylotrophic MA. 

The sulfide production only decreased when the OLR was lower than the volumetric 

sulfidogenic COD-conversion rate under overloading conditions. This shows that SRB 

compete much better for available reducing equivalents than MA. Apparently, the major 

part of the reducing equivalents derived from methanol only becomes available for the MA 

when utilization of these electron equivalents by SRB is limited by the amount of sulfate or 

by the absence of a sufficient sulfate-reducing capacity of the reactor. 
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Chapter 6 

Thermophilic sulfate and sulfite reduction with 
methanol in a high-rate anaerobic reactor 

6.1 Abstract 

Besides sulfate, sulfite is an important constituent in the influent of anaerobic reactors for 

biological flue-gas desulfurization. Reduction of sulfite and sulfate with methanol as the 

sole carbon and energy source for the sulfate-reducing bacteria was studied in thermophilic 

(65°C) high-rate anaerobic reactors operated at pH 7.5. At a hydraulic retention time (HRT) 

of 4 hr, sulfite and sulfate elimination rates of up to 18 gSOs^.L'.day"1 (100% elimination) 

and 14 gSO^'.L/'.day'1 (80% elimination), respectively, were achieved. Sulfite and sulfate 

reduction accounted for 85-90% of the electrons released during degradation of methanol. 

In addition, 10-13% and 1-2% of the consumed methanol was converted to acetate and 

methane, respectively. Acetate was not utilized as electron donor for sulfate reduction. 

Acetate production seemed to be linearly correlated to the amount of sulfite and sulfate 

reduced. Sulfite disproportionating activity of the sludge was demonstrated by the 

simultaneous appearance of sulfide and sulfate in batch tests with sulfite. However, sulfite 

disproportionation rates were 4 times lower than sulfate reduction rates with methanol. The 

results clearly demonstrate that methanol can be efficiently used as electron and carbon 

source to obtain high sulfite and sulfate elimination rates in thermophilic bioreactors. 

A modified version of this chapter has been published in Wat.Sci. Technol. (2000) 42 (5-6). 
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6.2 Introduction 

In Chapter 2 the use of methanol for thermophilic sulfate reduction was investigated. With 

this electron donor, a low production of methane and acetate was obtained. Besides sulfate, 

sulfite is an important constituent in the influent of anaerobic reactors for biological flue 

gas desulfurization (Bio-FGD). Introduction of sulfite into sulfate-reducing bioreactors may 

affect its performances in several ways. Firstly, using sulfite instead of sulfate may lead to 

higher growth yields of the SRB and higher conversion rates in bioreactors, because 

reduction of sulfite to sulfide with methanol has a higher Gibbs free energy change than 

sulfate reduction with methanol6: 

CH3OH + HSO3" => HCCV + HS" + H20 + H+ AG°'=-108.8kJ/mol CH3OH 

4 CH3OH + 3 S04
2" => 4 HCO3" + 3 HS" + 4 H20 + H+ AG°'=-91.1 kJ/mol CH3OH 

Secondly, sulfite is inhibitory for microorganisms and is for that reason used as bactericidal 

in for example wines1. In pure cultures of SRB, sulfite toxicity at concentrations as low as 

0.5 mM (40 mg.L"1) has been observed7. 

Besides reduction of sulfite, many SRB are capable of disproportionation of sulfite4: 

4 S03
2"+ H+ => 3 S04

2"+ HS" AG°' = -58.9 kJ/mol S03
2" 

In the experiments described in this chapter, the potential of methanol for use as electron 

donor in thermophilic sulfate and sulfite reduction in anaerobic high-rate reactors was 

assessed. 

6.3 Materials and methods 

Reactors. Two 4-L EGSB-reactors (I and II) were used for continuous experiments. A 

detailed description of the reactor set-up and composition of the influent were presented in 

Chapter 2. Effluent recycling was applied to increase the liquid upward velocity. The pH in 

the reactor was normally maintained at 7.5±0.1 by automatic pH control, adding 0.1 N 

NaOH when necessary. When sulfite was added, pH was controlled with 0.1 N HC1. The 

reactors were kept at a temperature of 65°C. Sulfate was added as the sodium salt to a 

concentration of 2.0 or 4.0 gSO/.L"1, depending on the desired sulfate loading rate. Stock 

solutions, containing methanol (5 M) and Na2S03 (1M) were pumped into the influent with 

a Gilson Minipuls3 Peristaltic pump at a flow rate that was necessary to obtain the desired 
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influent concentrations. Yeast extract was dissolved in the methanol stock solution to give a 

concentration of 20 mg.L"1 in the influent. Prior to use, the sulfite stock solution was 

brought to a pH of about 7 with HC1. The sulfite stock was continuously flushed with 

nitrogen (nitrogen 3.0, Hoek Loos, The Netherlands) to prevent exposure to oxygen. 

Chemicals were of analytical grade and supplied by Merck (Darmstadt, Germany) except 

for yeast extract which was obtained from Life Technologies (Paisly, Scotland) and 

methanol which was obtained from Labscan Ltd. (Dublin, Ireland). Volumetric 

methanogenic and acetogenic conversion rates were calculated as described in Chapter 2. 

The actual use of electron equivalents for sulfite and sulfate reduction (i.e. the sulfidogenic 

COD-conversion rate) was calculated by subtracting the sulfite-COD entering the reactor 

from the sulfide-COD leaving the reactor via the effluent and the biogas. 

EGSB-I was inoculated with 1 L (approximately 60 g of VSS) of wet anaerobic sludge that 

originally had been cultivated on an ethanol/methanol (95/5%) mixture and sulfate/sulfite at 

55°C in a pilot plant for sulfate reduction of scrubber liquid from a flue-gas scrubber of a coal 

fired power plant in Geertruidenberg, The Netherlands. This sludge was precultivated on 

methanol and sulfate for 2 months in an EGSB-reactor prior to inoculation of EGSB-I. 

EGSB-I was started at an HRT of 11 hr, an organic loading rate (OLR) of 2.3 

gCOD.L'.day"1 and a sulfate loading rate of 4.1 gS04
2".L"1.day"1. At day 4, 350 mL sludge 

were withdrawn from the reactor. Until day 29 cobalt was omitted as a trace element. At 

day 21 the HRT was decreased to 4 hr, and the OLR and sulfate loading rate were increased 

to 7.4 gCOD.r'.day"1 and 11.3 gS04
2".L'1.day"1 respectively. At day 42 the OLR and sulfate 

loading rate were about doubled to 15 gCOD.L'.day"1 and 22.6 gS04
2".L"1.day"1. From day 

45 onwards, the lower 10 cm of the sludge bed was intermittently (5 seconds per 50 

seconds) stirred at 45 rpm with 3 two bladed turbines (dimension stirrer blades 1.5*2 cm). 

From day 49 onwards, the sulfate loading rate was decreased to 11.4 gSO/.L'.day"1 and 

sulfite was introduced into the reactor at a loading rate of 10 gS03
2".L"1.day"1, thereby 

keeping the sulfur loading rate at the same level. The operation of EGSB-I was terminated 

at day 54. 

EGSB-II was inoculated with the 350 mL of wet sludge that had been sampled from EGSB-

I at day 4, and that had been stored at 4°C for 2 months. EGSB-II was started at a HRT of 4 

hr, an OLR of 14 gCOD.L'.day"1 and a sulfate loading rate of 23 gS04
2".L"'.day. From the 

start, the lower part of the sludge bed was intermittently stirred as described for EGSB-I. 

Activity assays. Batch assays were carried out in 120-mL vials for determination of 

disproportionating activity and thiosulfate-reducing activity of the sludge. Sludge 
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concentrations in the assays were 2.5-3.5 gVSS.L"1. Assays were performed as described in 

Chapter 2. 

Analyses. A detailed description of the analytical procedures for determination of 

methanol, acetate, sulfide, sulfate, biogas composition and VSS was presented in Chapter 2. 

Sulfite and thiosulfate were analysed with the same method as sulfate. Samples collected 

from EGSB-II after day 27 were analysed for sulfate and thiosulfate with an HPLC 

equipped with a VYDAC Ion Chromatography column (cat#302 IC, 250 x 4.6 mm). The 

temperature of the column and detector (Waters 431 conductivity detector) were 20 and 

35°C, respectively. As eluent 0.018 M potassium biphthalate, at a flow rate of 1.2 mL.min'1, 

was used. Samples were fixed by 2- to 4-fold dilution with a 0.1 M zinc acetate solution, 

centrifuged (3 min 10000 g) and diluted with demineralized water to a concentration below 

500 mg.L"1. The sulfite concentration in the samples collected from EGSB-II after day 27 

was determined semi-quantitatively using test strips (Merckoquant cat. nr. 1.100-13). 

6.4 Results 

Continuous experiments 

EGSB-I was started to determine the sulfite-reducing and sulfite-disproportionating 

potential of anaerobic biomass cultivated on sulfate and methanol. The course of 

sulfidogenic, methanogenic and acetogenic COD-conversion rates in this reactor is shown 

in Figure 6.1. Sulfate reduction started immediately, but methane and acetate production 

generally remained low (< 0.5 gCOD.I/'.day"1) throughout the experiment. Following the 

decrease of the HRT from 11 to 4 hr on day 21, the sulfide production increased gradually 

to 7-8 gCOD.I/'.day"' and remained at this level until day 41, which is in the same range as 

the organic loading rate (OLR) applied in this period. Increasing the OLR and sulfate 

loading rate (SLR) at day 42 resulted in a further increase of the sulfide production. 

Removal of 150 mL wet sludge from the reactor on day 44 resulted in an immediate drop in 

the sulfide production, but it recovered within a few days. Unstable pH-control during day 

46-48 also caused a temporary drop in the sulfide production. The sulfate concentration in 

the influent was reduced to 2 g.L"! on day 49, while sulfite was introduced at a 

concentration of 1.75 g.L"1. Sulfite was not detected in the effluent during day 49-54, 

indicating the presence of an active sulfate-reducing population in the sludge. At day 50, 

sludge was sampled from the reactor for assessment of the sulfite disproportionating 

activity (see below). 
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Figure 6.1. Volumetric COD-conversion rates of sulfide 

acetate (A) and imposed OLR (—) in EGSB-I. 
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Investigations were continued in EGSB-II for assessment of the maximum sulfate and 

sulfate-reducing capacity of the process. During the first 18 days only sulfate was added to 

the reactor medium (Figure 6.2A). The sulfidogenic COD-conversion rate increased 

gradually after start-up until it attained a stable level of 8-10 gCOD.L'.day"1 between day 

11 and 17 (Figure 6.2B). From day 18 onwards, sulfate in the influent was stepwise 

replaced with sulfite (on molar basis) until the ratio of the sulfite and sulfate loading rates 

amounted to about two at day 21. Introduction of sulfite did not strongly affect the 

sulfidogenic COD-conversion rate (Figure 6.2B). The sulfide concentration in the effluent 

even increased after sulfite addition (Figure 6.2C), as reduction of sulfite requires less 

electron donor compared to sulfate reduction. From day 35 onwards, the sulfate and sulfite 

loading rates were gradually increased (Figure 6.3A), keeping the ratio of sulfite loading 

rate to sulfate loading rate between 0.9 and 1.2, except during day 40 to 43 when it ranged 

from 1.4 to 1.8. Sulfite was completely eliminated during the entire experiment, as it was 

never detected in the effluent. From the data presented in Figure 6.2A it can be calculated 

that from day 45 to 49, high sulfite and sulfate elimination rates of 18 gS03
2".L"1.day"1 

(100% elimination) and 14 gS04
2".L",.day"1 (80% elimination), respectively, were achieved. 

Effluent sulfide concentrations amounted to values as high as 2000 mg.L"1 (Figure 6.2C). 

Increasing the sulfite and sulfate loading rates to final values of gS03
2".L"1.day"1 and 26 

gS04
2".L"1.day"', respectively on day 52 did not further enhance sulfide production. 

Following a relatively long period of stable reactor operation, heavy sludge wash out 

occurred after day 59, causing a severe drop in the sulfide production from that day 

onwards. At the end of the experiment on day 64, the sulfide production only amounted to 

half of the maximum observed value. 
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Figure 6.2. Performance EGSB-II. 

A. Sulfate loading ( ) and elimination ( • ) rate, sulfite loading (—) and elimination 
(+) rate. Note that sulfite loading rate equals sulfite elimination rate during entire 
experiment. 

B. sulfidogenic ( • ) , methanogenic (O), acetogenic (A) COD-conversion rates and 

imposed OLR (—). 

C. Effluent concentrations: sulfide ( • ) , methanol (O), and acetate (A). 
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Disproportionation 

To investigate if sulfite disproportionation accounts for part of sulfite removal, batch tests 

were performed with fresh sludge taken from EGSB-I at day 50. Results are shown in Table 

6.1. 

Table 6.1. Disproportionation of sulfite by fresh sludge sampled from EGSB-I on day 10. SSA: specific 
sulfidogenic activity. 
Assay A: disproportionation of sulfite in the presence of sludge; 
Assay B: chemical formation of thiosulfate from sulfide and sulfite without sludge; 
Assay C: control assay for determining sulfidogenic activity of sludge on acetate and sulfate; 
Assay D: sulfidogenic activity of sludge on methanol and sulfate. 
Changes in the concentration of S03

2", TS, S04
2" and S203

2" that lie within the range of the standard 
deviation of the measurement (0.3 mM) are considered 0. Duplicate assays gave a similar result. 

Initial concentrations (mM) Formation after 7 hr (mM) 

Assay S03
2 TSa S04

2 MeOHb Acc S03
2 TS S04

2 S203
2 

A 

B 

C 

D 

3.5 

3.9 

0 

0 

0.9 

2.0 

1.8 

1 

1.6 

1.0 

20 

20 

0 

0 

0 

20 

2 

2 

4 

0 

-3.4 

-3.1 

0 

0 

2.2 

-1.0 

0.8 

7.7 

2.4 

0 

0 

-6.9 

0 

2.6 

0 

0 

a) TS: total sulfide; b) MeOH: methanol; c) Ac: acetate. 

It was confirmed that acetate did not serve as electron donor for sulfate reduction as acetate 

was not degraded in the presence of sludge and sulfate (data not shown). The simultaneous 

disappearance of sulfite and appearance of both sulfate and sulfide in assay A indicates the 

occurrence of sulfite disproportionation. The ratio of AS03
2":ATS:AS04

2" was around 

4:2.6:2.8. Theoretically, 1 mol of sulfide and 3 mol of sulfate will be formed by 

disproportionation of 4 mol sulfite. The observed ratio AS03
2" to AS04 " is rather close to 

the theoretical value, whereas the AS03
2" to ATS" ratio is significantly lower than expected. 

This can be explained by additional sulfide formation from sulfur sources in the sludge (e.g. 

elemental sulfur), or by sulfate/sulfite reduction with electron donors originating from the 

sludge. Without sludge (assay B), the measured ratio AS03
2":ATS:AS203

2" of 4:1.3:3.3 

seems to indicate the following chemical reaction: 

4 HS03" + 2 HS" => 3 S203
2" + 3 H20 

This chemical reaction was described by Kramer and Cypionka4. Thus, it is possible that in 

the presence of sludge (assay A), 4 mol sulfite react with 2 mol sulfide to give 3 mol 

thiosulfate, and that subsequent biological disproportionation of 3 mol thiosulfate yields 3 
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mol sulfide and 3 mol sulfate. The overall stoichiometry of these reactions is the same as 

the stoichiometry of sulfite disproportionation. In any case, the direct or indirect (via 

thiosulfate) disproportionation of sulfite resulted in a specific sulfidogenic activity of the 

sludge of 0.13 gCOD.gVSS'.day"1, which is considerably lower than the measured specific 

sulfidogenic activity of 0.68 gCOD.gVSS'.day"1 on methanol and sulfate (assay D). 

Acetate formation 

Throughout the experiment in EGSB-II, acetate could be detected in the effluent at a 

concentration of up to 0.65 gCOD.L"1 (Figure 6.2C). The acetogenic COD-conversion 

seemed to be correlated to the sulfidogenic COD-conversion (Figure 6.3). Acetate was not 

consumed in activity assays with sulfate and fresh sludge taken from EGSB-II at day 59. 

The coupling of acetate and sulfide production could not be studied on smaller scale in 

serum bottles, as the highest dilutions of a sludge dilution series showing sulfate reduction 

with methanol did not produce acetate, but even consumed acetate (results not shown). 
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Thiosulfate reduction 

Thiosulfate was sometimes detected in the effluent of EGSB-II, up to a concentration of 7 

mmolS.L'1. Most likely, thiosulfate was formed from the chemical reaction of sulfite with 

sulfide (see above). In order to assess the thiosulfate-reducing activity, sludge was taken 

from EGSB-II at day 10 and incubated with thiosulfate (15 mM) and methanol (25 mM). 

Thiosulfate was indeed reduced to sulfide, with a specific sulfidogenic activity of 0.47 

gCOD.gVSS'.L"1, while the sulfidogenic activity on methanol and sulfate amounted to 0.26 

gCOD.gVSS"1!"1. 

6.5 Discussion 

Thermophilic sulfate and sulfite reduction with methanol offers good potential for 

biotechnological flue-gas desulfurization. High sulfite and sulfate elimination rates of 18 

gSC^M/'.day"1 (100% elimination) and 14 gSO^'.U'.day"1 (80% elimination), 

respectively, were achieved. These elimination rates are twice as high as the elimination 

rates obtained in thermophilic gas-lift reactors with hydrogen as electron donor3. Moreover, 

a high efficiency of methanol utilization for sulfite and sulfate reduction was observed in 

the reactor as only 10-13% and 1-2% of the consumed methanol is converted to acetate and 

methane, respectively, while the remainder is used for sulfate reduction. The acetogenic 

COD-conversion seemed to be correlated to the sulfidogenic COD-conversion. It is known 

that some sulfate reducers produce acetate5. Another possible explanation for the observed 

coupling of acetate and sulfide formation is that methanol is mainly oxidized to H2/CO2 by 

homoacetogens while a minor fraction is converted to acetate, coupled to sulfate/sulfite 

reduction with hydrogen2. 

The results furthermore show that disproportionation is of minor importance for conversion 

of sulfite. Most, if not all, of the sulfite is reduced with methanol as electron donor. 
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Chapter 7 

Performance of a thermophilic sulfate and sulfite 
reducing high-rate anaerobic reactor fed with 

methanol 

7.1 Abstract 

Thermophilic sulfate and sulfite reduction was studied in lab-scale Expanded Granular 

Sludge Bed (EGSB) reactors operated at 65°C and pH 7.5 with methanol as the sole carbon 

and energy source for the sulfate and sulfitereducing bacteria. At a hydraulic retention time 

(HRT) of 10 h, maximum sulfite and sulfate elimination rates of 5.5 gS03
2".L"1.day"1 (100% 

elimination) and 5.7 gS04
2".L"1.day"1 (55% elimination) were achieved, resulting in an 

effluent sulfide concentration of approximately 1800 mgS.L"1. Sulfate elimination was 

limited by the sulfide concentration, as stripping of H2S from the reactor with nitrogen gas 

was found to increase the sulfate elimination rate to 9.9 gS04
2".L"1.day"1 (100% 

elimination). At a HRT of 3 h, maximum achievable sulfite and sulfate elimination rates 

were even 18 gSOj^.L'Vday"1 (100% elimination) and 11 gSO^'.l/'.day"1 (50% 

elimination). At a HRT of 3 h, the elimination rate was limited by the biomass retention of 

the system. 5.5±1.8% of the consumed methanol was converted to acetate, which was not 

further degraded by sulfate-reducing bacteria present in the sludge. The acetotrophic 

activity of the sludge could not be stimulated by cultivating the sludge for 30 days under 

methanol-limiting conditions. Omitting cobalt as trace element from the influent resulted in 

a lower acetate production rate, but it also led to a lower sulfate reduction rate. Sulfate 

degradation in the reactor could be described by zero"1 order kinetics down to a threshold 

concentration of 0.05 g.L"1, while methanol degradation followed Michaelis-Menten 

kinetics with a Km of 0.037 gCOD.L"1. 

A modified version of this Chapter has been submitted to Biodegradation. 
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7.2 Introduction 

In Chapter 6 high sulfate and sulfite elimination rates of 14 gS04
2".L"1.day"1 and 18 

gS03
2".L"1.day"1 with methanol as electron donor were found in thermophilic anaerobic 

high-rate reactors at a hydraulic retention time (HRT) of 4 h. Methane production was low 

(<2% of methanol consumed), while 10-13% of the consumed methanol was converted to 

acetate. The formation of acetate is highly undesirable as it negatively affects the efficiency 

of methanol utilization for sulfate and sulfite reduction. A more serious problem is that the 

presence of acetate in the effluent of the anaerobic reactor of the biological desulfurization 

process will deteriorate the performance of the sulfide oxidizing reactor, due to growth of 

heterotrophic sulfur and sulfate-reducing bacteria5. In this chapter, investigations are aimed 

at assessing the maximum attainable sulfate and sulfite elimination rate at HRTs of 10 and 

3-4 h and with the minimization of acetate formation as well. 

7.3 Materials and Methods 

Reactors. Three EGSB-reactors (IA, IB, and II) were used for continuous experiments. A 

detailed description of the experimental set-up including the reactor and medium 

composition, was presented in Chapter 2. The reactor was equipped with a screen (circle 

openings 1 mm) placed below the gas-solids separator device. In all EGSB-reactors, 

effluent recycling was applied to increase the liquid upflow velocity to 3 m.h" . The pH in 

the reactor was maintained at 7.5±0.1 by automatic pH control, adding 0.1 N NaOH when 

necessary. The temperature in the reactors was controlled at 65°C. 

The basal medium composition was described in Chapter 2. Cobalt was omitted from the 

medium of EGSB-IA during day 0 to 12. Stock solutions containing methanol (5 M) and 

Na2S03 (1 M) were pumped into the influent using a Gilson Minipuls3 Peristaltic Pump 

(Gilson, Villiers-le-Bel, France) at a flow rate needed to obtain the desired influent 

concentration. Yeast extract was dissolved in the methanol stock solution to give a 

concentration of 20 mg.L"1 in the influent. All chemicals were analytical grade from Merck 

(Darmstadt, Germany) except for yeast extract that was obtained from Life Technologies 

(Paisly, UK), and methanol that was obtained from Labscan Ltd. (Dublin, Ireland). 

The reactors EGSB-IA, IB and II were inoculated with 300, 300 and 430 mL, respectively, 

of a flocculent sludge that was precultivated for 3 months on a methanol/sulfate mixture at 

65°C. The operational parameters (sulfate, sulfite and organic loading rates and the HRT) 
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were varied over the course of the experiment. These parameters were kept the same in 

EGSB-IA and IB during the first 12 days of operation of the reactors. From day 30 to 34, 

15-18 mL.min"1 nitrogen gas (nitrogen 3.0, Hoek Loos, The Netherlands) was bubbled into 

EGSB-IA, using a gas inlet positioned at 1-2 cm above the dynamic sludge bed. From day 

70 onwards, the lower 10 cm of the sludge bed of EGSB-IA was intermittently (5 seconds 

per 50 seconds) stirred at 45 rpm with 3 two bladed turbines (dimension stirrer blade 1.5*2 

cm) to prevent coagulation of the sludge bed that manifested around day 70. The 

operational conditions for reactor EGSB-II were: HRT: 12 h; sulfate loading rate: 7.6 

gS04
2".L"1.day"1; OLR: 5.2 gCOD.L'1.day1. On day 13, the recycling flow was terminated 

for 1.5 h and a medium containing 2.4 gCOD.L"1 methanol and 1.92 gSO^'.L"1 (ratio 

COD:sulfate = 1.25) was pumped into the reactor at an HRT of 10 min. During the 

following 12 h, operation of EGSB-II was continued in batch mode. At different time 

intervals, samples were taken for the determination of the total sulfide, methanol, acetate 

and sulfate concentration. The decrease in medium volume in the reactor due to sampling 

was less than 1% during batch operation. Subsequently, continuous operation was resumed, 

applying the same organic and sulfate loading rate as before the batch operation. At day 14 

once again a batch experiment was performed in EGSB-II, but now at initial methanol and 

sulfate concentrations of 1.2 gCOD.L"1 and 3.84 gSO/'.L"1, respectively (ratio COD:sulfate 

= 0.30). 

Volumetric methanogenic and acetogenic conversion rates in the reactors were calculated as 

described in Chapter 6. The sulfidogenic COD-conversion rate was defined as the actual 

use of reducing equivalents for sulfite and sulfate reduction per unit of time per volume of 

reactor. Thus, the sulfidogenic COD-conversion rate was calculated by subtracting the 

amount of sulfite-COD converted in the reactor per unit of time per volume of reactor from 

the sulfide-COD leaving the reactor via the effluent and the biogas per unit of time per 

volume of reactor. 

Activity assays. The specific sulfidogenic and methanogenic activity of sludge were 

assayed in 120-mL vials as described in Chapter 2. 

Analyses. A detailed description of the analytical procedures for determination of 

methanol, acetate, sulfide, biogas composition, VSS and TSS have been described in 

Chapter 2. Sulfate and thiosulfate were analysed using a HPLC (Spectra Physics) equipped 

with a VYDAC Ion Chromatography column (nr. 302 IC, 250*4.6 mm). The temperature of 

the column and detector (Waters 431 conductivity detector) were 20°C and 35°C, 

respectively. As eluent 18 mM potassium biphthalate, at a flow rate of 1.2 mL.min"1, was 

used. Samples were fixed by 2- to 4-fold dilution with a 0.1 M zinc acetate solution, 
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centrifuged (3 min, 10000 g) and diluted with demineralized water to a concentration below 

500 mg.L"1. Sulfite was determined semi-quantitatively using test strips (Merckoquant cat. 

nr. 1.100-13). 

The sludge volume index (SVI) of sludge was determined according to Standard Methods1. 

The polysaccharide content of sludge was determined with the phenol-sulfuric acid method. 

2 mL of sludge was vigorously mixed with 2 mL phenol solution (5 vol% in demineralized 

water), followed by addition of 10 mL of 18 M sulfuric acid. Then, the mixture was heated 

to 105°C for 10 min. After cooling, the extinction of the sample was measured at 480 nm. 

Calibration curves were made with glucose. 

Methanol degradation kinetics. Methanol depletion data from the batch experiment in 

EGSB-II were fitted to an integrated solution of the Michaelis-Menten equation 

Vmax*t=So-S+Km*ln(So/S) using nonlinear regression analysis11, where Vmax: maximum 

consumption rate; t: time; S0: initial substrate concentration; S:substrate concentration; Km: 

half-saturation constant. 

7.4 Results 

Maximum sulfate and sulfite elimination rate at HRTs of 10 and 3-4 h 

Reactor EGSB-IA was started to determine the maximum attainable sulfate and sulfite 

elimination rates at HRTs of 10 and 3-4 h. Results are presented in Figure 7.1A-D. In the 

start-up period, from day 0 to day 12, the organic, sulfate and sulfite loading rates were 

stepwise increased to 14 gCOD.L"1.day"1, 10 gS04
2'.L"1.day"1 and 5.5 gS03

2".L"1.day"1, 

respectively (Figure 7.1 A and 7.IB). Methane production increased rapidly from the start, 

but following day 2 it decreased until, from day 15 onwards, only 0-3% of the consumed 

methanol was used for methanogenesis (Figure 7.IB). Acetate formation accounted for 5.5 

± 1.8% of methanol conversion during the entire experiment. Activity assays conducted at 

day 75 revealed that the sludge cultivated in EGSB-IA did not develop any acetotrophic 

sulfidogenic activity with sulfate (data not shown). Throughout the entire experiment, 

sulfide was the main product in the reactor, accounting for about 90% of the degraded 

methanol (Figure 7.IB). 
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Figure 7.1. Performance EGSB-IA. Arrows indicate start (day 30) and termination (day 34) 
of H2S-stripping with N2. 
A. Sulfate (—) and sulfite (—) loading rate, sulfate ( • ) and sulfite (+) elimination rate. On 
day 54 and 55, the sulfate loading rate was increased to 42 gSO/'.I/'.day"' (not shown). 

B. Organic Loading Rate (—), Volumetric sulfidogenic ( • ) , methanogenic (O) and 
acetogenic (A) COD-conversion rate 

C. Sulfide (• ) , methanol (O) and acetate (A) effluent concentration. 
D. Sludge concentration (•) , static (O) and dynamic (O) biobed height 
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During the period from day 20 to day 30, the sulfidogenic COD-conversion rate remained 

stable at 7.0 ± 0.6 gCOD.L"1.day"1 (Figure 7.1B), at a total sulfide concentration of 1770 ± 

140 mgS.L"1 (Figure 71C). The imposed temporary decrease of the OLR to 6.9 

gCOD.L"1.day"1 during day 21 and 22 resulted in a drop in the methanol concentration in the 

reactor from 3.2 to 0.67 gCOD.L"1 (Figure 7.1C), but this did not strongly affect the 

calculated methanogenic, sulfidogenic and acetogenic COD-conversion rates. From day 20 

to day 30, the calculated sulfite degradation rate amounted to 5.5-5.9 gS03
2".L"1.day"1 

(Figure 7.1 A) (100% elimination), whereas sulfate was reduced at a rate of 4.4-7.0 gS04
2" 

.L^.day"1 (45-70% elimination). H2S was stripped from the bioreactor with nitrogen gas 

during day 30 to day 34. H2S-stripping was effective, as the sulfide production steadily 

increased from 7.1 gCOD.L"1.day"1 on day 30 to 10 gCOD.L"1.day"1 on day 34 (Figure 

7.1B), corresponding to 100% elimination of both sulfate and sulfite (Figure 7.1A). 

Termination of H2S-stripping on day 34 did not immediately affect the sulfidogenic COD-

conversion rate, which led to an increase of the sulfide concentration in the reactor from 

1660 mgS.L"1 on day 34 to 2470 mgS.L"1 on day 35. However, the sulfide concentration 

gradually declined to 2150 mgS.L"1 on day 41 and, accordingly, the sulfidogenic COD-

conversion rate gradually decreased to 8.5 gCOD.L"1.day"1. In order to assess methanol 

toxicity, the OLR was temporarily increased to 21 gCOD.L"1.day"1 during the period day 38 

to 40, resulting in elevated methanol levels of 4.8 gCOD.L"1 (100 mM) in the reactor. This 

clearly did not affect the sulfidogenic COD-conversion rate (Figure 7.IB). 

The HRT was decreased to 3 h on day 42, corresponding to an increase of the OLR to 24 

gCOD.L"1.day"1 and of the sulfate and sulfite loading rates to 18.7 gS04
2".L"1.day"1 and 15.5 

gS032".L"1.day"1. From the results shown in Figure 7.IB it appears that, within a few hours, 

the sulfidogenic activity of the biomass became severely inhibited, presumably due to 

toxicity of sulfite, which was detected in the effluent at a concentration above 400 mg.L"1. 

As the sulfidogenic activity did not recover within two days, we decided to increase the 

HRT to 11 h, corresponding to a drop in the organic, sulfate and sulfite loading rates to 7 

gCOD.L"1.day"1, 5.5 gSO^.L^.day"1 and 4.7 gSOa .̂L-Vday"1 at day 44. The sulfide 

production recovered within 2 days, but subsequent stepwise decreases of the HRT to 3 h 

with concomitant increases of the loading rates to final values of 26 gCOD.L"1.day"1, 22 

gS04
2".L"1.day"1 and 17 gS03

2".L"1.day"1 on day 49 once again resulted in a nearly complete 

inhibition of the sulfide production. However, after switching to an influent containing 

merely methanol and sulfate on day 50, the sulfide production recovered completely within 

one day, clearly showing that the inhibition was due to the presence of sulfite. During day 

51-53, the sulfite loading rate was increased in small steps from 0 to 13.4 gS032".L"1.day"1 

without occurrence of inhibition. However, within hours following a moderate increase in 
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the sulfite loading rate at day 54, the sulfite concentration in the reactor increased to 40-80 

mg.L"1, and concomitantly, the sulfidogenic COD-conversion rate dropped dramatically 

(not shown). After ceasing the sulfite addition, the activity recovered almost immediately. 

The sulfidogenic COD-conversion rate with sulfate alone, as determined on day 54 and 55 

at a sulfate loading rate of 42 gSO^M/'.day'1, amounted to 15 gCOD.I/'.day"1. Based on 

this value, a maximum sulfite elimination rate of 25 gSC^M/Vday"1 should be possible to 

achieve theoretically. In order to establish the sulfate-reducing potential of the system, the 

sulfate loading rate was decreased to 21 gS04
2*.L"1.day"1 on day 56, while the sulfite loading 

rate was stepwise increased from 0 to 18 gS03
2".L"'.day"1 during days 56-59, well below the 

calculated maximum sulfite elimination rate. By following this procedure, sulfite inhibition 

could be prevented, viz. the sulfite was completely eliminated from day 56 onwards. 

Moreover, the results in Figure 7.1 A reveal that the increase in the sulfite elimination rate 

during days 56-59 completely balanced the drop in the sulfate elimination rate (Figure 

7.1 A), indicating that sulfite is the preferred electron acceptor for the SRB. The 

sulfidogenic COD-conversion rate from day 59 to 71 remained relatively constant at a value 

of 17.5 ± 1.7 gCOD.L'.day"1. Maximum sulfite and sulfate elimination rates of 18 gS03
2".L" 

'.day"1 (100% elimination) and 11 gS04
2".L"1.day"1 (50% elimination) were attained on day 

71. The increase of the HRT to 4 h on day 72, corresponding to a lower organic, sulfate and 

sulfite loading rates of 22 gCODI/'.day'1, 17 gSO^.L/'.day"1 and 13 gS03
2".L"1.day'1, 

improved the sulfate elimination efficiency from 50 to 70-80% from day 72 to 75, while 

sulfite elimination remained at 100%. 

The VSS concentration increased from 4 gVSS.L"1 on day 41 to about 10 gVSS.L"1 on day 

61 (Figure 7.ID). In order to prevent expansion of the sludge bed into the gas-solid 

separator, excess sludge was frequently removed from the reactor during the period from 

day 61 to day 75. As a result, the VSS concentration in the reactor remained in the range 9 

to 10 gVSS.L"1 from day 61 onwards. The calculated (from the data presented in Figure 

7.IB and 7. ID) specific sulfidogenic activity of the sludge during this period amounted to 

1.52 ± 0.19 gCOD.gVSS'.day"1. The maximum specific sulfidogenic activity of the sludge, 

as determined in activity assays on day 75, was very similar, with a value of 1.47 ± 0.15 

gCOD.gVSS'.day"1. 

Attempts to minimize acetate formation 

As the formation of acetate is highly unwanted, attempts were made to minimize this. For 

this purpose we studied the effect of cobalt on the anaerobic conversion of methanol in 

EGSB-IA, by omitting the supply of cobalt in the feed of this reactor, while the feed of 
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reactor EGSB-IB contained 0.07 mg.L"1 cobalt. Cobalt may stimulate unwanted methane 

and acetate formation from methanol, analogous to the effect of cobalt on methanol 

degradation under mesophilic conditions3. A high methane production was found in EGSB-

IA and IB merely during the first days (Figure 7.2A), but in both reactors these rapidly 

declined to a value of less than 1 gCOD.I/'.day"1 on day 12. Apparently, cobalt does not 

strongly affect methane production. However, in contrast, cobalt strongly affects the 

formation of sulfide and acetate because omission of the cobalt supply led to a substantial 

lower production of these compounds after day 8 (Figure 7.2B and 7.2C). From day 12 

onwards, cobalt was also added to the feed of EGSB-IA, and as can be seen from the results 

shown in Figure 7.1B, the sulfidogenic conversion rate in EGSB-IA indeed increased 

within the next 11 days to about the level found in EGSB-IB on day 12. 
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It was also attempted to stimulate acetotrophic sulfidogenic activity of the sludge by 

imposing methanol-limiting conditions to the sludge, keeping sulfate in excess. For this 

purpose, reactor EGSB-II was operated for 35 days under methanol-limiting conditions. 

The methanol concentration in the 

effluent of EGSB-II did not exceed 0.1 

gCOD.L"1 (Figure 7.3), whereas the 

sulfate concentration was always > 0.5 

g.L"1. The relative acetate production 

(the percentage acetogenic methanol 

conversion of total methanol conversion) 

increased from 5% on day 3 to 8.5% on 

day 17, but from then onwards until day 

35 it remained in the range of 8 to 9% 

(Figure 7.3). The sludge did not develop 

any acetotrophic activity under the 

methanol limiting conditions applied in 

EGSB-II, as assessed in batch assays 

(data not shown). 

0 10 20 30 

Time (days) 

40 

Figure 7.3. Acetate formation under methanol 
limiting conditions in EGSB-II. Relative acetate 
production (•) and methanol concentration 
effluent(o) 

Methanol and sulfate depletion kinetics 

On day 13, methanol, sulfate, sulfide and acetate concentrations of 2.4 gCOD.L" , 1.92 

g.L"1, 10 mgS.L"1 and <0.02 gCOD.L"1, respectively, were measured in EGSB-II. The 

course of the sulfate, methanol and acetate concentration during the subsequent 13 h batch-

mode operation of EGSB-II are shown in Figure 7.4. During the period of sulfate reduction, 

about 14% of the consumed methanol was used for acetate formation (Figure 7.4A). 

However, once the residual sulfate concentration had dropped to 0.05 g.L"1, the methanol 

degradation rate decreased by a factor 4, while the acetate formation remained almost the 

same. The sulfate depletion corresponds to zero-order kinetics down to a concentration of at 

least 0.1 g.L"1 (Figure 7.4B). Sulfate depletion was not found at concentration < 0.05 g.L" . 

In the batch experiment carried out in EGSB-II at day 14, the initial methanol, sulfate, 

sulfide and acetate concentrations were 1.2 gCOD.L"1, 3.84 g.L"1, 30 mgS.L"1 and <0.02 

gCOD.L"1, respectively. The results are depicted in Fig 7.5. From the data in Figure 7.5B an 

apparent Km of 0.037 ± 0.012 gCOD.L"1 (0.78 ± 0.25 mmol.L"1) for methanol degradation 

was calculated. Here, about 12% of the consumed methanol was used for acetate formation. 
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Biomass characteristics 

The sludge developed in the EGSB-reactors 

Figure 7.6. Sludge from EGSB-IA. 
Bar = 2 mm 

consisted of small (<1 mm in diameter) floes 

with a loose structure. Dense aggregates or 

granules did not develop. As can be expected 

for a flocculent type of sludge, the expansion 

of the sludge bed at the imposed superficial 

liquid velocities was high; at the applied 

upflow liquid velocity of 3 m.h"1, the height 

of the dynamic sludge bed was twice as high 

as that of the static sludge bed (Figure 7. ID). 

The VSS content of the sludge from EGSB-

IA gradually increased from 75% of TSS at 
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the start, to 84% at the end of the experiment. At day 75, samples were taken from the 

sludge bed at a height of 10, 40 and 80 cm from the bottom of the sludge bed. The specific 

sulfidogenic and methanogenic activity, VSS-content, polysaccharide content and sludge 

volume index of these samples were determined. The results are summarized in Table 7.1. 

Table 7.1. Characteristics of sludge taken from EGSB-IA at day 75. Samples were taken the sludge bed at a 
height of 10, 40 and 80 cm from the bottom of the sludge bed. SSA: specific sulfidogenic activity; SMA: 
specific methanogenic activity; VSS: volatile suspended solids; TSS: total suspended solids; PS: 
polysaccharide; SVI; sludge volume index. 

Sample 

point 

Upper 

Middle 

Lower 

SSA SMA 

(gCOD.gVSS'.day1) 

1.54 ±0.24 

1.48 ±0.04 

1.40 ±0.10 

0 ± 0.00 

0.03 ± 0.02 

0.05 ± 0.03 

VSS-content 

gVSS.gTSS"1 

0.90 ±0.01 

0.86 ±0.00 

0.77 ±0.01 

PS-content 

(gPS.gVSS"1) 

0.040 ± 0.003 

0.072 ± 0.001 

0.076 ± 0.003 

SVI 

(mL.gTSS1) 

27 ±4 

21 ±0 

17±0 

7.5 Discussion 

Our results show that methanol represents an attractive electron donor for thermophilic 

sulfate and sulfite reduction. High maximum sulfite and sulfate space elimination rates of 

18 gSCV'.L/'.day"1 (100% elimination) and 11 gSO^M/'.day"1 (50% elimination) were 

found at an HRT of 3 h. In this situation, sulfate elimination was limited by the amount of 

biomass retained in reactor EGSB-IA. This can be concluded from the good agreement 

between the specific sulfidogenic activity of the reactor sludge (1.52 ± 0.19 

gCOD.gVSS^.day"1), calculated from the sulfidogenic COD-conversion rate and the 

average biomass concentration in the reactor, and the maximum specific sulfidogenic 

activity of the sludge as determined in batch assays (1.47 ± 0.15 gCOD.gVSS'Vday"1). 

At an HRT of 10 h, it was furthermore found that the sulfate and sulfate-reducing biomass 

can tolerate high sulfide levels of up to 1600-1900 mgS.L"1 at pH 7.5, resulting from 

reduction of approximately 6 gS03
2".L"1.day"1 (100% elimination) and 6 gSO^'.L'.day"1 

(50% elimination). The inhibiting effect of sulfide was revealed by the increase of the 

sulfate elimination to 100% once H2S was stripped from the reactor. However, after ceasing 

the stripping, the sulfate elimination did not immediately revert to the level before stripping 

was applied, resulting in a high sulfide concentration of 2440 mg.S"1. Apparently, the 

activity of the sulfate-reducing biomass is not instantaneously affected by such extremely 

high sulfide concentrations, but it was clearly detrimentally affected in the subsequent 
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week. The sulfidogenic COD-conversion rate then dropped with 10%. These results point to 

sulfide-induced uncoupling of growth and activity of the sulfate-reducing biomass. This can 

also be interpreted as a higher biomass decay rate at increasing sulfide concentrations. The 

net (i.e. growth minus decay) growth rate of the sulfate-reducing biomass presumably 

becomes too low at the high sulfide concentration of 2440 mgS.L"1 to compensate for 

biomass washout, and as a result, a decrease of the biomass concentration will occur and 

accordingly, a decrease of the sulfidogenic COD-conversion rate. Uncoupling of growth 

and activity of sulfate-reducing biomass by sulfide was previously demonstrated by Okabe 

et al.10 for the mesophilic sulfate reducer Desulfovibrio desulfuricans. Also Visser14 found 

a similar uncoupling for mesophilic sulfate-reducing sludge cultivated on acetate, 

propionate and butyrate. 

In addition to the high rates of sulfite and sulfate reduction that can be achieved in the 

process, also a high sulfate removal efficiency is possible with the reactor design used in 

this study. This follows from the sulfate depletion kinetics, that could be described with 

zero order kinetics down to a threshold concentration of 0.05 g.L"1. This threshold value is 

so low that for practical applications the rate of sulfate reduction can be regarded as 

independent on the sulfate concentration in the reactor. On the other hand, the rate of 

methanol degradation coupled to sulfate reduction is dependent on the methanol 

concentration following classic Michaelis-Menten kinetics, with an apparent KM-value of 

0.037 gCOD.L"1. However, still more than 80% of the maximum specific sulfidogenic 

activity of the sludge can be employed at a methanol concentration in the reactor exceeding 

0.16gCOD.I/\ 

A clear disadvantage of the use of methanol is the formation of acetate of up to 0.45 

gCOD.L ' as by-product, which is highly undesirable as it negatively affects the efficiency 

of methanol utilization for sulfate and sulfite reduction. A more serious problem is that the 

presence of acetate in the effluent of the anaerobic reactor of the biological desulfurization 

process will deteriorate the performance of the sulfide oxidizing reactor, due to growth of 

heterotrophic sulfur and sulfate-reducing bacteria5. The lack of any acetotrophic sulfate-

reducing activity in the sludge shows that either growth of acetotrophic SRB or MA is 

impeded under the prevailing conditions, or species capable of utilizing acetate as growth 

substrate were absent in the seed sludge in sufficiently high numbers. The reason for this 

cannot be the applied temperature of 65°C, because such a high temperature does not 

represent a barrier for growth of MA9 and SRB8 on acetate. The lack of methanogenic 

acetate degrading activity in the thermophilic sludge can be attributed to the low tolerance of 

thermophilic acetotrophic methanogens for hydrogen sulfide2. Likewise, the lack of 
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acetotrophic sulfidogenic activity may be explained by a high susceptibility of acetotrophic 

SRB for (hydrogen) sulfide7, although the evidence for this was obtained with experiments 

conducted under mesophilic conditions. 

Only the omission of the supply of cobalt from the influent lowered the acetogenic COD-

conversion rate. However, the rates of sulfide formation decreased to the same extent, 

indicating that sulfide and acetate formation were coupled. This suggests that formation of 

acetate is an intrinsic feature of thermophilic methanol degradation under sulfate-reducing 

conditions. Thus, it appears that the formation of acetate from methanol cannot be reduced 

without diminishing the formation of sulfide as well. Therefore, for application of methanol 

in biological desulfurization of flue-gases, a compromise must be found between the 

formation of sulfide and acetate. Alternatively, measures can be taken to remove acetate at 

some stage in the process, e.g. by implementing, an additional anaerobic reactor prior to the 

methanol-fed reactor, in which acetate is used as electron donor for sulfite and sulfate 

reduction. 

The results clearly reveal that sulfite overloading conditions cause a severe inhibition of the 

sulfidogenic biomass, which already will manifest at sulfite concentrations in the reactor as 

low as 40-80 mg.L"1. This observation is in agreement with results of Widdel and Bak15, 

who reported complete inhibition of growth of SRB at 40 mg.L" sulfite. Inhibition by 

sulfite seems to be reversible, because the results show a rapid recovery of the sulfidogenic 

activity once the sulfite addition was stopped, even when the sludge had been exposed to 

high (>400 mg.L"1) sulfite concentrations for more than 24 h. To our knowledge, such a 

reversibility of sulfite inhibition of SRB has so far not been reported. The reversible 

character of the inhibition shows that sulfite does not cause any serious damage to the 

sulfate and sulfate-reducing biomass. In order to prevent inhibition by sulfite, it is necessary 

to avoid any accumulation of sulfite in the process, which can easily be achieved by 

applying sulfite underloading to the reactor. 

In view of the flocculent nature of the sludge, the retention of biomass in EGSB-IA was still 

relatively good, as indicated by the maximum value of the biomass concentration of 9-10 

gVSS.L"1. This can be attributed to the very low biogas production. Also the lower viscosity 

of aqueous media at increasing temperatures contributes to a better sludge retention in 

thermophilic high-rate reactors compared to mesophilic ones. The flocculent nature of the 

sludge resulted in a large expansion of the sludge bed of 100% at an upflow liquid velocity 

of 3 m.h "\ Evidently, higher biomass concentrations than the maximum found value of 9 to 

10 gVSS.L"1 can be attained when a granular rather than a flocculent sludge had developed. 

Although high liquid upflow velocities were applied in the reactors to provide a selection 
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pressure for development of granules6, such a granulation was not observed. Apparently, 

the thermophilic biomass cultivated on methanol does not have the intrinsic ability to form 

granules under the applied conditions in the reactor. The polysaccharide content of the 

sludge (4 to 8% of VSS) lies within the range of values (0.6 to 20%) that is normally found 

for the extracellular polymers content of granular sludge12. Therefore, a lack of 

extracellular polymers appears not to be the reason for the inability to form granules. The 

lack of growth of Methanosaeta species in the sludge, that presumably initiate granulation4 

or the lack of growth of acidifiers, which are believed to be involved in granulation as 

well13, may explain why granules did not develop. 
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Chapter 8 

Mesophilic sulfate reduction with methanol in 
high-rate anaerobic reactors 

8.1 Abstract 

In mesophilic (30°C) high-rate anaerobic reactors fed with an influent containing sulfate 

and methanol, more than 85% of the added methanol was degraded to methane, while 

maximally only 12% of the methanol was used for sulfate reduction. This methanol 

degradation pattern was independent of the pH in the range from 5 to 8; addition of acetate 

as co-substrate; addition of sulfite as alternative electron acceptor; and type of seed sludge. 

Applying temperature shocks of 65 or 80°C did not give sulfate-reducing consortia in the 

sludge a competitive advantage over the methanogens. 
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8.2 Introduction 

Methanol is an attractive electron donor for biological desulfurization of wastewaters or 

groundwaters that contain insufficient electron donor to reduce sulfur oxyanions present. 

Methanol can also be used as external electron donor for the SRB in the biological 

treatment of acid mine water, i.e. reduction of sulfate by SRB in order to precipitate metals 

as metal sulfides. Biological desulfurization of these types of (waste)waters should be 

conducted at much lower temperatures than the high temperatures (>50°C) applied in the 

biological treatment of scrubber solutions used for the treatment of flue-gases, described in 

the previous chapters. Although methanol is used efficiently at 65°C as electron donor for 

sulfate reduction in anaerobic high-rate reactors with little or no formation of methane 

(Chapter 2, 5, 6 and 7), it is not clear if this is also the case at mesophilic conditions. The 

temperature may completely alter the anaerobic mineralization pattern of organic substrates. 

For instance, Visser and co-workers7 found a rapid shift from methanogenesis to sulfate 

reduction after elevating the temperature of an acetate and sulfate fed UASB-reactor from 30 

to 55°C. This result reflects the inability of bacteria to adapt to large temperature shifts. 

Consequently, significant alterations of the microbial population may occur due to such a 

temperature change. The occurrence of methanol-utilization by mesophilic sulfate-reducing 

bacteria (SRB) has been demonstrated1'5, but acetate was always needed as carbon source. 

It is well known that methane and acetate formation proceeds very well possible under 

mesophilic conditions, as methanol is a good substrate for mesophilic methanogenic 

archaea (MA)8 and homoacetogenic bacteria (AB)4. Therefore, under these conditions, MA, 

AB and SRB will compete for methanol in anaerobic reactors fed with an influent 

containing methanol and sulfate. The competition between MA and SRB is not limited to 

methanol, because also possible anaerobic reaction products of methanol such as acetate 

and hydrogen are good substrates for mesophilic MA and SRB6. The ultimate outcome of 

the competition between microbial species for these common substrates in high-rate 

anaerobic reactors depends on a large number of factors2 and can therefore in general not be 

predicted for a specific set of conditions. The aim of the work described in this chapter is to 

assess the applicability of methanol as electron donor for mesophilic sulfate reduction in 

high-rate anaerobic reactors. 
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8.3 Materials and methods 

Reactors. One EGSB-reactor and two UASB (I and II) reactors were used in the continuous 

experiments. The experimental set-up for the three reactors was the same as for the 

thermophilic EGSB-reactor described in Chapter 2, but in the experimental set-up for 

UASB-I and -II, UASB-reactors replaced the EGSB-reactor. Effluent recycling was applied 

in all reactors. Operational parameters for the reactors are specified in Table 8.1 and 8.2. 

The pH in the reactors was controlled with automatic pH control. In the EGSB-reactor, the 

pH was kept at 7.5 during the entire operation and in UASB-I the initial pH was 6.7, which 

was stepwise lowered to a final value of 5 on day 87. UASB-II was started at pH 7.5, which 

was increased to 8 on day 21. All reactors were fed with a basal medium consisting of the 

following macro-nutrients (g.L"1): NaCl (1.2), MgCl2.6H20 (0.4), KC1 (0.5), NH4C1 (0.3), 

CaCl2 (0.15), Na2S04 (3.0), KH2P04 (0.2), and 1 mL.L"1 of the trace element solution 

described in Chapter 2. In addition, NaHC03 (1.26 g.L"1) was added to the influent of the 

two UASB-reactors. Methanol was added to the influent of the reactors from a 5-M stock 

solution, at a flow rate to give the desired methanol organic loading rate. Yeast extract was 

added to the methanol stock solution to give an influent yeast extract concentration of 20 

mg.L"1. Acetate (sodium salt) was supplied to the methanol/yeast stock solution when added 

as co-substrate. The supply of sulfite to the EGSB-reactor was accomplished by addition of 

a 1-M sulfite stock solution, that was continuously flushed with nitrogen (nitrogen 3.0, 

Hoek Loos, The Netherlands) to avoid oxidation of sulfite by oxygen. 

Table 8.1. Operating conditions for the continuous reactors. 

working volume 

temperature 

upward velocity 

hydraulic retention time 

methanol loading rate 

sulfate loading rate 

(L) 

(°Q 

(m.h1) 

(h) 

(gCOD.L'.day1) 

(gS04
2-.L1.day-1) 

UASB-I 

5.5 

30 

1.5-2 

10 

3.2 

4.8 

UASB-II 

6.0 

30 

1.5-2 

10 

3.2 

a) 

EGSB 

4.05 

30 

2-5 

10 

3.2 

4.8 

a) The sulfate loading rate of UASB-II is shown in Table 8.2. 
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Table 8.2. The acetate and sulfate/sulfite loading rates of UASB-I and UASB-II. 

day 

UASB-I 0-88 89-100 100-105 106-107 

acetate loading rate (gCOD.L'.day1) 0 0.1 0.4 0.7 

day 

UASB-II 0-77 78-84 85-90 

sulfate loading rate (gSCV'.I/'.day"') 4.8 2.4 0 

sulfite loading rate (gSCV'.I/'.day1) Q 2.4 4-8 

Biomass. The UASB-reactors were seeded with granular mesophilic methanogenic sludge 

from the full scale EGSB-plant treating the wastewater of the Heineken Brewery in 

Zoeterwoude, The Netherlands. The EGSB-reactor was seeded with granular mesophilic 

sulfidogenic sludge cultivated on sulfate and a mixture of acetate, propionate and butyrate 

in a laboratory-scale reactor. This sludge is further referred to as VFA-sludge. All reactors 

were inoculated with sludge up to 1/3 of the working volume of the reactor. 

Activity assay. Activity assays were carried out in 120-mL vials for determination of the 

(specific) methanogenic and sulfidogenic activity of sludge at 30°C according to directions 

as described in Chapter 2. The preparation of the assay medium was also described in 

Chapter 2, except that the NaCl and MgCl2.6H20 concentrations of the assay medium were 

lowered to 1.2 and 0.4 g.L"1, respectively, to make the macro-nutrient composition of the 

assay medium similar to that of the medium fed to the reactors. Moreover, the NaHC03 

concentration in the vials was lowered to 1.25 g.L"1. Na2S04 and methanol were added to 

the assay vials from concentrated stock solutions at a concentration of 2.8 g.L"1 and 1.4 

gCOD.L"1, respectively. At the start of the assay, the medium had pH 7. The headspace in 

the vials consisted of 1.7 bar N2/C02 (80/20 v/v). Inhibition of methanogens was 

accomplished by addition of 6 g.L"1 BRES (sodium salt of 2-bromoethanesulfonate, Acros 

Organics, New Jersey, USA). The total amount of VSS in the vials was determined at the 

end of the assay when calculation of specific activities was desired. 

Analyses. A detailed description of the analytical procedures for determination of 

methanol, acetate, sulfide, sulfite, biogas composition and VSS was presented in Chapter 2. 

In the activity assay, methane was measured on a 406 Packard gas chromatograph equipped 

with a thermal conductivity detector (TCD). Compounds were separated with argon as the 
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carrier gas on a molecular sieve column (13X, 1.8 m by 1/4 inch, 60-80 mesh) at 100°C. 

Sulfate and thiosulfate were measured with an HPLC equipped with a VYDAC Ion 

Chromatography column (cat. 302 IC, 250 x 4.6 mm). The temperature of the column and 

detector (Waters 431 conductivity detector) were 20°C and 35°C, respectively. As eluent, 

0.018-M potassium biphthalate, at a flow rate of 1.2 mL.min"1 was used. Samples were 

fixed by 2- to 4-fold dilution with a 0.1-M zinc acetate solution, centrifuged (3 min. 10000 

g) and diluted with demineralized water to a concentration below 500 mg.L"1. The sulfite 

concentration in the samples collected from UASB-II after day 77 was determined semi-

quantitatively using test strips (Merckoquant cat. nr. 1.100-13). 

8.4 Results 

The effect of pH-variations, acetate addition, temperature shocks and sulfite addition on the 

methane and sulfide formation from methanol was studied in UASB-reactors inoculated 

with a methanogenic granular sludge. The effect of seed sludge on methane and sulfide 

formation was studied in an EGSB-reactor inoculated with a sulfidogenic granular sludge. 

The sludge loading rates in all reactors amounted to approximately 0.2 gCOD.gVSS'.day"1. 

Effect of pH 

The results depicted in Figure 8.1 A and 8.IB reveal that variation of the pH in the range 

from 5.0 to 8.0 did not strongly affect the fate of methanol. Methanogenesis was 

predominant at all tested pH-values, while the sulfidogenic and acetogenic COD-conversion 

remained low. Only after the pH drop from 5.5 to 5.0 in UASB-1 on day 87 the methane 

production temporarily decreased markedly, but it recovered within a few days. Already at 

day 2 and day 8 for UASB-I and UASB-II, respectively, the methanol removal efficiency 

reached a very high level (>97%), resulting in a low (< 0.05 gCOD.L"1) effluent methanol 

concentration (data not shown). From the data presented in Figure 8.1A and 8.IB, it can be 

calculated that methanogenic, sulfidogenic and acetogenic COD conversion, accounted for 

87-98%, 4-12% and about 2%, respectively, of the total COD conversion in the pH-range of 

5 to 8. 
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Figure 8.1. Performance of UASB-I (A), UASB-II (B) and the EGSB (C). 
Arrows in Figure 8.IB indicate start of a 24 h temperature shock of 65°C on 
day 42 (arrow 1), and of 80°C on day 63 (arrow 2). Arrow 3 indicates the start 
of sulfite addition on day 78. The sulfide production in the period following 
day 78 is depicted in Figure 8.2. Legend: pH (—), volumetric sulfidogenic (•), 
methanogenic (o) and acetogenic (A) COD-conversion rate. 
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Effect of acetate as co-substrate 

The observed low sulfate reduction rate in UASB-I apparently cannot be attributed to a lack 

of carbon source for the SRB, because addition of 0.05 gCOD.L"1 of acetate as co-substrate 

to the influent of UASB-I from day 88 onwards did not result in stimulation of sulfate 

reduction (Figure 8.1A). Increasing the influent acetate concentration to 0.17 and 0.35 

gCOD.L"1 on day 99 and 104, respectively, also did not affect sulfate reduction positively. 

Because acetate was almost completely (> 95%) degraded (data not shown), it is also 

possible that it never became available for the SRB. 

Effect of temperature shock 

Results of preliminary activity assays conducted with the seed sludge (2 gVSS.L"1) of 

UASB-II revealed that temperature shocks imposed to the sludge of 65 and 80°C for 24 In-

annihilated the methanogenic activity on methanol for at least 2 weeks, while 20 and 80% 

of the added methanol (1.3 gCOD.L"1) was used for sulfate reduction and acetogenesis, 

respectively (data not shown). Based on these results, two temperature shocks lasting 24 h 

were imposed to UASB-II in order to minimize methane production: one shock of 65°C on 

day 42, and a second of 80°C on day 63. Both the methane and sulfide production 

decreased sharply due to the both temperature shocks (Figure 8.IB) but within 1 week the 

methanogenesis and sulfidogenesis recovered almost completely. The acetate production 

increased sharply during the temperature shocks, probably due to biomass lysis, but after 

both shocks it dropped to the same low level as before the shock. 

Effect of sulfite 

The effect of sulfite on the 

competition between SRB 

and MA was investigated in 

UASB-II. The transition from 

a merely sulfate-containing (2 

g.L"1) medium to a medium 

containing sulfite (1 g.L"1) 

and sulfate (1 g.L"1) on day 

78 stimulated sulfide 

production. Sulfite was 

completely removed, but the 

sulfate was produced (Figure 

T3 
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Figure 8.2. Disproportionation of sulfite (n) to sulfide (•) 
and sulfate (•) in UASB-II from day 78 to day 90. 
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8.2). Results of measurements of the sulfite concentration of the influent at the inlet of the 

reactor revealed no sulfite had oxidized to sulfate before entering the bioreactor. Increasing 

the sulfite concentration to 2 g.L"1 from day 85 to day 91, while concomitantly omitting 

sulfate from the influent, led to a further increase of sulfide production (Figure 8.3). Sulfite 

was still completely removed during this period while concomitantly, the sulfate 

concentration increased. From the data presented in Figure 8.2 it can be calculated that for 

every 4 mol of sulfite removed in the reactor, about 1 mol of sulfide and 2 mol of sulfate 

appeared in the effluent. Although there is a deficit in the sulfur balance, the appearance of 

sulfate is a clearly indication for the occurrence of the sulfite disproportionation reaction: 

4S03
2"+H+=>3S04

2"+HS" AG°' = -58.9 kJ/mol SCV 

The results furthermore clearly demonstrate that the addition of sulfite did not affect the 

methane production (Figure 8.IB) from methanol, indicating that the SRB were unable to 

compete successfully with the methanogens for methanol to use it as electron donor. 

Effect of seed sludge 

In order to examine the effect of seed sludge on the competition between MA and SRB, an 

additional EGSB-experiment was conducted with a sulfidogenic sludge that was cultivated 

on a mixture of volatile fatty acids (VFA, i.e. acetate, propionate and butyrate). Results of 

previous activity assays with the VFA-adapted sludge revealed a high sulfate-reducing 

potential of this 

sludge with methanol: 

in vials with 2 

gVSS.L"1 of the seed 

sludge, sulfate (2 

g.L"1) was nearly 

completely reduced 

with methanol (1.4 

gCOD.L"1), while 

methane production 

remained negligible 

(Figure 8.3). In this 

assay the acetate 

formed from methanol 

constituted the sole electron donor for the SRB after day 3. An EGSB-reactor was chosen to 

ensure good mixing conditions. As shown in Figure 8.1C, the methane production in the 

Time (days) 

Figure 8.3. Sulfide (•), methanol (o) and acetate (A) concentration in 
batch assay inoculated with seed sludge ("VFA-sludge") of the EGSB-
reactor. 
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reactor rapidly increased from a very low initial level to a stable level of about 3 gCOD.L" 

.day"1 within two weeks (Figure 8.1C), corresponding to a high methanol removal 

efficiency exceeding 97% from day 14 onwards. The sulfide formation generally remained 

below 0.3 gCOD.L/'.day"1, except during the period from day 12 to day 18, when it attained 

slightly higher values of 0.3-0.6 gCOD.I/'.day"1. Moreover, also the acetate production 

reached a maximum in the same period, with a maximum value of 0.6 gCOD.I/'.day"1 on 

day 11. However, following day 18 hardly any acetate was present in the effluent. 

To assess the sulfate-reducing potential of the methanogenic sludge cultivated in the EGSB-

reactor, the sulfidogenic, methanogenic and acetogenic activities with methanol and sulfate 

in the presence and absence of BRES were determined on day 54. The results show (Table 

8.3) that the specific methanogenic activity on methanol is about 4 times as high as the 

specific sulfidogenic activity. Addition of BRES did not improve sulfate reduction. The 

specific acetogenic activity increased as a result of BRES addition, indicating that 

acetogens could benefit from the inhibition of methanogens. Alternatively, acetate 

accumulation may have resulted from the inhibition of acetate consumption by aceticlastic 

methanogens. 

Table 8.3. Specific sulfidogenic and methanogenic activity of sludge taken from 
the EGSB-reactor at day 54. Sulfate (2 g.L"1) was added to all assays. 

-BRES, 
+methanol 

+BRES, 
+methanol 

-BRES, 

-methanol 

8.5 Discussion 

Specific 
sulfidogenic 

activity 

0.07±0.04 

0.07±0.01 

0.01±0.00 

Specific 
methanogenic 

activity 
(gCOD.gVSS'.day1) 

0.25±0.08 

0.00±0.00 

0.00±0.00 

Specific acetogenic 
activity 

0.00±0.00 

0.14±0.02 

0.04±0.0 

The results indicate that methanol is not a suitable electron donor for sulfate reduction 

under mesophilic conditions using mesophilic seed sludges, because more than 85% of the 

added methanol was consumed by methanogenic consortia in high rate anaerobic reactors 
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fed with methanol and sulfate, while maximally only 12% of the methanol was used for 

sulfate reduction. This pattern was not dependent on: the pH of the reactor medium in the 

range from 5 to 8, the addition of acetate as co-substrate, the addition of sulfite as 

alternative electron acceptor, and the type of mesophilic seed sludge. The duration of the 

UASB/EGSB experiments was about 100 days, i.e. of the same order of magnitude as the 

sludge retention time of 0.5-1 year typical for high-rate anaerobic reactors3. Therefore, the 

observed low sulfate reduction rates in the reactors can not solely be attributed to the low 

growth rates typical for anaerobic microorganisms like SRB. Apparently, SRB are either 

very poor competitors for methanol in mesophilic high-rate reactors or are very poorly 

immobilized. 

Even with mesophilic VFA-cultivated sulfidogenic sludge as seed material, the sulfate 

reduction rate remained low as the results of the EGSB-reactor demonstrate. Apparently, 

methanol is a poor electron donor for the VFA-utilizing sulfate reducers present in the seed 

sludge, despite the fact that the sludge showed considerable sulfate-reducing activity with 

methanol in the activity assay. These contrasting results most likely can be explained by the 

prevalence of substantial sulfate reduction capacity on acetate, which is formed from 

methanol in the assay, while this is not the case in the EGSB-reactor, except during the 

period from day 11 to 17. Probably, during this period, the reducing equivalents needed for 

sulfate reduction prevailing in this period originated mainly from acetate. Following day 17, 

methanogens outcompeted the homoacetogens and SRB rapidly. Apparently, under 

mesophilic conditions the methanogens have better growth properties on methanol than 

SRB and AB. 

Methanol is also a poor electron donor for mesophilic sulfite reduction, because the sulfite 

removal in UASB-II was mainly due to disproportionation of sulfite to the products sulfide 

and sulfate, a reaction that does not result in a net reduction of sulfur species. Therefore, 

disproportionation of sulfite is not effective for desulfurization, as electrons are only 

redistributed among the sulfur species. 
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Summary and Discussion 

1 Introduction 

The aim of the research described in this thesis was to study the use of methanol as external 

electron donor for biological desulfurization of flue-gases and ground- and wastewaters. In 

such a process methanol is used as external electron donor for biological anaerobic 

reduction of sulfur oxyanions to hydrogen sulfide. 

Discharge of sulfur compounds by human activity via flue-gases and wastewaters causes 

serious environmental problems such as acid rain and anaerobiosis of surface waters. The 

removal of sulfur oxyanions so far mainly is achieved by fixing sulfur as poorly soluble 

CaS04 (gypsum). As alternative for the high chemical- and energy-requiring gypsum-

processes, an ingenious biological process has been proposed1-3. This process accomplishes 

desulfurization with little consumption of chemicals and fixation of sulfur in its elemental, 

solid form. In the mainly biological process sulfur oxyanions (e.g. sulfate, sulfite, 

thiosulfate) dissolved in an aqueous phase first are reduced by sulfate-reducing bacteria 

(SRB) to sulfide with a suitable electron donor under anaerobic conditions. The generated 

sulfide is subsequently partially oxidized to elemental sulfur by Thiobaccilli spp. under 

micro-aerobic conditions6. The elementary sulfur produced possibly can be re-used e.g. for 

production of sulfuric acid. The large difference in redox potential between anaerobic 

reduction of sulfur oxyanions and micro-aerobic sulfide oxidation implies spatial separation 

of these conversions, e.g. in two separate bioreactors. This thesis focuses on the anaerobic 

stage, i.e. the reduction of sulfur oxyanions to sulfide. 

Flue-gases and groundwater, and many wastewaters as well, do not contain sufficient 

electron donor for biological reduction of the large amount of sulfur oxyanions that can be 

present. This necessitates the addition of an external electron to supply the SRB with 

sufficient reducing equivalents. Such an external electron donor should be cheap as its price 

largely determines the operational costs of the treatment process. In this thesis, the 

suitability of the relatively cheap bulk chemical methanol as electron donor for reduction of 

sulfur oxyanions was investigated. 
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Decisive for the industrial applicability of methanol-based biological desulfurization 

processes is the selectivity and the rate of reduction of sulfur oxyanions that can be 

achieved in bioreactors. This thesis aims to find answers for these technological questions. 

In addition, this thesis intends to acquire insight in the microbiology of the process. 

This chapter summarizes and discusses the results on sulfate and sulfite reduction with 

methanol at 65°C, and the feasibilityof this system for biological desulfurization of hot flue-

gases. The results on mesophilic (30°C) sulfate reduction with methanol, which are of 

interest for bio-desulfurization of cold or slightly heated ground- or wastewater with a high 

content of sulfur oxyanions but with a low amount of electron donor, were already 

presented in detail in Chapter 8. 

2 Thermophilic sulfate and sulfite reduction 

In the biological flue-gas desulfurization process, S02 is scrubbed from the hot flue-gas 

using a bicarbonate solution. Herewith, a warm (50-65°C) sulfite and sulfate containing 

liquor is generated which subsequently is subjected to biological treatment. The 

composition of the synthetic influent used for the continuous sulfate reduction experiments 

closely resembled the composition of this liquor with respect to its salinity (7 g.L"1 NaCl) 

and concentration of sulfate (1-4 g.L"1) and sulfite (1-4 g.L"1). The imposed temperature and 

pH in most experiments were 65°C and 7.5. The following aspects are discussed: 

-the competition between sulfate-reducing, methanogenic and acetogenic communities for 

methanol in bioreactors (Chapters 2, 5, 6 and 7); 

-the performance of the sulfate and sulfate-reducing bioreactors fed with methanol 

(Chapters 6 and 7); 

-microorganisms involved in thermophilic sulfate reduction with methanol (Chapters 3 and 

4). 

2.1 Competition between thermophilic sulfate-reducing, methanogenic and acetogenic 
microorganisms for methanol in bioreactors 

The selectivity of using methanol for biological sulfate reduction (equation 1) is determined 

by the ability of methanol-degrading sulfate-reducing bacteria to compete successfully with 

other methanol degrading microorganisms present in the reactor sludge, e.g. methanogens 
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and acetogens, that convert methanol to methane (equation 2) and acetate (equation 3), 

respectively. 

3 S04
2" + 4 CH3OH => 3 HS" + 4 HCO3" + 4 H20 + H+ (eq. 1) 

4 CH3OH => 3 CH4 + HCO3" + H 20 + H+ (eq. 2) 

4 CH3OH + 2 HCO3" => 3 CH3COO" + H+ + 4 H20 (eq. 3) 

The results presented in Chapter 2 clearly show that sulfate-reducing microorganisms 

ultimately outcompete methanogenic consortia in anaerobic high-rate bioreactors that are 

based on sludge retention via a mechanism of biomass self-immobilization. The reactors 

were fed with an influent containing methanol and sulfate (as model sulfur oxyanion) in a 

ratio of 0.67 gCOD/gS04
2" and they were operated at pH 7.5 and at a temperature of 65°C. 

Substantial methane formation persisted for several months using unadapted seed sludge. 

However, by imposing slightly acidic pH-values (6.7 instead of 7.5) it was possible to 

achieve selective and durable suppression of methanogenesis (Chapter 5). This might 

represent a practical method that also may be applied in a full-scale process. 

Compared to methane and sulfide, acetate always was formed as a minor side-product 

(normally less than 1 mM) from methanol in the initial bioreactor-experiments described in 

Chapter 2. In later experiments, described in Chapters 6 and 7, acetate formation in sulfate-

and sulfate-reducing bioreactors was substantially higher with effluent acetate 

concentrations of up to 9 mM, accounting for up to 13% of the degraded methanol. Batch 

tests showed that acetate did not serve as electron donor for the reduction of sulfate or 

carbon dioxide in any of the experiments, indicating that acetate was an end product from 

methanol degradation rather than an intermediate. A remarkable feature of the process is the 

observation in Chapter 6 that the rate of acetogenic COD-conversion is linearly correlated 

to the sulfidogenic COD-conversion rate. Although less evident, such a correlation also 

emerges from the data obtained in reactor experiments described in Chapter 2 and 7, 

conducted under very similar reactor conditions to those of the experiment in Chapter 6 

(Figure 1). The data presented in Figure 1 point to a connection of sulfide and acetate 

formation, indicating that the microbial community responsible for sulfate reduction also 

directly or indirectly might be involved in the formation of acetate. Regression analysis of 

the data (forcing the regression line through the origin to facilitate comparison) reveals that 

in the experiment described in Chapter 6, an average value of 0.14 gCOD-methanol is used 

for acetate per gCOD-methanol consumed in sulfate/sulfite reduction (regression line B in 

Figure 1). In the other two experiments this ratio is only 0.05 to 0.06 (regression lines A 

and C, data from Chapters 2 and 7, respectively). The relatively small deviation between 
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regression lines A and C may be due to the natural scattering of the data but the strong 

deviation of line B from lines A and C indicates that the ratio between acetate and sulfide 

formed from methanol is not fixed, but it apparently depends on one or more unknown 

variable(s). A detailed analysis of the data and comparison of the experimental set-up and 

the operating conditions of the three experiments so far did not result in any clear evidence 

of such a variable. Therefore, more research still remains to be done. 
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Figure 1. Acetate vs. sulfide formation from methanol in sulfate and sulfate-
reducing bioreactors. Symbols: (+, Line A): data from Chapter 2; (•, Line B): data 
from Chapter 6; (o, Line C): data from Chapter 7. 

The results indicate that the formation of acetate cannot be reduced without diminishing the 

formation of sulfide as well. Therefore, in case methanol would be applied for biological 

desulfurization of flue-gases, a compromise must be found between the formation of sulfide 

and acetate. 

It is noteworthy that in the experiments presented in Chapter 2, no cobalt was added to the 

thermophilic reactors, because it was expected that cobalt might stimulate unwanted 

methane and acetate formation from methanol, analogous to its effect on methanol 

degradation under mesophilic conditions4. However, as demonstrated in Chapter 7, methane 

formation under thermophilic sulfate and sulfate-reducing conditions is suppressed just as 

rapidly with as without cobalt. On the other hand, omitting the supply of cobalt to the 

influent indeed resulted in a lower acetate formation rate, but at the same time the rate of 

sulfide formation from methanol decreased to the same extent. Therefore, applying cobalt-
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limiting conditions does not improve the selectivity of sulfate/sulfite reduction with 

methanol. 

2.2 Performance of methanol-fed sulfate- and sulfite-reducing bioreactors 

The competitiveness of biological flue-gas desulfurization with other processes is largely 

determined by its loading potential. Low conversion rates due to poor retention of biomass 

in the reactor and inadequate mass transfer from bulk liquid to sludge should be avoided by 

selecting a proper reactor design. In this respect, the Expanded Granular Sludge Bed 

(EGSB) reactor looks a good choice because 1) good mixing of the bulk liquid is realized 

by the imposed high (> 2 m.h"1) upflow liquid velocity and 2) at such high upflow liquid 

velocities sludge segregation will occur8. 

High rates of sulfate and sulfite reduction with methanol were found in the reactors. At a 

hydraulic retention time (HRT) of 10 h, maximum sulfite and sulfate reduction rates of 6 

gS03
2".L"1.day"1 (100% sulfite elimination) and 4-7 gSCV'.I/'.day"1 (40-70% sulfate 

elimination) were attained simultaneously in EGSB-reactors. This is equivalent to a 

sulfidogenic methanol-conversion rate of 6-8 gCOD.L/'.day"1 (Chapter 7). However, under 

these conditions, the resulting sulfide concentration of about 1800 mgS.L"1 (corresponding 

to a free hydrogen sulfide concentration of 200 mgS.L"1 at the applied pH of 7.5) limited the 

rate of sulfate reduction. At a hydraulic retention time of 3-4 h, maximum sulfite and sulfate 

reduction rates of 18 gSC^.I/'.day"1 (100% elimination) and 11-14 gSO^M/'.day"1' (about 

50% elimination) were attained, which is equivalent to a sulfidogenic methanol-conversion 

rate of 19 gCOD.L'.day"1 (Chapters 6 and 7). In this situation, the sulfate reduction rate 

was limited by the amount of biomass present in the system, i.e. a concentration of 9 to 10 

gVSS.L"1, which was the maximal amount that could be retained in the reactor. The time 

needed to reach the maximum sulfite and sulfate elimination rates in the reactors using 

adapted seed sludge amounted to 40-60 days (Chapters 6 and 7). For practical applications, 

in particular for anaerobic processes, such a period seems acceptable. 

From the results it can be calculated that it is theoretically possible to achieve, at a HRT of 

4 h, 100% elimination of 2.3 gS032".L_1 and 2.7 gS04
2".L_1 (molar ratio sulfite to sulfate = 

1). The maximum sulfidogenic conversion rate of methanol then amounts to 19 

gCOD.I/'.day*1 resulting in a maximum effluent sulfide concentration of 1800 mgS.L"\ In 

this calculation it was assumed that no kinetic limitations exist for sulfite and sulfate 

reduction (zero order reaction rates). This assumption is justified for sulfate, as sulfate 

depletion kinetics could be described with zero order kinetics down to a low threshold 

concentration of 0.1 g.L"1. This threshold value is so low that for practical applications the 
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rate of sulfate reduction can be regarded as independent of the sulfate concentration in the 

reactor. However, this maximum sulfate-reducing capacity can only be realized at methanol 

overloading conditions because the rate of methanol degradation coupled to sulfate 

reduction followed Michaelis-Menten kinetics, with an apparent KM-value of 0.037 

gCOD.L"1 (Chapter 7). Still more than 80% of the maximum specific sulfidogenic activity 

of the sludge can be employed at a methanol concentration in the reactor exceeding 0.16 

gCOD.L"1. 

With an influent containing 2.3 gS03
2\L"' and 2.7 gS04

2".L"' the (hydrogen) sulfide 

concentration becomes limiting at HRTs > 4 h and accordingly, the maximum sulfidogenic 

conversion rate of methanol cannot be maintained unless (hydrogen) sulfide is removed 

from the reactor, e.g. by means of stripping. At HRTs < 4 h, biomass retention limits the 

sulfite/sulfate reduction rate and although the maximum sulfidogenic conversion rate of 

methanol will be maintained, sulfate is no longer completely eliminated. 

From the above it will be clear that the sulfidogenic conversion rate of methanol can be 

increased beyond 19 gCOD.L"1.day"1 provided that the biomass retention of the system is 

improved. The biomass retention of maximally 9 gVSS.L"1 is low compared to the retained 

biomass concentrations of 20-30 gVSS.L"1 as observed in other studies using EGSB-

reactors9. The rather poor biomass retention in the reactors likely is due to the flocculent 

nature of the sludge developed in the reactors, as opposed to the very well settleable 

granular sludge present in methanogenic EGSB-reactors. Because the term Expanded 

Granular Sludge Bed reactor refers to the type of sludge developing in the reactor rather 

than to the reactor itself, this is in retrospect not an adequate name for the reactor-type used 

in this study. The system better can be indicated as 'High Upflow Anaerobic Sludge Bed 

(H-UASB) reactor. An improvement of biomass retention in the reactor possibly could be 

accomplished by lowering the upflow liquid velocity (vup) below the applied value of 3-6 

m.h"1, because this would result in less expansion of the sludge bed and accordingly, a 

higher sludge hold-up. However, the contact between medium and biomass might become 

too poor below a vup of 2.5 m.h" even when some biogas is produced7. In this connection it 

also should be noted that already at a vup of 3 m.h"1 the lower part, or even the whole sludge 

bed occasionally aggregated completely, which caused channelling and sludge piston 

formation. Sludge bed aggregation is likely to aggravate at even lower upflow liquid 

velocities, although this may in part be overcome by moderate agitation of the sludge bed. 

Considering the above, a substantial improvement of biomass retention in the H-UASB 

reactors looks difficult to achieve under the applied conditions. Better sludge hold-up might 

136 



Summary and Discussion 

be obtained by increasing the density of sludge particles by means of adding a carrier 

material as in fluidized bed reactors. 

2.3 Microorganisms involved in thermophilic methanol degradation under sulfate-
reducing conditions 

In order to improve the .insight in the process, the dominant microorganisms prevailing in 

the sludge cultivated in a thermophilic, methanol-fed sulfate-reducing reactor were studied. 

The formation of sulfide, methane and acetate in bioreactors inoculated with unadapted 

sludge (Chapter 2), revealed the presence of sulfate-reducing bacteria in the sludge (SRB), 

as well as methanogenic archaea (MA) and (homo)acetogenic bacteria (AB). 

It was shown in Chapter 2 that the dominant methane-producing species in the sludge were 

hydrogenotrophic methanogens instead of methanol-degrading methanogens. Because 

hydrogen likely represents the main electron donor for methanogenesis and hydrogen also 

supported high rates of sulfate reduction in the sludge, it follows that MA and SRB mainly 

compete for hydrogen. This may explain why sulfate reduction ultimately dominates over 

methanogenesis in the reactor. From literature it is well known that SRB outcompete MA 

for hydrogen when sufficient sulfate is present5-10. 

A sulfate-reducing bacterium, strain WW1, was isolated from the highest methanol 

degrading, sulfate-reducing serial dilution of the sludge, strongly indicating that it is the 

most abundant sulfate reducer involved in sulfidogenic methanol degradation (Chapter 3). 

Strain WW1 was identified as a Desulfotomaculum-species by its morphology and 

16SRNA-sequence. In the sludge, strain WW1 is not confined to the use of methanol, as the 

strain also grows on anaerobic degradation products of methanol, like acetate, formate and 

H2/C02. Therefore, methanol in the sludge may be either directly used as electron donor for 

sulfate reduction by strain WW 1-like microorganisms or it may first be degraded to 

intermediates like hydrogen, formate and acetate by for instance (homo)acetogens, followed 

by sulfidogenic oxidation of such intermediates. 

Two observations indicate that hydrogen indeed might be an important electron donor for 

sulfate reduction by sludge cultivated on methanol. Firstly, the strain WW1 does not use 

acetate in the presence of H2. Therefore, the lack of acetate degradation by this sludge 

might be explained by assuming that hydrogen is the main electron donor for sulfate 

reduction. Secondly, growth of strain WW1 on methanol and sulfate already stops at a total 

sulfide concentration of 220 mgS.L"1, due to toxicity of the produced sulfide, while on the 

other hand, growth of strain WW1 on hydrogen and sulfate up to 640 mgS.L"1 of total 
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sulfide is possible. The latter sulfide concentration is in the same range as the total sulfide 

concentration in the bioreactor from which the strain was isolated. Thus, the high sulfide 

levels produced in the bioreactor might be explained by assuming growth of strain WW1-

like sulfate reducers on hydrogen rather than on methanol. 

The hypothesis that hydrogen is an important electron donor for sulfate reduction in the 

sludge implies that at least part of the added methanol is converted to hydrogen (and 

presumably C02). The presence of high numbers of methanol-oxidizing, hydrogen-

producing bacteria in the sludge indeed was demonstrated (Chapter 4). Thus, methanol 

oxidation to hydrogen followed by sulfate reduction with hydrogen may represent an 

important methanol degradation route in the sludge. However, it is still unclear to which 

extent methanol is directly consumed by sulfate reducers in the sludge or first converted to 

hydrogen before being used for sulfate reduction. 

It is noteworthy that in the undefined cultures in which the presence of methanol-oxidizing, 

hydrogen producing species was demonstrated, also acetate was formed from methanol 

(Chapter 4). In the cultures with the methanol-oxidizing, hydrogen producing species and 

an added hydrogenotrophic sulfate reducer, about 15% of the methanol was degraded to 

acetate. Moreover, the formation of acetate seemed to be strictly coupled to growth of the 

unidentified methanol-oxidizing species. The apparent coupling of methanol degradation to 

hydrogen and formation of acetate from methanol in the cultures might explain the coupling 

of sulfide and acetate formation from methanol in the reactors, assuming that indeed 

interspecies hydrogen transfer from methanol-oxidizing species to SRB plays a major role 

in the sludge. 
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1 Inleiding 

Het doel van het in dit proefschrift beschreven onderzoek was het bestuderen van het 

gebruik van methanol als elektronendonor voor biologische ontzwaveling van rookgassen 

en grond- en afvalwater. In zo'n proces wordt methanol als externe elektronendonor 

gebruikt voor biologische reductie van geoxideerde zwavelverbindingen naar 

waterstofsulfide. 

Uitstoot van zwavelverbindingen door menselijk handelen via rookgassen en afvalwater 

veroorzaakt ernstige milieuproblemen zoals zure regen en zuurstofdeficientie van 

oppervlaktewater. Verwijdering van geoxideerde zwavelverbindingen wordt tot nog toe 

vooral bewerkstelligd door het zwavel vast te leggen als slecht oplosbaar calciumsulfaat 

(gips). Dit 'gips'-proces heeft een hoog verbruik aan energie en chemicalien. Voor het gips-

proces is een biologisch alternatief-3, dat weinig chemicalien vergt en het zwavel vastlegt 

als de vaste stof elementair zwavel. In het grotendeels biologische proces worden opgeloste 

geoxideerde zwavelverbindingen (zoals sulfaat, sulfiet en thiosulfaat) eerst onder anaerobe 

condities gereduceerd naar sulfide met een geschikte elektronendonor door 

sulfaatreducerende bacterien (SRB). Het gevormde sulfide wordt vervolgens gedeeltelijk 

geoxideerd naar elementair zwavel door Thiobaccilli-bacterien onder zuurstoflimiterende 

condities6. Het geproduceerde elementaire zwavel is te gebruiken voor bijvoorbeeld de 

productie van zwavelzuur. Het grote verschil in redoxpotentiaal tussen anaerobe reductie 

van geoxideerde zwavelverbindingen en oxidatie van sulfide naar elementair zwavel onder 

zuurstoflimiterende condities houdt in dat deze twee stappen altijd ruimtelijk gescheiden 

plaatsvinden, bijvoorbeeld in twee afzonderlijke bioreactoren. Dit proefschrift concentreert 

zich op de anaerobe stap, de omzetting van geoxideerde zwavelverbindingen naar sulfide. 

Rookgassen en grondwater, alsmede vele afvalwaterstromen bevatten onvoldoende 

elektronendonor voor biologische reductie van het hoge gehalte aan geoxideerde 

zwavelverbindingen dat hierin aanwezig kan zijn. Om de sulfaatreducerende bacterien van 

voldoende reductie-equivalenten te voorzien, is toevoeging van een externe 

elektronendonor nodig. Zo'n externe elektronendonor moet goedkoop zijn, omdat de kosten 
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hiervan grotendeels de operationele kosten van het zuiveringsproces bepalen. In dit 

proefschrift is de geschiktheid van de relatief goedkope bulkchemicalie methanol als 

elektronendonor voor reductie van geoxideerde zwavelverbindingen onderzocht. 

Doorslaggevend voor de industriele toepasbaarheid van methanol voor biologische 

ontzwaveling zijn de selectiviteit en snelheid van reductie van geoxideerde 

zwavelverbindingen welke haalbaar zijn in bioreactoren. Dit proefschrift probeert deze 

technologische vragen te beantwoorden. Bovendien wordt gepoogd inzicht te verkrijgen in 

de microbiologic van het proces. 

Dit hoofdstuk vat de resultaten betreffende sulfaat- en sulfietreductie met methanol bij 65°C 

samen, en bediscussieerd de toepasbaarheid van dit proces voor biologische ontzwaveling 

van hete rookgassen. De resultaten betreffende mesofiele (30°C) sulfaatreductie met 

methanol, van belang voor ontzwaveling van enigszins opgewarmd grond- van afvalwater 

met een hoog gehalte aan geoxideerde zwavelverbindingen maar met weinig 

elektronendonor, werden in detail in hoofdstuk 8 besproken. 

2 Thermofiele sulfaat- en sulfietreductie 

In het biologische proces voor rookgasontzwaveling wordt zwaveldioxide (S02) uit het 

rookgas gewassen met een bicarbonaat-oplossing. Daarbij wordt een warm (50-65°C) 

sulfiet- en sulfaat-houdende oplossing verkregen welke vervolgens biologisch wordt 

behandeld. De samenstelling van het synthetische influent gebruikt voor continu-

experimenten kwam ongeveer overeen met de samenstelling van deze oplossing ten aanzien 

van het zoutgehalte (7 g.L*1 NaCl) en de concentratie sulfaat (1-4 g.L"1) en sulfiet (1-4 

g.L"1). De temperature en pH was in de meeste experimenten 65°C en 7.5. De volgende 

aspecten worden bediscussieerd: 

-de competitie tussen sulfaatreducerende, methanogene en acetogene micro-organismen 

voor methanol in bioreactoren (hoofdstukken 2, 5, 6 en 7); 

-het functioneren van sulfaat- en sulfietreducerende bioreactoren gevoed met methanol 

(hoofdstuk 6 en 7); 

-micro-organismen betrokken bij thermofiele sulfaatreductie met methanol (hoofdstuk 3 en 

4). 
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2.1 Competitie tussen sulfaatreducerende, methanogene en acetogene micro-
organismen voor methanol in bioreactoren 

De selectiviteit van biologische sulfaatreductie met methanol (vergelijking 1) wordt bepaald 

door de mate waarin methanol-afbrekende sulfaatreducerende bacterien succesvol 

competeren met andere methanolafbrekende micro-organismen, met name methanogenen 

en acetogenen, welke methanol omzetten naar respectievelijk methaan (vergelijking 2) en 

acetaat (vergelijking 3). 

3 S04
2" + 4 CH3OH => 3 HS" + 4 HCCV + 4 H20 + H+ (verg. 1) 

4 CH3OH => 3 CH4 + HCO3" + H 20 + H+ (verg. 2) 

4 CH3OH + 2 HCO3" => 3 CH3COO" + H+ + 4 H20 (verg. 3) 

De resultaten uit hoofdstuk 2 tonen duidelijk aan dat sulfaatreducerende micro-organismen 

uiteindelijk de competitie voor methanol winnen van methanogene consortia in anaerobe 

bioreactoren waarin auto-immobilisatie van de biomassa plaatsvindt. De reactoren werden 

gevoed met een influent dat methanol en sulfaat (als model geoxideerde zwavelverbinding) 

bevatte in een verhouding 0.67 gCOD/gS04
2\ Bij deze verhouding wordt juist genoeg 

methanol gedoseerd om al het aanwezige sulfaat te reduceren. De pH en temperatuur in de 

reactoren was respectievelijk 7.5 en 65°C. Een aanzienlijke methaanvorming bleef 

gedurende enkele maanden bestaan wanneer de reactor werd opgestart met niet-geadapteerd 

slib. Door echter de pH in de reactor op een waarde van 6.7 te brengen, kon de 

methaanvorming selectief en duurzaam onderdrukt worden (hoofdstuk 5). Dit is een vrij 

eenvoudige manier om methaanvorming te onderdrukken, welke mogelijk 00k bruikbaar is 

in praktijk installaties op grotere schaal. 

In vergelijking met methaan en sulfide werd acetaat altijd slechts als minder belangrijk 

nevenprodukt (meestal minder dan 1 mM in het effluent van de reactor) uit methanol 

gevormd in de eerste bioreactor-experimenten welke beschreven zijn in hoofdstuk 2. In 

latere experimenten, beschreven in hoofdstuk 6 en 7, werd duidelijk meer acetaat gevormd 

in sulfaat- sulfietreducerende bioreactoren, met acetaatconcentraties in het effluent tot 9 

mM, waarbij 13% van het afgebroken methanol naar acetaat werd omgezet. Batch-

experimenten toonden aan dat acetaat niet als elektronendonor voor reductie van sulfaat en 

koolzuur diende, wat er op wijst dat acetaat een eindproduct is van methanolafbraak en 

geen tussenprodukt. Een opmerkelijk kenmerk van het proces is dat de acetogene 

COD-omzettingssnelheid lineair gecorreleerd is aan de sulfidogene 

COD-omzettingssnelheid (hoofdstuk 6). Hoewel minder duidelijk, geldt een dergelijk 

correlatie 00k voor de gegevens van reactorexperimenten beschreven in hoofdstuk 2 en 7 
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(Figure 1). Deze eperimenten werden bij zeer vergelijkbare reactorcondities uitgevoerd. Het 

verband tussen de vorming van sulfide en acetaat wijst er op dat de micro-organismen 

welke betrokken zijn bij sulfaatreductie, ook direct of indirect betrokken zijn bij de vorming 

van acetaat. Regressie-analyse van de gegevens (waarbij de regressielijn door de oorsprong 

loopt om vergelijking te vergemakkelijken) laat zien dat in het experiment in hoofdstuk 6, 

gemiddeld 0.14 gCOD-methanol wordt omgezet naar acetaat per gCOD-methanol gebruikt 

voor sulfaat/sulfietreductie (regressielijn B in Figure 1). In de andere twee experimenten is 

deze verhouding slechts 0.05 to 0.06 (regressielijnen A en C, gegevens uit respectievelijk 

hoofdstuk 2 en 7). De relatieve kleine afwijking tussen regressielijnen A en C zijn mogelijk 

toe te schrijven aan de natuurlijke spreiding van de gegevens, maar de sterke afwijking 

tussen lijn B en de lijnen A en C wijst er op dat de verhouding tussen de hoeveelheid 

gevormd acetaat en sulfide uit methanol niet vastligt maar blijkbaar afhangt van een of meer 

onbekende variabelen. Een gedetailleerde analyse van de gegevens en vergelijking van de 

experimentele opzet en de condities van de drie experimenten heeft echter geen duidelijk 

aanwijzingen voor een dergelijke variabele opgeleverd. Hiervoor is meer onderzoek nodig. 
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Figuur 1. Acetaat vs. sulfidevorming uit methanol in sulfaat- en sulfietreducerende 
bioreactoren. Symbolen: (+): gegevens uit hoofdstuk 2; («):gegevens uit hoofdstuk 
6; (o):gegevens uit hoofdstuk 7. 

De resultaten geven aan op dat de vorming van acetaat niet gereduceerd kan worden zonder 

vermindering van sulfidevorming. Indien methanol wordt toegepast voor biologische 

ontzwaveling van rookgassen, moet derhalve een compromis gevonden worden tussen de 

vorming van sulfide en acetaat. 

144 



Samenvattinq en discussie 

Het is noemenswaardig dat in de experimental beschreven in hoofdstuk 2, geen kobalt 

werd toegevoegd aan de thermoflele reactoren, omdat verwacht werd dat kobalt mogelijk de 

ongewenste vorming van methaan en acetaat uit methanol zou stimuleren, analoog aan het 

effect van kobalt onder mesofiele condities4. Echter, zoals werd aangetoond in hoofdstuk 7, 

wordt methaanvorming onder thermofiele sulfaat- en sulfietreducerende condities net zo 

snel onderdrukt met als zonder kobalt. Anderszijds wordt, door kobalt weg te laten uit het 

influent weliswaar een lagere acetaatvorming gevonden, maar wordt ook de sulfidevorming 

uit methanol in gelijke mate verminderd. Hieruit blijkt dat de selectiviteit van het proces 

niet verbetert door het aanleggen van kobalt-limiterende condities. 

2.2 Het functioneren van de sulfaat- en sulfiet reducerende bioreactoren gevoed met 
methanol 

De concurrentiepositie van biologische rookgasontzwaveling ten opzichte van andere 

processen wordt grotendeels bepaald door de omzettingsnelheden welke bereikt kunnen 

worden. Lage omzettingssnelheden door matige retentie van biomassa in de reactor en niet-

toereikende massa-overdracht uit de bulkvloeistof naar slib moet zoveel als mogelijk 

worden voorkomen door het juiste reactorontwerp te kiezen. In dit opzicht lijkt de 

'geexpandeerde granulair slib bed' (EGSB) reactor een goed keuze omdat ten eerste een 

goede menging van de bulk vloeistof wordt bereikt door een hoge (> 2 m.h"1) opwaartse 

stroomsnelheid van de vloeistof aan te leggen en ten tweede bij een dergelijke hoge 

stroomsnelheid alleen goed bezinkbare deeltjes in de reactor worden gehouden8. 

Hoge reductiesnelheden van sulfaat en sulfiet met methanol werden gevonden in de 

reactoren. Bij een hydraulische verblijftijd (HVT) van 10 h, werden maximum 

omzettingssnelheden van sulfiet en sulfaat van respectievelijk 6 gSC>3 ".L" .day" (100% 

sulfietverwijdering) en 4-7 gS04
2".L"1.day"1 (40-70% sulfaatverwijdering) tegelijkertijd 

bereikt in EGSB-reactoren. Dit komt overeen met een sulfidogene omzettingssnelheid van 

methanol van 6-8 gCOD.L'.day"1 (hoofdstuk 7). Onder deze condities was de resulterende 

sulfideconcentratie van ongeveer 1800 mgS.L"1 (overeenkomend met een concentratie 

'vrije'waterstofsulfide van 200 mgS.L"1 bij een pH van 7.5) limiterend voor de snelheid van 

sulfaatreductie. Bij een hydraulische verblijftijd van 3-4 h werden maximale sulfiet- en 

sulfaatreductiesnelheden van 18 gS032".L"1.day"1 (100% verwijdering) en 11-14 

gS04
2".L"1.day"1 (ongeveer 50% verwijdering) gevonden. Dit is equivalent aan een 

sulfidogene omzettingssnelheid van methanol van 19 gCOD.L"1 .day"1 (hoofdstuk 6 en 7). In 

deze situatie werd de snelheid van sulfaatreductie gelimiteerd door de hoeveelheid 

biomassa in de reactor, welke een maximale concentratie bereikte van 9 tot 10 gVSS.L" . 
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De tijd welke nodig was om de maximale sulfiet- en sulfaatomzettingsnelheden in de 

reactoren te bereiken met geadapteerd opstartslib begroeg 40 tot 60 dagen (hoofdstuk 6 en 

7). Voor praktische toepassingen lijkt zo'n periode acceptabel. 

Uit de resultaten kan worden berekend dat het theoretisch mogelijk is om bij een HVT van 

4 h, 100% verwijdering van 2.3 gS03
2".L"' en 2.7 gSO^.L"1 uit het influent (molaire 

verhouding sulfiet/sulfaat=l) te bereiken. De maximale sulfidogene omzettingssnelheid van 

methanol bedraagt dan 19 gCOD.L"1.day"1, resulterend in een maximale sulfideconcentratie 

in het effluent van 1800 mgS.L"1. In deze berekening is aangenomen dat er geen kinetische 

limitaties zijn voor sulfiet en sulfaatreductie (nulde orde reactiesnelheid). Deze aanname is 

geldig voor sulfaatomzetting, omdat de kinetiek van sulfaatreductie beschreven kon worden 

met nulde orde kinetiek tot een lage 'drempel'-concentratie van 0.1 g.L"1. Deze 

drempelwaarde is dermate laag dat voor praktische toepassingen de snelheid van 

sulfaatreductie als onafhankelijk van de sulfaatconcentratie in de reactor kan worden 

beschouwd. Echter, deze maximale sulfaatreducerende capaciteit kan alleen bereikt worden 

wanneer de reactor wordt overbelast met methanol, omdat de afbraak van methanol 

gekoppeld aan sulfaatreductie de Michaelis-Menten kinetiek volgt, met een schijnbare KM-

waarde van 0.037 gCOD.L"1 (hoofdstuk 7). Maar bij een methanolconcentratie in de reactor 

boven 0.16 gCOD.L"1 wordt nog steeds meer dan 80% van de maximale specifieke 

sulfidogene activiteit van het slib benut. 

Met een influent dat 2.3 gSOs .̂L"1 en 2.7 gS04
2".L"' bevat, wordt de 

(waterstof)sulfideconcentratie limiterend bij HVTs > 4 h en dus kan de maximale 

sulfidogene omzettingssnelheid van methanol niet worden gehandhaafd tenzij 

(waterstof)sulfide uit de reactor wordt verwijderd, bijvoorbeeld door strippen. Bij HVTs < 4 

h, limiteert biomassaretentie de sulfiet/sulfaatreductiesnelheid en hoewel de maximale 

sulfidogene omzettingssnelheid van methanol gehandhaafd blijft, wordt sulfaat niet meer 

volledig verwijderd. 

Uit het bovenstaande wordt duidelijk dat een hogere sulfidogene omzettingssnelheid van 

methanol dan 19 gCOD.L"1.day"1 alleen bereikt kan worden als de biomassaretentie van het 

proces wordt verbeterd. De biomassaretentie van maximaal 9 gVSS.L"1 is laag in 

vergelijking met de biomassaconcentraties van 20-30 gVSS.L"1 welke in andere studies met 

EGSB-reactoren bereikt werden9. De relatief slechte biomassaretentie in de reactoren is toe 

te schrijven aan het vlokkige karakter van het slib, in tegenstelling tot het zeer goed 

bezinkbare slib in methanogene EGSB-reactoren. Omdat de uitdrukking geexpandeerd 

granulair slib bed reactor verwijst naar het type slib dat zich ontwikkelt in de reactor in 

plaats van naar de reactor zelf, is dit niet een geschikte naam voor het gebruikte reactor-
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type. De reactor kan beter aangeduid worden met 'hoge-opstroom anaerobe slib bed 

(H-UASB) reactor. Een verbetering van de biomassaretentie in de reactor kan mogelijk 

worden bereikt door verlaging van de opstroomsnelheid (vup) naar waarden lager dan de 

toegpaste waarde van 3-6 m.h"1, omdat dit resulteert in minder expansie van het slibbed 

waardoor meer slib in de reactor wordt gehouden. Echter het contact tussen medium en 

biomassa wordt mogelijk ontoereikend bij een vup lager dan 2.5 m.h"', zelfs wanneer enig 

biogas wordt gevormd7. In verband hiermee moet ook worden opgemerkt dat al beneden 

een vup van 3 m.h"1 het onderste gedeelte van het slibbed, of soms zelfs het gehele slibbed af 

en toe volledig aggregeerde, resulterend in kanaalvorming en 'zuiger'vorming van het 

slibbed. Aggregatie van het bed verergert waarschijnlijk bij nog lagere opstroomsnelheden, 

hoewel dit gedeeltelijk voorkomen kan worden door lichte menging van het slibbed. Gezien 

het bovenstaande lijkt een aanzienlijke verbetering van biomassaretentie in de H-UASB 

reactoren moelijk te realiseren onder de aangelegde condities. Betere biomassaretentie 

wordt mogelijk wel verkregen door de dichtheid van slibdeeltjes te verhogen door 

bijvoorbeeld een dragermateriaal aan de reactoren toe te voegen, zoals in gefluidiseerd-bed 

reactoren. 

2.3 Microorganismen betrokken bij thermofiele sulfaatreductie met methanol 

Om het inzicht in het proces te verbeteren zijn de dominante micro-organismen in het slib 

uit een thermofiele, methanol-gevoede, sulfaat-reducerende reactor bestudeerd. De vorming 

van sulfide, methaan en acetaat in bioreactoren opgestart met niet-geadapteerd slib 

(hoofdstuk 2), verried de aanwezigheid in het slib van sulfaatreducerende bacterien (SRB), 

methanogene archaea (MA) en (homo)acetogene bacterien (AB). 

In hoofdstuk 2 werd aangetoond dat de dominante methaan-producerende micro-

organismen in het slib waterstofafbrekende methanogenen zijn in plaats van methanol-

afbrekende methanogenen. Aangezien waterstof waarschijnlijk de belangrijkste 

elektronendonor voor methanogenese is en omdat het slib ook snel sulfaat reduceerde met 

waterstof, kan geconcludeerd worden dat MA en SRB voornamelijk competeren voor 

waterstof. Dit kan verklaren waarom sulfaatreductie uiteindelijk domineert ten opzichte van 

methanogenese in de reactor, omdat uit de literatuur bekend is dat SRB de competitie voor 

waterstof winnen van MA indien voldoende sulfaat aanwezig is5>10. 

Een sulfaatreducerende bacterie, stam WW1, werd geisoleerd uit de hoogste methanol-

afbrekende, sulfaatreducerende seriele verdunning van het slib. Dit duidt er sterk op dat het 

de meest voorkomende sulfaatreduceerder is welke betrokken is bij sulfidogene 

methanolafbraak (hoofdstuk 3). Stam WW1 werd gei'dentificeerd als een 
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Desulfotomaculum-spQcies door zijn morfologie en 16SRNA-sequentie. In het slib is stam 

WW1 niet beperkt tot het gebruik van methanol, omdat de stam ook groeit op 

afbraakprodukten van methanol, zoals acetaat, formiaat en H2/C02. Daarom kan methanol 

in het slib direct gebruikt worden als elektronendonor voor sulfaatreductie door op stam 

WWl-gelijkende bacterien, maar het is ook mogelijk dat methanol eerst wordt afgebroken 

naar tussenproducten als waterstof, formiaat en acetaat door bijvoorbeeld 

(homo)acetogenen, gevolgd door sulfidogene oxidatie van deze tussenprodukten. 

Twee waarnemingen wijzen erop dat waterstof inderdaad een belangrijke elektronendonor 

voor sulfaatreductie is in het op methanol gekweekte slib. Ten eerste gebruikt stam WW1 

geen acetaat in aanwezigheid van H2. Het niet afgebroken worden van acetaat door 

reactorslib is daarom mogelijk te verklaren door aan te nemen dat waterstof de belangrijkste 

elektronendonor is voor sulfaatreductie. Ten tweede stopt groei van stam WW1 op 

methanol en sulfaat al bij een totale sulfideconcentratie van 220 mgS.L"1, door toxiciteit van 

het gevormde sulfide, terwijl groei van stam WW1 op waterstof en sulfaat tot 640 mgS.L"1 

mogelijk is. Deze laaste sulfide concentratie is ongeveer even hoog als de maximale totale 

sulfideconcentratie in de bioreactor van waaruit de stam werd gei'soleerd. Indien stam 

WWl-achtige sulfaatreduceerders inderdaad de meest belangrijke sulfaatreduceerders in de 

reactor zijn, dan is de hoge sulfideconcentratie in de bioreactor mogelijk het gevolg van 

sulfaatreductie met waterstof in plaats van methanol. 

De hypothese dat waterstof een belangrijke elektronendonor voor sulfaatreductie is in het 

slib houdt in dat tenminste een deel van het afgebroken methanol wordt omgezet naar 

waterstof (en C02). De aanwezigheid van hoge aantallen methanol-oxiderende, waterstof-

producerende bacterien in het slib werd inderdaad aangetoond (hoofdstuk 4). 

Methanoloxidatie naar waterstof gevolgd door sulfaatreductie met waterstof vormt dus 

mogelijk een belangrijke afbraakroute van methanol in het slib. Het is echter niet duidelijk 

in welke mate methanol direct wordt gebruikt door sulfaatreduceerders in het slib of eerst 

wordt omgezet naar waterstof gevolgd door omzetting van waterstof voor sulfaatreductie. 

Het is noemenswaardig dat in de niet-gedefinieerde cultures waarin de aanwezigheid van 

methanoloxiderende, waterstofproducerende bacterien werd aangetoond, ook acetaat werd 

gevormd uit methanol (hoofdstuk 4). In de cultures met de methanol-oxiderende, waterstof-

producerende species en een toegevoegde waterstofafbrekende sulfaatreduceerder, ongeveer 

15% van het ethanol naar acetaate werd omgezet. Bovendien scheen de vorming van acetaat 

strikt gekoppeld te zijn aan groei van de methanol-oxiderende bacterien. De koppeling van 

methanolafbraak naar waterstof en vorming van acetaat uit methanol in de cultures is 

verklaart mogelijk de koppeling van sulfide en acetaatvorming uit methanol in de reactoren. 
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Abbreviations 

AB: acetogenic bacteria 

Ac: acetate 

Bio-FGD: biological flue gas desulfurization 

BRES: 2-bromoethanesulfonate 

COD: chemical oxygen demand 

EGSB: expanded granular sludge bed 

HRT: hydraulic retention time (h"1) 

MA: methanogenic archaea 

MeOH: methanol 

OLR: organic loading rate (gCOD.L'.day"1) 

PS: polysaccharide 

SAA: specific acetogenic activity (gCOD.gVSS"'.day"1) 

SLR: sulfate loading rate (gS04
2".L"'.day1.) 

SMA: specific methanogenic activity (gCOD.gVSS"'.day"') 

SMDR: specific methanol degradation rate (gCOD.gVSS'.day"1) 

SRB: sulfate-reducing bacteria 

SSA: specific sulfidogenic activity (gCOD.gVSS'.day1) 

SVI: sludge volume index (mL sludge per gTSS) 

TS: total sulfide = the sum of the H2S, HS' and S2" species 

TSS: total suspended solids 

UASB: upflow anaerobic sludge blanket 

VAC: volumetric acetogenic COD-conversion (gCOD.I/'.day"1) 

VFA: volatile fatty acids 

VMC: volumetric methanogenic COD-conversion (gCOD.L-l.day-1) 

VSC: volumetric sulfidogenic COD-conversion (gCOD.I/'.day1) 

VSS: volatile suspended solids 
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onderzoekershumeur danig bedierf. Voorvallen zoals het volledig overstromen van het 'modulair 
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bezoek aan het IWA-congres in Merida, Mexico. Het werken op de twee vakgroepen 
Milieutechnologie en Microbiologic gaf het voorrecht van het hebben van veel collega's, waarvan 
velen mijn verblijf in Wageningen hebben veraangenaamd. Niet alleen binnen de gebouwen van de 
universiteit, maar ook op het (zaal)voetbalveld (een blik op de ranglijst van de 
zaalvoetbalcompetitie bracht een feestelijk humeur), op de squashbaan, op de bospaden van de 
Veluwe, in de kroeg enzovoort. De ruimte ontbreekt hier om jullie allemaal te noemen, maar mijn 
dank daarvoor is daarom niet minder groot. De reis naar Berlijn samen met Ans, Alette, Caroline, 
John, Hauke en Fons voor het lopen van de plaatselijke marathon is voor mij onvergetelijk. 
Op deze plaats past een welgemeend dankwoord aan al degenen die de afgelopen jaren mee hebben 
gewerkt aan het tot stand brengen van dit proefschrift. Om te beginnen bedank ik Gatze Lettinga, 
Fons Stams en Look Hulshoff Pol. Gatze, jouw gedrevenheid gaf inspiratie en motivatie. Fons, 
bedankt voor je wetenschappelijke inbreng, ook aangaande technologische aspecten, en voor de 
vrijheid waarmee ik het onderzoek kon inrichten. Het zwaartepunt van het promotie-onderzoek lag 
weliswaar op de milieutechnologie, maar er komt vast nog microbiologische spin-off. Look, ik heb 
je inbreng tijdens onze regelmatige overleg-sessies erg gewaardeerd. 

Gabi Tandlinger, Marc van Bemmel, Eelco Bots, Tran-Minh Chi, Jean-Paul Haerkens, Sjoerd de 
Vries en Mariska Ronteltap wil ik bedanken voor de bijdrage die zij als student aan het onderzoek 
hebben gegeven. Voor de gegeven ondersteuning bedank ik Jo Ackermann-Jacobs, Use Gerrits-
Bennehey, Sjoerd Hobma, Liesbeth Kesaulya-Monster, Johannes v.d. Laan, Frits Lap, Caroline 
Plugge, Wim Roelofsen, Nees Slotboom, alsook de mensen van de mechanische en 
elektrotechnische werkplaatsen en de glasmakerij. Heleen Goorissen en Theo Hansen bedank ik 
voor de prettige samenwerking in het gezamenlijke STW-project. 

Ook een aantal mensen 'buiten' de universiteit wil ik bedanken. 

Annelies van der Heijden en Tjip Boersma: bedankt voor jullie geboden gastvrijheid, deze was en 
is hartverwarmend. 

Caroline, jou wil ik bedanken voor je ondersteuning gedurende de afgelopen jaren. Na deze 
stormachtige periode komen we in rustiger vaarwater. Katinka, bedankt voor de welkome 
onderbrekingen tijdens het schrijven. 

Heit en Mem, jullie steun was onontbeerlijk voor het volgen van het lange traject dat aan de 
promotie voorafging. Heel veel dank daarvoor. 
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