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Background

Genetic variations have vital effects on an organism’s phenotype, which can be studied 

with haplotypes. Haplotypes can refer to the combinations of alleles or a group of single 

nucleotide polymorphisms (SNPs) found on the same chromosome [1]. Haplotype anal-

ysis has applications in the diagnosis of genetic diseases, ancestry inference, and drug 

design [2–4]. Generally, the differences in the two haplotypes of an individual’s genome 

are mainly caused by heterozygous single nucleotide polymorphisms (SNPs) where the 

haplotypes contain two distinct alleles. In diploid genomes, some parental alleles exhibit 

different DNA methylation patterns, which may cause variance in individuals with 
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respect to resistance to diseases and responses to therapeutic drugs [5–8]. �erefore, 

DNA methylation, in addition to SNPs, is vital for distinguishing haplotypes.

In addition, there is a link between SNPs and DNA methylation, and they synergisti-

cally regulate gene expression. �e association between SNPs and gene expression can 

be mediated by DNA methylation [9]. In recent years, epigenetics-GWAS (Genome-

wide association studies) has been proposed, which can accurately detect the association 

between DNA methylation, histone modification and phenotype [10]. A series of genes 

related to diabetes [11, 12], the psychosis of humans [13], and the flowering and develop-

ment of plants [10] have been analyzed by GWAS and epigenetics-GWAS [14]. �ese 

results suggested that there are significant interactions between DNA methylation and 

SNPs in the regulation of physiological functions [9]. �erefore, appropriate software is 

needed to obtain haplotype blocks from accurate allele-specific DNA methylation and 

SNP haplotype information for DNA methylation related study.

DNA methylation has different methylation patterns in alleles, which can lead to 

allele-specific expressed genes and X chromosome inactivation [5, 6, 15]. However, 

the differential DNA methylation patterns in alleles remain unclear to date. �us far, 

we know that SNPsplit [16] can distinguish allele-specific DNA methylation (ASM) in 

adjacent regions according to SNP loci, but the results depend heavily on the distribu-

tion of SNPs in the whole genome. MONOD2 [17] and MethPipe [18] can perform allele 

specific DNA methylation analysis, but they didn’t combine SNP information and Hi-C 

interaction information.

In this study, we developed a new method, MethHaplo, for haplotype region identi-

fication with ASM and SNPs from whole-genome bisulfite sequencing (WGBS) data. 

�e haplotype identification is carried out by analyzing the ASM patterns of the nearby 

cytosines using a hypergeometric distribution and an iterative extending approach. 

�e correctness of haplotype identification was validated on human cell lines (K562 

and HepG2) and laboratory-generated Arabidopsis F1 hybrids with known haplotype 

information. Our results showed that the haplotype identification could not only recon-

struct longer haplotype regions but also link more SNPs to the relative haplotype blocks. 

�e analyses in the A549, GM12878, HepG2, HUES64, IMR90, and K562 human cell 

lines showed that haplotype identification could reveal some specific patterns in DNA 

methylation from WGBS, gene expression from RNA sequencing (RNA-Seq), histone 

modification from chromatin immunoprecipitation sequencing (ChIP-Seq) and three-

dimensional chromosome architecture at the haplotype level.

In summary, MethHaplo can help us identify better haplotypes, which may contrib-

ute to DNA methylation association analysis, SNP association analysis and the study of 

parental inheritance-related disease and hybrid vigor in agriculture [19–22].

Implementation

MethHaplo: Haplotype region identi�cation with allele-speci�c DNA methylation, SNPs 

and Hi-C data

Alleles may have different patterns of DNA methylation, and allele-specific DNA meth-

ylation affects the level of allele-specific expression (Fig.  1a) [15]. According to the 

sequence reads covering the ASM sites, DNA methylation haploid blocks can be assem-

bled. Based on this idea, we proposed a new method, MethHaplo, for haplotype region 
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identification with ASM and SNPs. Figure 1b shows a diagram of haplotype region iden-

tification with ASM. In the assembly process, all the totally methylated (methylation 

level > 0.9) and the totally unmethylated (methylation level < 0.1) sites (highlighted with 

the gray box in Fig. 1b) were removed first, and only partially methylated cytosine sites, 
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Fig. 1 Illustration of haplotype region identification. a ASM and its effect on gene expression. Solid black 

circles represent methylated sites, and open circles represent unmethylated sites. In this example, the 

gene in the paternal haplotype without DNA methylation is expressed. b Schematic of haplotype region 

identification with ASM. c Schematic of haplotype region identification with SNPs, ASM and Hi-C data. 

The left flow chart represents the haplotype region identification with SNPs only, and the right flow chart 

represents haplotype region identification with ASM, SNPs, and Hi-C data. d A specific example of haplotype 

region identification with ASM, SNPs and Hi-C



Page 4 of 19Zhou et al. BMC Bioinformatics          (2020) 21:451 

denoted as effective sites, were retained for haplotype region identification.1 We used 

Mri to represent the methylation status on the genome cytosine site i from the read r 

as methylated, and Uri to represent the methylation status on the genome cytosine site 

i from the read r as unmethylated. �en, we counted the number of reads with different 

combinations of methylation status in the adjacent sites covered by the same reads:

where j is the genomic cytosine site adjacent to the cytosine site i with larger genomic 

coordinate and sufficient coverage, N
(

Mri,Mrj

)

 is the number of reads with both meth-

ylated status at the adjacent effective cytosine sites i and j, and others are similar with 

different combinations of methylation status. �e range of i and j is from 1 to the length 

of the chromosome considered.

When SNPs were considered, we used Rri to represent the SNP status in the read r 

covered on the genome site i was the same as the reference genome and used Vri to rep-

resent that the SNP status in the read r covered on the genome site i was different from 

the reference genome. Similarly, we counted the number of reads with different combi-

nations of methylation status and SNP status in the adjacent sites covered by the same 

reads:

�e P value between the adjacent effective cytosine sites is calculated by the hypergeo-

metric distribution [23]. �e formula is as follows:

For each paired adjacent DNA methylation sites, Fisher’s exact test was performed 

if each valid cytosine site was covered by at least n bisulfite sequencing reads (e.g., 

n = 4). �e P values were adjusted with the false discovery rate (FDR) method for mul-

tiple hypothesis testing, proposed by Benjamini and Hochberg [24]. If the association 

between two adjacent sites meets the programmed criteria, these two adjacent sites 

were defined as the ASM sites and assigned to a haplotype block. �en, the association 

between the site with larger coordinate and its next adjacent site was calculated. On this 

basis, the block was further extended until the final haplotype result was obtained.

A region is defined as an allele-specific DNA methylation region (ASMR) if the region 

meets the following criteria: (1) the adjusted P value of the adjacent sites is smaller than 

the predefined threshold (default: 0.05); (2) �e sum of the maximum value and the sec-

ond maximum value of the combination of the adjacent sites exceeds 90% of the total 

number of covered reads; and (3) �e ratio of the maximum value of the combination of 

the adjacent sites to the second largest value is less than 2. Here the maximum value and 

the second maximum value are from the values in the formula (1) if only DNA methyla-

tion is considered, and are from the values in the formula (2) if DNA methylation and 

SNPs are considered.

(1)Nij = N
(

Mri,Mrj

)

,N
(

Mri,Urj

)

,N
(

Uri,Mrj

)

,N
(

Uri,Urj

)

(2)Nij = N
(

Mri,Rrj

)

,N
(

Mri,Vrj

)

,N
(
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)

,N
(

Uri,Vrj

)
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(

N
(

Mri,Mrj

)

,N
(

∗,Mrj

)

,N
(

∗,Urj

)

,N
(

Mrj , ∗
))

1 �e methylation levels (0.1 and 0.9) were empirically defined; Besides, in the software, their values can be adjusted 
according to the user’s preferences.
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High-throughput chromosome conformation capture (Hi-C) is a method that can 

generate reads with spatial proximity but with a long genomic distance [25]. Hi-C data 

have been proposed for assisting genome assembly by linking the scaffolds [26]. To fur-

ther improve the haplotype region identification, we combined Hi-C data in the method 

and linked haplotype blocks with longer genomic distance by Hi-C interaction reads to 

obtain longer blocks. In our tool, we developed the HapScore algorithm to combine the 

WGBS data and Hi-C data to obtain longer haplotypes (Fig. 1c). A specific example of 

haplotype region identification with ASM, SNPs and Hi-C is shown in Fig. 1d.

For Hi-C-based haplotype region identification, the heterozygous SNP sites were 

used for haplotype region identification. Because DNA methylation has different 

methylation patterns in the positive and negative strands, we distinguished BAM 

files according to the positive and negative strands with SAMtools. �en, we used 

the HapCUT2 algorithm [27] to complete the haplotype region identification with the 

effective DNA methylation information and the heterozygous SNP information. �e 

haplotype region identification diagram is shown in Fig. 1c.

We developed the HapScore algorithm to merge the WGBS data haplotype with the 

Hi-C data haplotype. We defined Bi as the haplotype results of the WGBS data at the 

i-th position on the genome and Hi as the haplotype results of the Hi-C data at the 

i-th position on the genome. We set Si as the score obtained by the Bi and Hi.

�en, in a certain overlapping haplotype interval between the two sets of data, the 

consistency score (HapScore) can be calculated as:

where n represents the number of SNPs in the overlapping block.

When the HapScore is greater than the threshold defined in the program, the merge 

is completed according to the two sets of haplotype results, and a new haplotype 

block result is produced.

In the haplotype length analysis portion, we used the HapCUT2 algorithm and 

HapScore algorithm. �e ASM analysis used the hypergeometric algorithm. �e 

format of the ASM result file is as follows: "chromosome start end LengthofBlock 

NumberofCytosines".

Allele-speci�c gene expression analysis

Raw RNA-Seq reads were first trimmed using FastQC (https ://www.bioin forma tics.

babra ham.ac.uk/proje cts/fastq c/) and Trimmomatic [28] with default parameters to 

remove the adaptors and the low-quality reads. Clean reads were mapped to the human 

reference genome hg38 using Hisat2 [16], and then SAMtools [29] was used to sort the 

BAM file. Allele-specific expression genes (ASEGs) were detected by ASEQ [30].

(4)Si =
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Allele-speci�c CTCF analysis

�e low-quality read trimming and the artificial sequence trimming were performed 

with FastQC and Trimmomatic. �e genome was masked (a genome in which all 

known SNP positions were masked with the ambiguity base ‘N’) before alignment by 

the genome mask script in SNPsplit [16] with default parameters. Clean reads were 

mapped to the hg38 masked genome using Bowtie2 [31], and then SAMtools was 

used to sort the BAM file. �e peaks were processed with MACS2 [32]. �e sorted 

BAM file was then processed with SNPsplit. �e allele-specific CTCF binding peaks 

must satisfy "total number of allele reads in the peaks are larger than 10" and “the fold 

change between alleles is larger than 2”. �e percentage of the allele-specific CTCF 

peak was calculated by the number of allele-specific CTCF peaks divided by the total 

number of CTCF peaks.

Allele-speci�c Hi-C interaction analysis

First, we masked all bases in the genome that were genotyped as SNPs in either the 

mouse genome or human genome by the genome mask script in SNPsplit. �ese 

bases were masked as "N" to reduce reference bias mapping artifacts. �e raw reads 

were aligned to the hg38 (human) masked genome or mm10 (mouse) masked genome 

with HiC-Pro [33], and then SAMtools was used to sort the BAM file. �e sorted 

alignment BAM file was processed with SNPsplit. �en, we removed all the unsigned 

alignment reads, which could not be distinguished from parental alleles. �e allele-

specific Hi-C interaction bins must satisfy "the total number of reads in the bins is 

larger than 20" and “the fold change between alleles is larger than 2”.

Methy-HiC analysis

Raw reads were first trimmed as paired-end reads using Trimmomatic with the default 

parameters to remove the adaptors and the low-quality reads. We aligned Methy-HiC 

reads to the mouse reference genome mm10 using Burrows-Wheeler Aligner (BWA) 

and Bhmem (https ://bitbu cket.org/dnaas e/bisul fiteh ic/src/maste r/). �e DNA meth-

ylation ratio was calculated by BatMeth2-calmeth [34], and then SAMtools was used 

to convert the reads to the BAM format. MethHaplo was used for haplotype region 

identification (with HapCUT2 algorithms [27]).

Results

MethHaplo yields longer haplotypes

To investigate the performance of MethHaplo, we performed haplotype region identi-

fication under 4 different conditions: (1) haplotype regions identified with SNP infor-

mation only, (2) haplotype regions identified with ASM only, (3) haplotype regions 

identified with ASM and SNPs, and (4) haplotype regions identified with ASM, SNPs 

and Hi-C data. �e data we used were the publicly available whole-genome bisulfite 

DNA methylation sequence data and Hi-C data from different human cell lines (A549, 

GM12878, HepG2, HUES64, IMR90, and K562). Using the A549 cell line as an exam-

ple, the results in Fig. 2a show that the total length of the haplotype identified with 

ASM and SNP information was seven times longer than that with SNP information 

https://bitbucket.org/dnaase/bisulfitehic/src/master/
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only. �e total length of haplotype blocks identified with ASM only was also much 

longer than that assembled with SNPs only.

Figure 2b shows that there are more haplotype blocks with a length of 2000 bp or more 

assembled using ASM and SNPs than those assembled using SNPs only, and the haplo-

type region identification was further improved with Hi-C information. We counted the 

number of repeats covered by haplotype blocks. Figure 2c shows that there were more 

repeats covered by haplotype blocks from ASM and SNPs. Finally, we analyzed the dis-

tribution of haplotype region identification blocks on chromosomes. �e coverage of 

haplotype blocks identified with both ASM and SNPs was much higher than that assem-

bled with SNPs only (Fig. 2d). �e haplotype regions identified from HepG2, K562, and 

IMR90 cell lines are shown in Additional file 1: Figure S1.
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To determine the effects of ASM on SNP assembly, we calculated the proportions of 

SNPs assigned to different haplotype blocks with and without ASM information. Fig-

ure 2e, f show that more (~ 24%) heterozygous SNPs could be assembled in the haplo-

type blocks by ASM and SNPs than those with SNP information only.

Veri�cation of the accuracy of MethHaplo in di�erent scenarios

To assess the correctness of our identified haplotype regions, we used the latest pub-

lished haplotype genomes for the K562 and HepG2 cell lines [35, 36] as references to 

validate the haplotype regions identified by MethHaplo. Figure 3a, b show that Meth-

Haplo could generate more correct SNPs and fewer incorrect SNPs in haplotypes than 

those from SNP information alone.

To further verify the accuracy of MethHaplo, we analyzed the characteristics of ASM. 

At present, the tools that can detect ASM without relying on SNP information include 
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MONOD2 [17], MethPipe [18] and Amrfinder [19]. In fact, Amrfinder and MethPipe are 

the same software programs used in the detection of ASM. To provide an accurate crite-

rion for measuring ASM accuracy, we grew the Arabidopsis thaliana strains Cvi and Ler 

and their hybrid and obtained the WGBS data of the Cvi, Ler and F1 hybrids. MethPipe, 

MONOD2 and MethHaplo were used to detect ASM in the F1 hybrid, and the results 

were further compared with the parents (Cvi and Ler). MethHaplo and MONOD2 have 

higher sensitivity than MethPipe, and the results detected by MethHaplo are more pre-

cise (Fig. 3c). �e assembly result in F1 hybrids is consistent with the above conclusion 

that ASM improves the result of haplotype region identification (Additional file 1: Figure 

S2).

In addition, we analyzed the relationship of ASM with different properties. As 

reported, ASM is highly correlated with imprinted genes and allele-specific expressed 

genes [15, 37]. �erefore, we downloaded all known validated human imprinted genes 

from the "imprinted gene database" (https ://www.genei mprin t.com/) and analyzed the 

overlap between ASM genes (ASMGs) and imprinted genes. As expected, imprinted 

genes significantly overlapped with ASMGs in the tested cell lines (Table 1, P value was 

calculated by Fisher’s exact test). Furthermore, we analyzed the transcriptome data of 

the tested cell lines, and obtained allele-specific expressed genes (ASEGs). Similarly, 

ASEGs were significantly enriched with ASMGs (Table 2).

ASM is widely distributed on female X chromosomes for X chromosome inactivation 

[38]. To test this hypothesis, we analyzed the distribution of ASM regions on all chro-

mosomes. Figure 3d, e show that the proportion of ASM regions on the X chromosome 

is 6–17% in female cell lines (K562, IMR90, and GM12878). However, the distribution 

of ASM regions only accounts for 1.4–2.6% on the X chromosome in male cell lines 

Table 1 Overlap between ASMGs and known imprinted genes

a There are 87 known imprinted genes in human genome. For each tested cell line, the second column shows the number 

of ASMGs and the third column shows the number of overlapped genes between the ASMGs and known imprinted genes

Cell line ASMG Overlapa P value

A549 1851 19 < 2.2e−16

HUES64 952 25 < 2.2e−16

GM12878 5919 41 < 2.2e−16

IMR90 2556 30 < 2.2e−16

HepG2 1929 26 < 2.2e−16

K562 1758 15 < 2.2e−16

Table 2 Overlap between ASMGs and ASEGs

a For each tested cell line, the second column shows the number of ASMGs, the third column shows the number of ASEGs, 

and the fourth column shows the number of overlapped genes between the ASMGs and ASEGs

Cell line ASMG ASEG Overlapa P value

A549 1851 1648 141 < 2.2e−16

HUES64 952 342 42 < 2.2e−16

GM12878 5919 1352 316 < 2.2e−16

IMR90 2556 1426 162 < 2.2e−16

HepG2 1929 3175 237 < 2.2e−16

K562 1758 4092 319 < 2.2e−16

https://www.geneimprint.com/
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(HepG2, A549, and HUES64). Due to X chromosome inactivation in female cells, there 

should be more ASM in female cells. �erefore, these results indicate that MethHaplo 

has very high accuracy.

Genomic properties of ASM on the whole genome

To characterize the ASM predicted by MethHaplo, we examined the properties of 

ASM with different genomic properties. We first studied the distribution of ASM in the 

genome. �e results in Fig. 4a show that ASM was highly enriched in the exon and pro-

moter regions. �en, we analyzed the distribution of ASM among all the tested cell lines 

and found that most ASM was specific to individual cell lines (Fig. 4b, Additional file 1: 

Table  S1). A previous report showed that partial DNA methylation domains could be 

used to distinguish different cell lines [39]. Here, the high specificity of ASM indicates 

that ASM can also be used as a marker to distinguish different cell lines.

In imprinting and X chromosome inactivation, ASM leads to monoallelic expression 

of genes [40, 41]. �us far, genome-wide studies on the relationship between ASM and 

allele expression are rare. �us, we further analyzed the profile of ASM on genes. �e 

results showed that ASM was significantly enriched in the vicinity of the transcrip-

tion start site (TSS) regions in all tested cell lines (Fig. 4c, Additional file 1: Figure S3). 

Additionally, combined with the gene expression data, we found that ASM tended to 

be distributed on expressed genes (Fig. 4d). To understand whether DNA methylation 

is enriched in highly expressed alleles, we analyzed the association between ASM and 

allele-specific expression. As shown in Fig. 4e, haplotypes with methylated alleles inside 

the gene body had higher allele-specific expression. �ese results demonstrate that the 

genes in the alleles with gene body methylated are more likely to be expressed. �is find-

ing is in accordance with previous studies showing that DNA methylation in the gene 

body positively regulates gene expression [34, 42].

Finally, we analyzed the distribution of ASM on repeats and histone modification 

regions. �e distribution of ASM in long interspersed repetitive elements (LINEs) is 

significantly lower than that in other repeat regions (Fig. 4f ). ASM distributes more on 

active histone modification factors (Fig. 4g). �ese results suggest that ASM is signifi-

cantly associated with gene expression or gene transcription regulation.

CTCF tends to distribute on unmethylated haplotypes

CTCF is one of the most critical regulatory factors and plays a vital role in the spatial 

architecture of chromosomes and gene expression [43–45]. Studies have reported that 

CTCF binding sites are sensitive to DNA methylation [46, 47]. Here, we aim to deter-

mine whether a similar relationship exists between DNA methylation and CTCF at the 

haplotype level. MethHaplo can help in this analysis. First, we analyzed the distribution 

of ASM on the allele-specific CTCF (AS-CTCF) binding sites and found that ASM was 

highly concentrated in the AS-CTCF binding regions (Fig.  5a). Furthermore, we cal-

culated the impact of DNA methylation on CTCF binding at the haplotype level. �e 

alleles tend to be unmethylated when the haplotype has higher CTCF binding (Fig. 5b). 

An example of the relationship between ASM and AS-CTCF shows that the unmethyl-

ated haplotype has a higher CTCF peak (Fig. 5c). In short, CTCF tends to be distributed 
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on unmethylated haplotypes. �is result is consistent with the reported conclusion that 

CTCF is sensitive to DNA methylation [46, 47].

High association between spatially adjacent ASM sites in haploid three-dimensional 

structure

In our method, the Hi-C reads with SNP information were used to link different hap-

lotype blocks. To understand the association between adjacent ASMs in spatial struc-

ture, we obtained all the phased Hi-C reads covered by hetero-SNPs. We calculated 

the association between ASM at both ends of haplotype-HiC interaction reads. Eighty-

seven percent of the ASM sites showed the same methylation pattern on both sides 
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of haplotype-HiC interaction reads (Fig. 6a). �ese results indicate that ASM also has 

a high association between spatially adjacent regions of haploid three-dimensional 

structure.

Moreover, we explored the relationship between alleles and the three-dimensional 

structure of haploid genomes. �e results showed that ASEGs were considerably 

enriched in the AS-HiC region (Fig. 6b).

�us, by combining Hi-C interaction information, longer haplotypes can be assembled 

with MethHaplo, which can benefit many analyses at the haplotype scale, such as ASM 

and ASEG.

More allele-speci�c haplotype reads can be obtained from the data with simultaneous 

detection of DNA methylation and Hi-C

Methyl-HiC [48] is an experimental technique for the simultaneous detection of DNA 

methylation and Hi-C that was recently published. To explore whether the Methy-HiC 

data will lead to longer haplotype results, we used data from the mouse hybrid embry-

onic stem cell line F123 Methy-HiC [48] and F123 WGBS [49] to complete the haplotype 

region identification with and without DNA methylation information. �e total haplo-

type length of the Methy-HiC assembly was five times longer than that of the WGBS 

assembly under the same conditions, and the number of haplotype blocks was obviously 

lower than that of blocks in the WGBS haplotype region identification results (Fig. 7a). 

�ese data indicate that the simultaneous combination of DNA methylation and Hi-C 

can significantly improve the haplotype region identification results.

Although SNPs can be used to distinguish haplotype alignment reads, the distin-

guishable reads are very limited. Only 2% of allele-specific interaction reads can be 

distinguished by SNPs. When DNA methylation information was used to distinguish 

interaction reads within haplotypes, 10% of allele-specific interaction reads could be 
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distinguished (Fig. 7b, Additional file 1: Figure S4). �erefore, DNA methylation infor-

mation has important roles in distinguishing the interaction sequences within the 

haplotype.

Discussion

In this paper, we proposed a new method, MethHaplo, for haplotype region identifica-

tion with ASM and SNPs. ASM links more SNP sites in the haplotype region identifica-

tion, and haplotypes from combined ASM and SNPs are much longer than those from 

SNPs only. Our results show that the application of ASM could assemble 24% more het-

erozygous SNPs into different haplotypes (Fig. 2e, f ). Moreover, the three-dimensional 

chromosome structure data (Hi-C) can further enhance the haplotype region identifica-

tion (Fig. 2a, b). Compared with the recently published haplotype regions of the K562 

and HepG2 cell lines identified by whole-genome sequencing, MethHaplo can generate 

more accurate haplotype regions (Fig. 3a, b).

GWAS is a method to search for variation sequences in human, animal or plant 

genomes. Epigenetics-GWAS can accurately detect the association between DNA 
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methylation, SNP and phenotype. �ere is a link between SNP and DNA methylation, 

and they can synergistically regulate gene expression [9]. However, there is no suitable 

method to explore the relationship and distribution between SNP and DNA methylation 

in haplotype block view. In this study, we completed haplotype region identification by 

combining allele-specific DNA methylation and SNP information. As a result, the asso-

ciation between SNPs and ASM is included in the haplotype region identification blocks, 

which is critical for the study of DNA methylation and SNP coregulation of gene expres-

sion and phenotypic analysis. It will be beneficial to the study of parental inheritance-

related disease and hybrid vigor in agriculture.

According to the haplotype region identification results, we can obtain ASM regions. 

By analyzing the distribution of ASM, we found that ASM sites are concentrated in 

exonic regions (Fig. 4a). Moreover, ASM is significantly enriched in the TSS regions and 

distributed in the gene bodies of highly expressed genes (Fig. 4c). In addition, the distri-

bution of ASM among different cell lines is highly specific (Fig. 4b). �us, ASM can also 

be used as a marker to distinguish different cell lines. Further analysis of the relationship 

between ASM and histone modification marks shows that ASM is mainly distributed 

on the activation-related histone modification marks (Fig. 4g). �e specific distribution 

of ASM on different cells and the significant enrichment of ASM in highly expressed 

genes indicate that ASM plays an important role in regulating gene expression. Genes on 

homologous chromosomes have different DNA methylation patterns, and this may have 

an effect on an individual’s resistance to disease and lead to the differences in response 

to therapeutic drugs [50]. �erefore, accurate analysis of ASM has an essential role in 

the further exploration and classification of diseases such as cancer. Moreover, the hap-

lotype region identification  approach in this work will help to further elucidate DNA 

methylation on development and disease at the haplotype level.

CTCF is a transcription factor, which performs important functions in the genome, 

including regulating gene expression and chromatin structure. Related studies have 

shown that CTCF mutation will lead to changes in three-dimensional structure and gene 

expression, and high-frequency CTCF mutations have been found in some high-risk 

tumors [51–53]. Recent studies show that CTCF is enriched in the boundaries of topo-

logically associated domains (TADs) [54], and could be an important protein mediat-

ing the long-range chromatin interactions [55, 56]. �e results of ASM and AS-CTCF 

analyses demonstrate that ASM is highly enriched in the AS-CTCF regions, and there 

is a negative association between them (Fig. 5a). �en, with the Hi-C data analysis, we 

found that ASM has a very high association between spatially adjacent DNA sequences. 

Our statistical results also indicate that ASEG is significantly enriched in the AS-HiC 

region, and a significant positive association exists between ASM and ASEG (Fig. 6a, b). 

�erefore, we can speculate that the different spatial structures of chromatids are more 

convenient for ASM to regulate the expression of allele genes. �ese results provide a 

basis for further study on the relationship between DNA methylation, gene expression, 

CTCF and chromatin three-dimensional structure at the haplotype level.

Finally, there could be some limitations in our method. For our design, we expect that 

MethHaplo can obtain accurate allele specific DNA methylation regions. Still, we can-

not exclude the possibility that the heterogeneity of cells can contribute to certain incor-

rect allele specific DNA methylation regions identified from a population of cells. For 
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example, the DNA methylation profiles from different cell types can be different. If the 

WGBS data is from such a population of heterogeneous cells, the detected ASM results 

probably contain differential DNA methylation regions between different cell types as 

allele-specific DNA methylation, especially when there is no SNP information available. 

Combining SNP information, it can help to distinguish ASM regions from true haplo-

type blocks. In our tested data, more than 50% of the ASM regions contain SNPs. Never-

theless, there could be SNPs as somatic mutations in the cells. Such SNPs could not help 

to accurately distinguish allele specific DNA methylation regions and intercellular dif-

ferential methylation regions. Currently, the single cell sequencing technology is devel-

oping very fast, which can differentiate the genetic and epigenetic information between 

different cells. We hope that the correct identification of haplotype blocks can be better 

solved with the single-cell sequencing technology in the future.

Conclusions

Here, we describe a new method, MethHaplo, for DNA methylation haplotype region 

identification. We show that by combining ASM and SNPs, MethHaplo obtains haplo-

type regions that are ten times longer than those with SNPs only. Additionally, Meth-

Haplo can integrate WGBS and Hi-C to further improve the performance of haplotype 

region identification. As MethHaplo provides an accurate and less fragmented set of 

haplotypes, new analyses, such as the association between SNPs and DNA methylation, 

can be carried out at the haplotype level.
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