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Methicillin-resistant Staphylococcus aureus, first identified just over 4 decades ago, has undergone rapid evo-

lutionary changes and epidemiologic expansion. It has spread beyond the confines of health care facilities,

emerging anew in the community, where it is rapidly becoming a dominant pathogen. This has led to an

important change in the choice of antibiotics in the management of community-acquired infections and has

also led to the development of novel antimicrobials.

HISTORICAL BACKGROUND
AND EPIDEMIOLOGY

It was only 1 year after an Oxfordshire constable, Albert

Alexander, became the first recipient of penicillin, that

Rammelkamp reported the identification of isolates of

Staphylococcus aureus resistant to this miracle drug [1].

Infections caused by penicillin-resistant S. aureus were

initially limited to hospitalized patients and were only

later detected in the community, where they eventually

became common [2]. In an historical reprise, the iden-

tification of methicillin-resistant S. aureus (MRSA) was

reported within 1 year after the 1960 introduction of

this semisynthetic penicillin, and once again, an or-

ganism that was initially present only in hospitals later

became prevalent in the community [2, 3]. The spread

of MRSA from the hospital to the community was a

predictable event. The emergence in the past decade of

novel strains of MRSA in the community that are ge-

netically distinct from MRSA strains originating in the

hospital was perhaps less anticipated.

MRSA is currently the most commonly identified

antibiotic-resistant pathogen in US hospitals [4, 5]. Al-
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though 25.9% of S. aureus strains isolated from out-

patients were methicillin resistant [5], most of these

strains were recovered from individuals who were likely

to have acquired them in the health care environment

[6, 7]. Their association with health care may, however,

have been indirect; household contacts of individuals

with hospital-acquired MRSA (HA-MRSA) are at sig-

nificantly increased risk for MRSA colonization [8]. In

a recent and dramatic evolutionary development, how-

ever, infection with novel community-acquired strains

of MRSA (CA-MRSA) in previously healthy individuals

without either direct or indirect association with health

care facilities has emerged as a new and important pub-

lic health problem [9–11].

In some community settings, CA-MRSA have be-

come the prevalent form of S. aureus isolated from

cutaneous infections, especially among children. At a

Houston pediatric hospital, 74% of community-ac-

quired S. aureus strains isolated since 2001 have been

resistant to methicillin [12]. Clusters and outbreaks in

adolescents and adults have been reported to occur in

Native Americans [13], homeless youth [14], men who

have sex with men [9], jail inmates [10], military re-

cruits [15], children in child care centers [16], and

competitive athletes [17]. Although most infections

have involved skin and skin structures, potentially lethal

invasive infections have also occurred. The report in

1999 of the deaths of 4 previously healthy children in

Minnesota and North Dakota who did not have pre-
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Figure 1. Diagram showing the staphylococcal cassette chromosome
mec type IV (SCCmec type IV) (adapted from [24]). SCCmec type IV lacks
antibiotic resistance elements directed at non–b-lactam antibiotics that
are present in SCCmec types characteristic of hospital-acquired methi-
cillin-resistant Staphylococcus aureus. ccrA2 and ccrB2 designate cassette
chromosome recombinases. WIS 1272 designates IS431mec insertion se-
quences. mecA encodes PBP2a. orfX indicates an open reading frame.
DmecR1 is a signal transducer gene whose activation by b-lactam an-
tibiotics inactivates the mecI repressor gene product, allowing expression
of mecA.

vious contact with health care facilities unequivocally illustrated

the potential dangers presented by CA-MRSA [18].

Reversing and completing an epidemiologic cycle, CA-MRSA

are now being introduced from their site of origin in the com-

munity into the hospital [19, 20]. At some hospitals, CA-MRSA

are displacing classic hospital-associated strains of S. aureus,

which is consisitent with the hypothesis that the former may

be more fit [21].

MOLECULAR EPIDEMIOLOGY OF METHICILLIN
RESISTANCE

The mechanism of resistance to methicillin was uncovered in

1981 with the the identification of reduced-affinity penicillin-

binding proteins in MRSA [22]. The altered protein, PBP2a

(PBP2′ in the United Kingdom), retains effective transpeptidase

activity while having reduced affinity for penicillin and other

available b-lactam antibiotics. PBP2a exhibit both a reduced

rate-constant for acylation by b-lactams and elevated dissoci-

ation constants [23]. These 2 factors, acting together, prevent

acylation of PBP2a and thus result in b-lactam resistance [23].

PBP2a is encoded by the mecA gene (for a glossary of genetic

terms, see Appendix) [24]. The mobile mecA gene complex is

comprised of mecA together with its regulator genes, mecI and

mecR, and resides within a genomic island, the staphylococcal

cassette chromosome mec (SCCmec) that constitutes 1%–2%

of the ∼2.9 million–bp S. aureus chromosome [24–26] (figure

1). SCCmec also contains the insertion sequence, IS431mec, as

well as recombinases necessary for site-specific integration and

excision. Some SCCmec types also contain various additional

genetic elements, such as Tn554 (which encodes resistance to

macrolides, clindamycin, and streptogramin B) and pT181

(which encodes resistance to tetracyclines) [2].

The expression of PBP2a is induced by the binding of b-

lactam antibiotics to a cytoplasmic membrane sensor-trans-

ducer receptor encoded by the mecR1 gene, triggering a signal

leading to the proteolytic release of the mecI repressor from

the operator region of the mecA gene [27, 28]. Phenotypic

resistance to methicillin is variably expressed, and population

analysis demonstrates that each MRSA strain has a character-

istic growth profile at each concentration of methicillin ex-

amined [29]. In contrast to this heterogeneously expressed re-

sistance to methicillin, homogeneous resistance requires the

interaction of additional factors, such as the femA–F genes that

are involved in peptidoglycan synthesis [30].

MOLECULAR EVOLUTIONARY HISTORY

Although PFGE is commonly used in hospitals to determine

the relatedness of isolates for epidemiologic purposes, this

method is insufficiently discriminatory for evolutionary studies

[31]. The overall genetic background of S. aureus isolates is

unambiguously determined through multilocus sequence typ-

ing by determination of the sequence of portions of 7 house-

keeping genes [25]. The mobile SCCmec elements, on the other

hand, are classified by analysis of their cassette chromosome

recombinase (ccr) and mecA gene complexes [32]. SCCmec

types also differ with regard to their acquisition of resistance

determinants acquired as the result of integration of plasmids

and transposons [32]. At least 5 SCCmec types (types I–V),

varying in size from ∼20 kb to 68 kb, have been identified [33]

(table 1). The smallest of these—SCCmec types I, IV, and V—

contain only recombinase genes and the structural and regu-

latory genes for resistance to methicillin and lack the trans-

posable elements and genes encoding resistance to non–b-lac-

tam antibiotics carried by types II and III [33, 35]. SCCmec

types I-IV contain alleles of ccrA and ccrB, whereas type V,

which has to date been identified in a small number of Aus-

tralian CA-MRSA isolates, contains a novel ccr designated ccrC

[33]. Two possible additional SCCmec types have recently been

identified among Australian CA-MRSA strains [36].

Genetic evolutionary analyses have demonstrated that the

mecA gene has been transferred into methicillin-susceptible S.

aureus (MSSA) on �20 occasions, having emerged in �5 phy-

logenetically distinct lineages (as well as reemerging within ind-

vidual lineages) [25, 31, 37]. It has been suggested that the

emergence of PBP2a initially resulted from a recombination

event involving the genes encoding an existing PBP and an

inducible b-lactamase [38]. The donor strains that became the

source of PBP2a are likely to have been coagulase-negative

staphylococci, with Staphylococcus sciuri identified as a prime

candidate [39]. A recent study of 44 methicillin-resistant Staph-

ylococcus epidermidis isolates from the blood of patients with

prosthetic valve endocarditis from 1973 to 1983 found that 2%

carried SCCmec type I, 34% carried type II, 28% carried type

III, and 36% carried type IV [40]. The introduction of mecA

from the putative donor species into MSSA strains that are
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Table 1. Characteristics of staphylococcal cassette chromosome mec (SCCmec) types I–V.

SCCmec
type

SCCmec
size, kb

Other
antibiotic-resistant

elements (gene) on SCCmec

Origin of
S. aureus isolatates

carrying the specified
SCCmec type

Presence of
Panton-Valentine

leukocidin in
S. aureus isolates

carrying the specified
SCCmec typea

I 34 … Hospital Infrequent
II 53 PUB110 (aadD)b, Tn554 (ermA)c Hospital Infrequent
III 67 PUB110 (aadD)b, PT181 (tetK)d Hospital Infrequent
IV 21–24 … Community Frequent
V 28 … Community Unknown

NOTE. Data is adapted from [40] and [155]. PVL, Panton-Valentine leukocidin; S. aureus, Staphylococcus aureus.
a In general, !5% of S. aureus strains that carry SCCmec types I–III also carry the PVL gene; with some exceptions,

40%–90% of S. aureus strains that carry SCCmec type IV carry the PVL gene.
b Encodes resistance to tobramycin and kanamycin.
c Encodes resistance to macrolide-lincosamide-streptogramin antibiotics.
d Encodes resistance to tetracycline.

already successfully adapted to hospital environments and to

the community have, in turn, created successful epidemic HA-

MRSA and CA-MRSA clones [31, 35, 41, 42].

Evidence indicates that the ancestral MRSA genotype, ST250-

MRSA, is a strain originating in Denmark and possessing

SCCmec type I, most extant isolates of which were obtained in

the 1960s [37]. (By convention, strains are named by their

sequence type [ST] and the presence or absence of methicillin

resistance. Thus, this strain is a methicillin-resistant S. aureus

of a sequence type designated as 250). ST250-MRSA arose as

the consequence of the acquisition of the mec gene by the

methicillin-susceptible strain ST250-MSSA, which had itself

arisen from ST8-MSSA by a chromosomal point mutation [37].

ST250-MRSA is no longer a major cause of epidemic MRSA

infections, but ST247-MRSA (the “Iberian clone”), which

evolved from ST250-MRSA by a single point mutation, remains

an important hospital pathogen in Europe and has been re-

ported to have caused an outbreak in a New York City hospital

[43]. As indicated above, there have since been multiple intro-

ductions of mec into S. aureus [31]. The emergence of CA-

MRSA strains, in particular, has repeatedly occurred as a result

of the introduction of SCCmec type IV into a variety of genetic

MSSA backgrounds [41]. In the United States, one of the re-

sultant clones, ST8-MSSA (USA 300) has proven increasingly

successful [44].

EPIDEMIOLOGIC SUCCESS AND VIRULENCE
OF CA-MRSA

CA-MRSA strains differ in a number of important ways from

the 6 major pandemic clones of MRSA that account for nearly

70% of epidemic HA-MRSA strains [45]. These differences are

found in the composition of the gene cassette coding for meth-

icillin resistance, in the carriage of plasmids encoding resistance

to antibiotics of other classes (as well as resistance to heavy

metals), and in their associated virulence factors.

The earliest strain of MRSA in which SCCmec type IV has

been identified was isolated in 1981 [32]. Despite this appar-

ently recent emergence, an analysis of a large number of MRSA

isolates detected SCCmec type IV in twice as many clones as

any of the other types, suggesting its greater promiscuity and

successful persistence [26]. This may be the result of greater

efficiency of transfer and/or a lesser fitness cost to the recipient

clone, possibly because of its smaller size and lack of the “excess

baggage” included in other SCCmec types [26, 35, 41]. Although

HA-MRSA has been reported to replicate more slowly than

MSSA [46], a CA-MRSA clinical isolate harboring SCCmec type

IV has been demonstrated to replicate more rapidly than HA-

MRSA isolates with other SCCmec types [41, 42]. In contrast,

transformation of an SCCmec type I element into S. aureus

strains yielded highly oxacillin-resistant transformants with a

reduced growth rate [47]. This relatively greater fitness of CA-

MRSA strains carrying SCCmec type IV may account for its

remarkable success in displacing other MRSA strains in some

hospitals after its introduction from the community [21].

MOLECULAR BASIS OF VIRULENCE
OF CA-MRSA

Sequencing of the genome of CA-MRSA strain MW2, which

caused fatal sepsis in a 16-month-old girl from North Dakota

[18], identified 19 putative virulence genes not found in 5

simultaneously examined HA-MRSA strains [42]. These in-

cluded genes for several superantigens, such as enterotoxins B

and C, as well as the amphipathic leukotoxin, the Panton-

Valentine leukocidin (PVL). PVL, first described in 1932 [48],

is a bicomponent synergohymenotropic (synergistic mem-

brane-tropic) toxin that was present in !5% of unselected S.
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aureus isolates but is present in the majority of CA-MRSA

isolates studied [49, 50]. CA-MRSA isolates from Australia, on

the other hand, infrequently carry the genes encoding PVL [36].

PVL is encoded by contiguously located cotranscribed

genes, lukS-PV and lukF-PV, inserted near the att site [50].

These genes are transmitted by a temperate phage designated

øPVL [51, 52]. Their gene products, 33 kDa and 34 kDa in

size, respectively, assemble as hetero-oligomers and synergis-

tically exert cytolytic pore-forming activity specifically di-

rected at the cell membranes of polymorphonucelar neutro-

phils and monocytes and/or macrophages [49, 50]. Injection

of PVL into the skin of rabbits causes dermal necrosis [53],

suggesting that it may play a role in the severity of skin and

skin-structure infections in humans. In addition, an associ-

ation between PVL-containing strains of MRSA and virulent

necrotizing pneumonia has been reported [54].

RESISTANCE TO ANTIBIOTICS OTHER THAN
b-LACTAMS

In contrast to the multidrug resistance usually seen in HA-

MRSA strains, antibiotic resistance in CA-MRSA strains is often

limited to b-lactams. The small size of SCCmec type IV may

preclude its carriage of additional genetic material, in contrast

to the characteristic presence of additional genetic material in

SCCmec type II and SCCmec type III [25, 26]. This does not,

however, preclude chromosomally encoded resistance or the

presence of resistance plasmids in strains carrying any of the

mec types. For instance, some CA-MRSA strains isolated in

western Australia contain a 41.4-kb plasmid encoding resistance

to tetracycline and trimethoprim, as well as resistance to mu-

pirocin and cadmium [55, 56]. Fluoroquinolone resistance is

frequent in CA-MRSA carrying SCCmec type IV isolated from

homeless youth in San Francisco [57]. Nonetheless, in contrast

to HA-MRSA strains, most CA-MRSA isolates remain suscep-

tible to tetracyclines, clindamycin, and trimethoprim-sulfa-

methoxazole (TMP-SMZ) [11].

AVAILABLE ANTIBIOTICS FOR THE
TREATMENT OF MRSA INFECTION

Vancomycin. Compared with b-lactam therapy, vancomycin

therapy has been associated with slower clinical response and

longer duration of MSSA bacteremia, and it has been asso-

ciated with more frequent complications in patients with en-

docarditis [58, 59]. Failure of vancomycin therapy may be

observed in the treatment of patients with bacteremia due to

strains of MRSA that have MICs of vancomycin well within

the range considered susceptible [60]. Heterogeneous van-

comycin resistance, which is not readily detected by routine

clinical laboratory methodology, is also associated with failure

of vancomycin therapy [61, 62]. The appearance of vanco-

mycin-intermediate S. aureus and, more recently, vancomy-

cin-resistant S. aureus is of further concern [63].

Quinupristin/dalfopristin. This combination is active in

vitro against MSSA and MRSA [64]. It is bactericidal against

S. aureus, although in the presence of constitutive expression

of macrolide-lincosamide-streptogramin resistance, it is only

bacteriostatic [65]. In a randomized trial, patients with noso-

comial MRSA pneumonia who received quinupristin/dalfo-

pristin had a clinical response rate of 19.4%, compared with

40% in vancomycin recipients [66].

Linezolid. Linezolid and vancomycin yielded comparable

results in hospitalized patients with MRSA infections at a variety

of anatomic sites in a randomized, open-label trial [67], as well

as in the treatment of skin and skin-structure infections caused

by gram-positive organisms [68]. A retrospective subset analysis

of 2 prospective randomized clinical trials found evidence sug-

gesting that linezolid was superior to vancomycin in the treat-

ment of hospital-acquired pneumonia due to MRSA [69, 70].

Daptomycin. Daptomycin is a novel lipopeptide antibiotic

with bactericidal activity against S. aureus that binds, in a cal-

cium-dependent manner, to the bacterial cell membrane, dis-

rupting membrane potential [71]. Daptomycin has received

approval from the US Food and Drug Administration for the

treatment of complicated skin and skin-structure infections due

to susceptible gram-positive pathogens [72]. Daptomycin ther-

apy failed in a trial involving patients with community-acquired

pneumonia; daptomycin not only has limited penetration into

pulmonary epithelial lining fluid, but its activity is inhibited

by pulmonary surfactant [72, 73].

Tetracyclines. In vitro susceptibility results involving tet-

racycline derivatives must be interpreted with caution, because

S. aureus isolates that are tetracycline-resistant but that have

relatively low MICs of doxycycline and/or minocycline may, in

fact, harbor inducible efflux genes [74, 75]. Minocycline has

been shown to have bactericidal activity similar to that of van-

comycin against a single strain of MRSA in an animal model

of endocarditis [76]. Of 14 patients with MRSA infection who

were treated with doxycycline or minocycline, either alone or

in combination with rifampin, 3 (21%) experienced treatment

failure [77].

TMP-SMZ. TMP-SMZ was less active than vancomycin in

a rabbit model of MRSA endocarditis and less rapidly bacte-

ricidal than nafcillin in a rabbit model of MSSA meningitis

[78, 79]. A randomized trial of treatment of S. aureus infections,

47% of which were due to MRSA, concluded that treatment

with TMP-SMZ was inferior to treatment with vancomycin

[80]. An extensive literature review, however, concluded that

TMP-SMZ “may be effective for the treatment of infections

due to low bacterial burdens of susceptible strains of S. aureus”

[81, pg. 340].

Fluoroquinolones. Although most CA-MRSA strains are
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Figure 2. Image shows the results of a double-disk diffusion test for inducible, erm-mediated resistance to clindamycin. The demonstration of
flattening of the clindamycin zone between the disks is indicative of inducible resistance to clindamycin [34].

reported to be fluoroquinolone susceptible, this is not true in

some locales [36, 57]. Fluoroquinolone resistance emerged very

rapidly in HA-MRSA in the years after widespread utilization

of agents of this class; at one institution, fluoroquinolone re-

sistance increased from 7% before 1988 to 83% in 1990 [82].

In vitro passage of both fluoroquinolone-susceptible MSSA and

MRSA in the presence of either ciprofloxacin or levofloxacin

is associated with the frequent selection of clones resistant to

these antibiotics [83]. Furthermore, fluoroquinolones select

MRSA from among heterogeneously methicillin-resistant pop-

ulations in vitro [84], and fluoroquinolone use is associated

with an increased risk of nosocomial acquisition of MRSA (but

not of MSSA) [85]. The fluoroquinolones with C8 substitu-

tions, such as gatifloxacin and moxifloxacin, appear to be more

potent against S. aureus than are older drugs of this class, and

they may be less likely to select resistant mutants, an effect that

may be strengthened by the addition of rifampin [86–88].

Clindamycin. Clindamycin has been used successfully in

the treatment of invasive CA-MRSA infections in children [89,

90]. Inducible resistance to clindamycin, however, is not de-

tected by routine susceptibility testing, but requires the use of

other methods (e.g., a double-disk diffusion test) [90–93]. Flat-

tening of the zone in the area between the disks to resemble

the letter “D” indicates the presence of inducible resistance

(figure 2 and table 2).

Rifampin. Rifampin selects resistant mutants from among

both MSSA and MRSA strains at a frequency of 10�6 to 10�8,

but this may be prevented by using rifampin in combination

with a second active drug [94].

Topical agents. MRSA strains that are resistant to mupi-

rocin, mutants of which can be selected in vitro at frequencies

of 10�7 to 10�8, are reported with increasing frequency [95].

MRSA isolates with elevated MICs of triclosan have been iden-

tified [96, 97].

OVERVIEW OF CHOICE OF SYSTEMIC
ANTIBIOTIC THERAPY

For some infections that require parenteral therapy and are due

to MRSA strains that are multidrug resistant, the treatment

choices may be restricted to vancomycin, daptomycin, linezolid,

and quinupristin/dalfopristin therapy. The potential superiority

of linezolid therapy over vancomycin therapy in treating nos-

ocomial pneumonia due to MRSA has been noted [69, 70].

Daptomycin is ineffective in the treatment of pneumonia (Cub-

ist Pharmaceuticals, data on file). The bacteriostatic activity of

linezolid may prove to limit its effectiveness in circumstances

in which bactericidal activity is required [67].

Choices for treatment of infections due to CA-MRSA may

include, in addition to the drugs mentioned above, TMP-SMZ,

tetracyclines, clindamycin, and fluoroquinolones. The wide-

spread use of fluoroquinolones for treating these infections

may, if history repeats itself, lead to the rapid emergence of

resistance to this class of antibiotics. Tetracycline therapy, con-

traindicated in children and in those who are pregnant, may

prove to be effective, but further clinical data are required.

TMP-SMZ appears to be effective in treating infections of lim-

ited extent and severity. Linezolid is an effective agent for which
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use has been limited by its cost. Antibiotic therapy is not always

required: a retrospective analysis has found resolution of CA-

MRSA infection in children with subcutaneous abscesses !5

cm in diameter who underwent incision and drainage in the

absence of administration of an antibiotic to which the path-

ogen was susceptible [98].

INVESTIGATIONAL AGENTS WITH ACTIVITY
AGAINST MRSA

Semisynthetic glycopeptides. Oritavancin is a semisynthetic

glycopeptide derivative that is active against some vancomycin-

resistant, gram-positive bacteria [99, 100]. A randomized trial

of oritavancin in the treatment of skin and skin-structure in-

fections demonstrated results comparable to those observed

with a vancomycin-based regimen [101]. Its mean terminal

plasma half-life (�SD) of h allowed it to be given151 � 39

in a total of 3 daily doses [101, 102].

Dalbavancin has a terminal plasma half-life of 9–12 days

[103]. A total of 2 doses given 1 week apart in the treatment

of skin and skin-structure infections resulted in a 94% cure

rate, compared with a 76.2% cure rate in those patients ran-

domized to receive standard-of-care [103]. A third drug of this

class, telavancin, with a terminal plasma half-life of 7 h in young

volunteers and 11 h in elderly subjects, was effective in a neu-

tropenic mouse thigh model and is also in clinical trials [104–

107].

Glycylcyclines. The minocycline derivative tigecycline has

bacteriostatic activity against both MSSA and MSRA, including

tetracycline-resistant strains [99, 108, 109]. In a randomized

dose-comparison study, clinical cure rates were 67% and 74%

in patients with skin and skin-structure infections who received

25 mg and 50 mg daily, respectively [110].

Novel b-lactams. A series of b-lactamase–stable cephalo-

sporins with high affinity for PBP2a are in clinical development

[111]. The PBP2a affinity of BMS-247243 is 100-fold greater

than that of methicillin or cefotaxime, and the drug is bacte-

ricidal against MRSA at twice the rate of vancomycin [112].

Other drugs of this class in development include the zwitter-

ionic cephem RWJ-54428 [113], CB-181963 [114], BAL5788

[115], a prodrug of BAL9141 [116, 117], and S-3578 [118].

ME1036 (formerly CP5609) is a C2-modified carbapenem with

high affinity for PBP2a and with an MIC90 of 2.0 mg/mL against

MRSA [119]. SM-197436, SM-232721, and SM-232724 are

novel methylcarbapenems that are also active in vitro against

MRSA [120].

Fluoroquinolones. DW286, a naphthyridone, is among

several fluoroquinolones in development that have in vitro ac-

tivity against MRSA [121]. Active against MRSA strains that

are resistant to other fluoroquinolones, it selects fluoroquin-

olone-resistant mutants at a lower frequency than do older

agents (as may another fluoroquinolone, ABT-492) [122, 123].

Oligosaccharides. Evernimicin is a complex sugar deriva-

tive with a novel mode of action [124, 125]. A related com-

pound, avilamycin, has been used in animal feed, raising the

specter of rapid emergence of resistance to this class of drugs

[126].

Miscellaneous antimicrobials. The rifamycin rifalazil re-

tains activity against some isolates that are resistant to rifampin

[127]. Epiroprim is a dihydrofolate reductase inhibitor with

activity against some trimethoprim-resistant strains of S. au-

reus; its combination with dapsone results in in vitro activity

against S. aureus that is greater than that of TMP-SMZ [128].

Iclaprim is another dihydrofolate reductase inhibitor with ac-

tivity against MRSA [129].

Other examples of modifications of existing molecules with

antistaphylococcal activity include the oxazolidinones ranbe-

zolid [130, 131] and eperezolid [129, 132], as well as N-acylated

ornithine analogues of daptomycin [133]. Among drugs with

novel targets are the peptide deformylase–inhibitors NVP-PDF

713 [134, 135] and BB-83698 [136].

A number of naturally occurring cationic proteins have in

vitro activity against S. aureus [137], and some have been dem-

onstrated to have activity in animal models of infection [138].

Lysostaphin is active in vitro against S. aureus [139] and was

effective in a rabbit model of MRSA endocarditis [140]. Its use

in a patient with S. aureus infection and neutropenia was first

reported in 1974 [141]. Specific bacteriophage has been dem-

onstrated to be effective in protecting mice against lethal S.

aureus infection [142, 143].

Targeting virulence factors. RNAIII-inhibiting peptide in-

hibits S. aureus pathogenesis by disrupting quorum-sensing

mechanisms [144]. The accessory gene regulator (agr) is an

important regulator of virulence that is, at least in part, related

to quorum sensing [145]; a truncated thiolactone peptide has

been found to be a potent inhibitor for all 4 agr-specificity

groups of S. aureus [146].

S. aureus immune globulin intravenous (human) (Altastaph;

NABI Biopharmaceuticals) is a hyperimmune, polyclonal, in-

travenous immunoglobulin product derived from the plasma

of human donors who have previously been vaccinated with

S. aureus polysaccharide conjugate vaccine (StaphVAX; NABI

Biopharmaceuticals), a bivalent conjugate capsular polysaccha-

ride covalently bound to recombinant exoprotein A, which has

been demonstrated to provide temporary protection against the

occurrence of S. aureus bacteremia in patients receiving he-

modialysis [147, 148]. Patients with S. aureus bacteremia and

persisting fever are currently being enrolled in a phase I/II trial

[149]. Also in progress is a phase II prevention trial involving

infants with low birth weights [150].

Tefibazumab (Aurexis; Inhibitex) is a humanized monoclonal

antibody directed at the microbial surface components rec-

ognizing adhesive matrix molecule (MSCRAMM) clumping
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Table 2. Macrolide-lincosamide-streptogramin resistance in methicillin-resistant Staphy-
lococcus aureus.

Mechanism of resistance
Gene

determinant

Drug resistance

Erythromycin Clindamycin

Efflux msrA Resistant Susceptible
Ribosomal methylation erm Resistant Susceptible or resistant (inducible);a

resistant (constitutive)

NOTE. Data are adapted from [34].
a Resistant strains have inducible resistance. Determination of resistance requires specific testing (e.g., use

of a double-disk diffusion test).

factor A [151] that is currently being evaluated in a phase II

trial in patients with S. aureus bacteremia [152]. INH-A21 (Ve-

ronate; Inhibitex) is a donor-selected human polyclonal im-

munoglobulin preparation that is also enriched in antibody to

staphylococcal MSCRAMM proteins and that is undergoing

clinical trial evaluation for the prevention of infection in infants

with very low birth weights [153]. Another cell surface com-

ponent, teichoic acid, is the target of BYSX-A110, an IgG1

chimeric monoclonal antibody that is in clinical trials for the

prevention of staphylococcal infections in infants with low birth

weights [154].

Aurograb (NeuTec Pharma) is a single-chain antibody frag-

ment lacking the immunoglobulin Fc domain targeted at

EMRSA-15, a 61-kDa ABC transporter expressed by epidemic

strains of MRSA that is in clinical therapeutic trials in the

United Kingdom [155, 156].

Pooled intravenous immune globulin preparations neutralize

a number of staphylococcal superantigen toxins and, as a con-

sequence, are commonly used in the therapy of toxic shock

syndrome [157]. The identification of a conserved epitope on

staphylococcal enterotoxins that appears to be critical to their

activity raises the possibility of another approach to superan-

tigen neutralization [158]. PVL can also be neutralized in vitro

by commercial intravenous immunoglobulin preparations

[159].

The story of antibiotic resistance and virulence in S. aureus

is, as has been stated by others, one of “depressing evolu-

tionary progression” [37, pg. 92]. The emergence of CA-

MRSA, the rapid introduction of SCCmec type IV into mul-

tiple genetic backgrounds, and the epidemiological success of

the resultant strains indicate that this problem will continue

its inexorable march [37, 160, 161]. Mathematical modeling

demonstrates difficulty in the epidemiologic control of MRSA

in the face of its increased prevalence in the community and

the increasingly daunting tasks for hospital infection-control

programs [162]. An effective vaccine will be the only effective

long-term solution.

Acknowledgments

Potential conflicts of interest. S.D. is a member of the speakers bureau
of Pfizer and is a consultant for Therapeutic Human Monoclonals.

APPENDIX

Cassette chromosome recombinase (ccr) A gene neces-

sary for the mobility of SCC that enables its site-specific in-

tegration into and precise excision from the S. aureus

chromosome.

Genomic island Genomic islands (often abbreviated as

GIS or GEIs) are horizontally acquired chromosomal regions

of DNA carrying several genes encoding traits associated with

increased adaptability or fitness under specific conditions. They

are termed pathogenicity, fitness, symbiosis, metabolic, or re-

sistance islands, depending on the functions encoded [163].

Housekeeping gene A gene involved in basic functions

required for cell viability and constitutively expressed in most

cells. Housekeeping genes evolve much more slowly than do

tissue specific genes that encode proteins necessary only in

selected types of cells.

Insertion sequence A DNA sequence involved in the mo-

bilization of genetic information to and from vectors such as

plasmids.

mec gene complex Gene complex composed of mecA and

its regulator genes, mecI and mecR.

mecA The gene encoding PBP2a, responsible for resistance

to methicillin and other b-lactam antibiotics.

mecI The mecA repressor gene.

mecR1 A signal transducer gene that encodes a trans-

membrane receptor that responds to covalent binding of a b-

lactam antibiotic and its extracellular sensor domain. Binding

initiates events that lead to inactivation of the mecI gene re-

pressor product by a protease, allowing expression of mecA.

Staphylococcal chromosome cassette (SCC) SCC (or

SCCmec) is a mobile, 52-kb DNA cassette containing the gene

that encodes resistance to methicillin (mecA), as well as those
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genes (ccrA and ccrB in most cases) that encode the integration

and excision necessary for its recombination in the staphylo-

coccal chromosome, in addition to insertion sequences.
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