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Abstract—This paper provides an overview of some principles
and mechanisms to securely operate mixed-criticality real-time
systems on embedded platforms. Those principles are illustrated
with PharOS, a complete set of tools to design, implement and
execute real-time systems on automotive embedded platforms.

The keystone of this approach is a dynamic time-triggered
methodology that supports full temporal isolation without wast-
ing CPU time. In addition, memory isolation is handled through
automatic off-line generation of fine-grained memory protection
tables used at runtime. These isolation mechanisms are building
blocks for the support of mixed-criticality applications. Several
extensions have been brought to this model to expand the
support for mixed-criticality within the system. These extensions
feature fault recovery, support for the cohabitation of event-
triggered with time-triggered tasks and paravirtualization of
other operating systems. The contribution of this paper is to
provide a high-level description of these extensions, along with an
analysis of their impact on the global system safety, in particular
on the determinism property of the PharOS model.

I. INTRODUCTION

Over the last decades, the number of electronic equipments

embedded in complex systems such as automotive vehicles or

airplanes has increased in drastic proportions. At first, system

architects used to embed one computing unit per functional

system, which resulted in large distributed and heterogeneous

real-time systems. The current number of equipments makes

this approach no more sustainable, mainly due to its high costs.

As a result the trend is to integrate several (possibly unrelated)

applications on fewer computing units, resulting in what is

called a mixed-criticality system.

This integration raises however a number of issues, such as:

• efficiently and securely sharing resources (and especially

CPU time) between these applications;

• providing the same degree of isolation than achieved

when using separate computing units;

• combining different real-time paradigms and APIs;

• handling multicore computing units, that are becoming

the usual solution of the chip designers to increase

performances.

This paper presents the formal and/or technical answers we

provided to each of these questions. Each proposed solution is

illustrated through PharOS, the system we have built following

these methods and that addresses all the problems hereabove

exposed.

PharOS features a rich model of tasks that accurately

describes the task constraints, and admits an optimal dynamic

scheduling algorithm. Moreover, it allows exact feasibility

analysis, which avoids wasting CPU time by oversizing the

time resources for the tasks. Its tool suite allows for automatic

fine-grained memory partitioning, if the underlying platform

comes with a Memory Protection Unit (MPU). At last, some

additional extensions allow compliance with other real-time

paradigms, or paravirtualization of other existing RTOSes and

APIs, while taking advantage of the additional power provided

by multicore computing units.

The article is divided as follows: Section II presents the

PharOS formal task model. Section III proposes implemen-

tation mechanisms for temporal and spatial isolation, fault

containment and recovery. Section IV focuses on cohabitation

with the event-triggered paradigm and with another Operating

System. In particular, we present here a paravirtualization use-

case of Trampoline [1], a RTOS with an OSEK API, over

PharOS. Section V presents related work, and Section VI

concludes and suggest directions for future research.

II. TIME-CONSTRAINED AUTOMATA (TCA):

THE TASK MODEL FOR PharOS

At the heart of PharOS is a formal model of task, the

time-constrained automata model [2], which is based on time.

This section gives a short overview of this model and its

implementation, which is necessary to understand the design

of the temporal isolation in PharOS.

A. Short introduction to the TCA model

A PharOS application is composed of a set of tasks. The

TCA model is a formal specification of all the possible tem-

poral behaviors for each task. This specification is expressed

using a directed graph, where arcs represent the successive

jobs to be executed (one at a time), and the nodes bear the

temporal constraints on the task. There are only four kinds of

nodes:

• an after(d) (written d) node constrains the execution

of the following jobs to start after date d;

• a before(d) (written d) node constrains the execu-

tion of the preceding jobs to end before date d;

• an advance(d) (written d) node is a combination of

an d and a d nodes;



• a no-constraint (written ) node imposes no tem-

poral constraints.

All constraint dates are expressed relatively as an increment

to the previous d or d node (i.e. d nodes do not change the

“reference date”). Nodes with multiple outgoing arcs represent

conditional execution (e.g. if statements).

Execution of an application can be seen as choosing one

(possibly infinite) walk in the graph of each task, and choosing

for each encountered job the intervals of time where it is

actually executed. The execution is correct if, and only if:

• successive jobs of a task execute in order;

• the execution intervals for each job fulfill the timing

constraints of all nodes.

B. An example using ΨC

The graph for each task need not be written manually: it

can be automatically extracted from the control flow graph

of an application. The language used to implement PharOS

applications is ΨC, a variant of the C language with extensions

for timing constraints. Figure 1 gives an example of a code

excerpt for a task with the corresponding time-constrained

automaton. Timing constraints statements are transformed into

timing constraints nodes.

while(1) {a:

after(1);

b:

if(...) {h:

after(1);

i: for(...)

{ advance(1); }
}

else {c:

before(2);

d: }
e:

advance(4);

f:

}

while

after(1)

if

after(1)

for

advance(1)

before(2)

advance(4)

f

a

b

h
c

i

d

e

Fig. 1. A ψC code excerpt and corresponding automaton. An arc of label
l represents the block of code to which label l belongs.

The beginning of a possible correct execution for this

example is represented on Fig. 2. The code executes the

while loop twice, and chooses the “else” part the first time,

the “then” part the second time. The upper part of the figure

represents a timescale, with the timing constraints and their

date (expressed absolutely), and the blocks of code that are

executed between these blocks. The lower part represents

execution as a Gantt diagram. Execution is correct because

blocks execute in order, and all timing constraints are fulfilled.

C. Implementation in PharOS

PharOS implements the previously described TCA formal

model.

0 8
1 3 5 6 7

a b,c d,e f,a b,h i,. . .

a b c d d e f a b h i

Fig. 2. Example of a correct execution for the automaton in Fig. 1.

1) ΨC compilation and scheduling: The automaton for

each task is extracted from the ΨC code, and used for different

timing analysis phases1. Eventually, ΨC code is compiled as

regular C code, where timing constraints statement have auto-

matically been transformed into system calls to the scheduler.

Each system call indicates to the kernel the node that has been

reached. The node contains the new start time, deadline and

timing budget of the task, which the kernel uses to update the

task parameters. These informations are used to implement the

scheduling algorithm, which is a variant of EDF. Details can

be found in [2].

2) Communication mechanisms: In addition to temporal

constraints, ΨC provides different communication primitives.

These primitives take advantage of the timing constraints to

provide properties such as determinism, but do not have any

impact on the TCA model (for instance, as they are non-

blocking, they do not impact TCA scheduling).

In general, the actual PharOS implementation strictly fol-

lows the formal model, which does not impede it from

addressing real-world applications.

III. ISOLATION MECHANISMS IN PharOS

Isolation is the set of mechanisms that ensures that a

misbehaving task cannot alter the execution of other tasks.

In this section, we introduce the spatial and temporal isolation

mechanisms for a safety-oriented implementation of the TCA

model described in section II.

A. Determinism

An important principle for fault isolation is determinism.

It means that the application behavior is independent of the

scheduling or the execution time of the tasks (as long as timing

constraints are met). It implies that variations in execution time

of the tasks cannot impact the behavior of other tasks, and thus

contributes to temporal faults isolation. In PharOS, memory

segmentation imposes that all communications happen only

through dedicated mechanisms that enforce determinism. This

makes impossible for an application developer to write a non-

deterministic application. Whatever the application, its behav-

ior is always fully reproducible, even if spatial or temporal

faults do happen.

1) Principles: Nondeterminism must be prevented in two

ways:

• by complying with the observability principle: a message

is formally sent only when the d node following the

sending is reached, and can be formally received only

1In the actual version of PharOS, there are no d nodes, only d and

d nodes are allowed.



when the receiver has passed a d′ with d′ > d. This

condition ensures timing consistency, i.e. that a message

can be received only after it was formally sent.

• by ensuring that the order in which messages are received

is independent of the actual date when the messages were

sent (a shared FIFO being a typical counter-example).

This property can only be reached with a careful imple-

mentation of the communication primitives.

2) Design and implementation: PharOS offers several com-

munication primitives, such as temporal variables (i.e. periodic

data-flow) or messages. More examples are given in Sec-

tion IV-A3. Communications between tasks in PharOS follow

a strict observability principle: only temporally visible data

can be used in a code block, and already visible data can not

be modified.

B. Spatial isolation and fault containment

1) Principles: Spatial isolation protects tasks against unau-

thorized accesses to code or data, either by the other tasks,

by the system (i.e. the kernel) or even by the task itself. In

our approach, an application is made of a set of tasks that are

statically described. Tasks are protection units whose external

communications are statically and entirely defined. Based

on this static knowledge, and using the available hardware

for memory protection (Memory Protection Unit, MPU, or

Memory Management Unit, MMU) and privilege protection

(CPU protection levels), the general principles to achieve

spatial isolation are:

1) Separate the application into a set of memory contexts,

following the separation of privilege principle [3]. It is

more secure to have as many different memory contexts

as possible. In particular, it is better to have more than

one memory context per task, that changes depending

on the actions it performs.

2) Generate for each memory context a constant table of

the memory rights. Off-line generation of memory tables

makes the kernel much simpler, and thus more secure.

The generation is performed during the linking stage.

Moreover tables should have as few rights as possible,

following the least privilege principle [3].

3) Use access control checks and memory protection to

control communication between tasks. Only tasks ex-

plicitly allowed to communicate should be able to do

so, following the closed-system [4] and complete medi-

ation [3] principles. Also, applications should be able to

communicate only through the dedicated deterministic

mechanisms (recall Section III-A).

4) Switch the memory rights when memory context

changes (task switch, or switching of a memory context

inside of a task). Memory rights switching should be

performed by the kernel and the kernel only – this can

be ensured with CPU protection levels.

Note that memory segmentation serves two separate pur-

poses: spatial isolation and fault detection. For instance, for-

bidding write access to the stack of another task is spatial

isolation and fault detection, while forbidding read access to

another task is only fault detection. When coping with hard-

ware limitations (e.g. limited number of MPU descriptors),

early fault detection may be sacrificed to help providing full

spatial isolation, as we are about to see in the next section.

2) Design and implementation:

a) Segments and layers: Our TCA-based system is made

of three layers. The user layer hosts the functional code of

the tasks. The system layer implements the communication

mechanisms between tasks, as well as the management of state

transitions within each task. Finally, the microkernel manages

the time and the scheduling of tasks. Put together, the system

layer and the microkernel make the kernel.

For these different layers, the memory is separated into

segments with necessary and sufficient access rights depending

on the execution context. That is for each physical memory

segment, the memory access rights are defined for the follow-

ing 4 contexts:

• the user layer;

• the system layer of the task that “owns” the segment, i.e.

that may be allowed to write to it (there is at most one

writer per memory segment);

• the system layer of the other tasks (multiple readers can

be authorized);

• the microkernel.

This partitioning of each execution context is performed

off-line by the toolchain of our system.

In the most general case, 2n + 1 execution contexts are

defined in an application made of n tasks2, each context

defining the access rights for several memory segments. This

allows detection and confinement of operational anomalies

(e.g. referencing fault) between the tasks, between a task and

the kernel, inside the kernel and inside the microkernel.

Note that a memory address translation mechanism is not

necessary to implement the principles exposed here. In other

words, a MPU is sufficient, as long as it allows defining

enough memory segments to partition a memory context.

Indeed, the grain of the final segmentation depends ultimately

on the flexibility of the memory protection hardware. When the

MPU device defines only few segment descriptors (typically 8,

on our PharOS experimentation platform), different memory

segments can only be protected by common descriptors. For

instance, code segments of different tasks are protected by a

single descriptor, with therefore the same read-only memory

rights for all tasks. In every case however, we never give write

access to read-only memory segments. Thus isolation is fully

achieved, and only fault detection is weakened.

C. Temporal isolation

1) Principles: Temporal isolation protects tasks against

timing problems. In the case of a real-time system, this

protection ensures that a task cannot affect the fulfilling of

timing constraints (start times and deadlines) of other tasks.

For instance, in a classical priority-based real-time system

2Per task, one context for its user layer and one context for its system layer,
plus one dedicated context for the microkernel.



without temporal isolation, an infinite loop in a high priority

task can deny CPU to less priority tasks, which will miss their

deadlines.

The general principles to achieve temporal isolation are:

1) Give a timing budget to each task or group of tasks, that

is replenished at some predefined points;

2) Ensure that given the timing budgets, all critical tasks

will meet their deadlines in every possible case (ensure

this for non-critical tasks if possible);

3) Ensure that a task or group of tasks cannot execute for

longer than defined by its timing budget;

4) Ensure that scheduling cannot be outside the allowed

cases.

Static scheduling as used in [5], is the simplest example

of technique that ensures isolation. But it is also feasible to

combine temporal isolation with dynamic scheduling.

2) Design and implementation:

a) Definition of timing budgets: We attribute a timing

budget to every block of code between any two successive

temporal constraints. Replenish occurs when the code executes

one of the system call corresponding to a node. For instance

on Fig. 1, there would be a budget for b;h, one for b; c, one

for f ; a, etc.

b) Feasibility analysis: We can perform an off-line fea-

sibility analysis step using the automata of the tasks and their

timing budgets. First, a synchronous product of the automata

is computed, that shows every possible configuration of si-

multaneously executing blocks of code among all tasks. From

this information, a linear programming problem is extracted.

Solving it tells whether every task can reach its deadline with

the given initial timing budgets. Details on feasibility analysis

in PharOS can be found in [6], [7].

Note that feasibility analysis “only” provides the assurance

that all deadlines of the systems are met, i.e. contributes to

the security of the global application. Tasks can still lack some

time to terminate execution within the given timing budgets.

To avoid this situation, timing budgets should be set to an

upper bound of the worst-case execution time (WCET) of the

corresponding block of sequential code. But WCET analysis

is outside of the scope of this paper.

c) Optimal scheduling: The microkernel is considered

as a trusted piece of software, whose main role is to execute

the scheduler. The scheduling algorithm it implements is a

variant of EDF for time-constrained automata. We proved this

algorithm to be optimal [2]. Optimality means that the proof

of feasibility of a set of tasks ensures that EDF will always

schedule tasks so that they meet their deadline (provided that

they execute for no longer than their allocated timing budgets).

We also have prototyped optimal scheduling algorithms for

multiprocessor [7].

d) Timing budgets and deadlines monitoring: The micro-

kernel also monitors timing budgets online using a hardware

timer: whenever a task switch occurs, a hardware timer is set

to the value of the remaining budget. Upon preemption, the

budget is decreased by the amount of time spent executing

the task, and the hardware timer is set to monitor the new

task. Thus, the timer is triggered only when a task exhausts

its timing budget.

A similar mechanism is used to monitor deadline overruns.

This monitoring is not strictly necessary, since timing budgets

are monitored, and they should have been checked against

feasibility analysis. However, it is used as a defensive pro-

gramming measure.

e) Node transitions monitoring: When a system call is

made because a node has been reached, the system layer

checks if the transition between the previous node and the

current one is allowed. This design prevents a task from fol-

lowing a forbidden path on its execution graph. Indeed, should

such an erroneous case go undetected, the set of currently

executing blocks for all the tasks would be different from the

ones checked by the synchronous product. This design also

protects the microkernel from system calls flooding.

Furthermore, the communication design with statically lim-

ited sending/reception rate prevents tasks from flooding each

other. The set of defensive programming mechanisms imple-

mented by the kernel ensures that undetected denial of service

attack can never occur within applications.

f) Non-blocking design: A task can affect scheduling

only in two ways:

• by the path choosed on conditional nodes;

• by the execution time used to reach a temporal node.

There is no other way for a task to affect scheduling, for

instance by yielding the CPU between nodes by blocking on a

semaphore3. Combined with node transition and timing budget

monitoring, this ensures that scheduling always happens as

foreseen by the synchronous product.

g) Summary: how temporal isolation principles are ap-

plied: PharOS is a strict implementation of the temporal

isolation principles based on timing budgets that we gave

previously:

• Step III-C2b and III-C2c ensure that all critical tasks will

meet their deadlines if, and only if, scheduling follows

the cases anticipated in the feasibility analysis and timing

budget is sufficient;

• Step III-C2d, III-C2e and III-C2f ensure that scheduling

always happens as expected by the feasibility analysis,

and that tasks cannot execute for longer than specified

by their timing budgets;

• Ensuring that timing budgets for critical tasks are suffi-

cient has to be proved separately, and is outside the scope

of temporal isolation.

D. Group of tasks and error recovery

PharOS incorporates the concept of “groups of tasks”,

which is a first step towards mixed-criticality.

Tasks are partitioned into several groups. Local failure of

one task (be it timing budget overrun, segmentation fault,

illegal instruction, etc.) makes every task in its group to be

stopped and recovered by restarting at some predefined point

3Actually, the only provided mean of synchronization in the TCA model
is time: PharOS provides no semaphores or mutexes whatsoever.



later in time. Failure of a task has no impact on the behavior

of other tasks belonging to other groups. The time needed for

recovery can be modeled as special transitions in each task

graph, and can be accounted for in the feasibility analysis.

Closely-related tasks should be put together in a group.

A typical example are tasks that concur together to provide

a single high-level functionality, and for which there is no

advantage to allow them to fail individually. All tasks in

a group are guaranteed to fail and restart consistently (e.g.

without time shifts).

Groups of tasks and error recovery, on top of the previ-

ous isolation mechanisms, allow for a first level of mixed-

criticality. Indeed, if non-critical tasks (i.e. tasks likely to

fail) and critical tasks are separated in different groups, the

failure of a “non-critical group” would have no incidence on

a “critical group”.

IV. COHABITATION WITH OTHER EXECUTION MODELS

A. Cohabitation of time-driven and event-driven applications

In embedded environment such as automotive domain, many

activities (e.g. signal capture) require very tight timing con-

straints. Hardware performance does not allow addressing such

activities with time-constrained automata. Therefore, PharOS

allows coexistence of time- and event-driven tasks.

In such systems, two execution paradigms are active at the

same time:

• the time-triggered paradigm where the behavior of the

tasks (called TT tasks) is specified according to time-

constrained automata;

• the event-triggered paradigm where the behavior of the

tasks (called ET tasks) and their activation depends on

the occurrence of the associated events (I/O interrupts).

In a system that provides both paradigms, an important point

is to ensure noninterference among them while preserving

the characteristics of the previously described model: safety,

dependability, temporal determinism, spatial and temporal

isolation.

PharOS addresses both time-triggered and event-triggered

paradigms on dual core architectures. To reach the previ-

ously described objectives PharOS provides some isolation

mechanisms that ensure safe communications between ET and

TT tasks, with accurate temporal and spatial isolation. Most

of these properties are automatically extracted from software

design and automatically generated for the runtime.

1) Spatial partitioning and isolation: The partitioning

mechanisms previously described are reinforced in order to

maintain protection between the ET and TT domains. Fig-

ure 3 gives a graphical description of the memory protection

mechanism.

Moreover, as PharOS can run on dual-core hardware ar-

chitectures, a high degree of spatial and temporal isolation

between the TT and ET domains is achieved by running TT

tasks on one core and ET tasks on the other core. Nevertheless,

mixed execution of ET and TT on a same core is currently

under study. In addition, multi-cores architectures are also

supported for TT tasks and TT Tasks are dynamically assigned

Fig. 3. Spatial isolation between ET and TT domains

to available cores at runtime. TT and ET tasks could therefore

also be active at the same time on multi-cores architectures

(with more than 2 cores), even though this has not yet been

performed.

2) Temporal partitioning and isolation: We have seen in

section III-C that all PharOS TT tasks are carefully monitored

during execution. For the event-triggered tasks, the temporal

control is performed by an interrupt configuration monitoring

set by the following parameters:

• a time interval ∆0;

• a maximum number N of authorized interrupt occur-

rences during the interval ∆0.

When the number N is reached for a given source of

interrupt, any new attempt to handle the same interrupt is

detected by the system. Then, the corresponding interrupt

source is disabled. As a consequence, the whole PharOS

application cannot be disturbed by a temporal overflow of the

ET domain. Note that N and ∆0 are specification parameters

of the behavior of event-triggered tasks, i.e an ET task is

considered to be correct if and only if its number of occurrence

during ∆0 is equal or less than N . Therefore this mechanism

protects the software against external or hardware errors, and

cause no harm when the system behaves normally.

3) Communications: ET tasks do not communicate with

each other, but can send and receive messages from the TT

tasks.

The ET→TT interface allows point-to-point communication

from one ET task (the sender) to one TT task (the recipient).

Data is explicitly pushed by the sender and is made visi-

ble for the recipient according to the temporal observability

principles (recall section III-A). Figure 4 shows an example

of ET→TT communications. An ET task pushes some data

when processing a2. This data will be available for the TT

task after its first activation following the “push”, i.e. at T2.

Determinism of the TT tasks is preserved because a) FIFO

do not receive information from multiple ET tasks, and b) the

temporal observability principle ensure that behavior is not

impacted by the concurrent execution of the ET and TT tasks.

The TT→ET interface allows point-to-point communication

from one TT task (the producer) to one ET task (the con-

sumer). Data are regularly updated by the system according



Fig. 4. Flow from ET to TT tasks

to temporal behavior of the producer. On event occurrence,

the consumer accesses the latest value. Figure 5 shows such

an example of TT→ET communications. A TT task produces

a temporal flow X . When the event e1 occurs, the ET task

observes that the value of X is 0. However, when e3 and e4
events occur, the ET task observes that the value of X is 4 in

both cases.

Fig. 5. Flow from TT to ET tasks

B. Virtualization support

The main goal of virtualization is to run safely hetero-

geneous applications on the same platform, with reduced

development costs (e.g. applications using different APIs,

mixed-criticality applications, etc.). We present here the main

technical challenges that OS virtualization implies on em-

bedded platforms, then we briefly describe a prototype of a

virtualized OS running under the supervision of PharOS.

A lot of techniques exist to run multiple OSes on a same

CPU. We will only focus on how to run one virtualized OS

(or guest) under the supervision of a host OS that ensures

the execution of real-time critical tasks, such as PharOS. We

will only consider the case where the guest executes non-

critical tasks, or at least less critical than the ones executed

by the host4. In this context, we use the paravirtualization

technique, which means we modify the guest OS to make

it runnable by the host. Obviously, the host OS also require

some modifications to execute and schedule the guest: these

modifications form a minimal hypervisor.

4This model complies to a intuitive and simple rule: the OS that is able
to execute the most critical tasks should be the one in full control of the
hardware.

We enumerate here the key-points that ought to be carefully

considered when implementing such a paravirtualization solu-

tion, then we illustrate them with a practical case based on

PharOS.

1) CPU execution mode: if the CPU supports protected

execution, the guest OS should not be able to run in privi-

leged mode. That way, hardware protection ensures that the

guest is not able to execute sensitive instructions that would

compromise the host OS functionalities (interrupts masking,

CPU halting, etc.). Instead, as a paravirtualized OS, the guest

“asks” for the corresponding service to the host OS using

dedicated system calls, or hypercalls. The handlers of these

hypercalls are implemented as part of the hypervisor within

the host kernel.

It is formally impossible to ensure any isolation between the

guest and the host without the support of a protected execution

mode. Likewise, it is impossible to ensure isolation between

a regular OS and its tasks.

At last, note that some CPUs provide a “harware-assisted”

virtualization feature [8] – especially the Intel x86 architecture.

It basically consists in an additional protection level that

ultimately allows the kernel and the tasks of the guest system

to be isolated from each other. This separation ensures that

a failing guest task can not crash the whole guest system

– assuming that the guest kernel implements such protec-

tion mechanisms. Hardware-assisted virtualization also greatly

helps in virtualizing un-modified OSes (full virtualization).

2) Guest scheduling - CPU resource sharing: we propose

three scheduling policies for executing a guest OS on a real-

time host OS.

The first policy consists in using the “idle-time”: the guest

is scheduled only once all real-time tasks of the host have

been executed and completed. The guest can run as long as

no real-time task reaches its earliest starting date. This policy

dedicates all the “idle-time” of the CPU to the execution of

the guest, thus providing an optimal utilization of the CPU

resource. However, this is also a drawback: the CPU time

allocated to the guest depends on the real-time behavior of the

host application, and can potentially be very irregular. This

policy is suited for executing “best-effort” guest OSes, e.g.

Embedded Linux.

Another solution consists in executing the guest OS as a

special real-time task of the host OS. This task is executed

with a period p within a time window of duration ∆ ≤ p,

and is given a CPU time budget b ×∆, where b ∈ [0, 1] is a

percentage of the temporal window width (see figure 6). The

guest task is scheduled as any other real-time task, but when

its CPU budget is entirely consumed, the task is considered

to be completed, and must wait for the next temporal window

to be schedulable again. It is also possible to allow the guest

OS to release the CPU before its timing budget is consumed,

using a specific hypercall.

This policy gives the developer a precise control of the CPU

share given to the virtual machine, equals to b·∆
p

. As it turns

out, it is very well suited for virtualizing a real-time guest OS

on a real-time host OS. In that case, p can be wisely chosen



Fig. 6. Temporal parameters of the execution of the guest OS. The light
gray time zone is the temporal execution window; the black zones are actual
execution times. On this example, the CPU time consumed is x × ∆, with
x ≤ b.

to simulate a regular clock interrupt to the guest OS.

A last solution consists in mixing the two policies above

to handle mixed-criticality among the tasks of the guest. For

instance, guest tasks with soft real-time requirements can be

executed within a dedicated host real-time task, but can also

be given the remaining idle CPU time that will help reaching

their deadlines.

3) Guest interrupts handling: when the guest is running,

it may handle its own interrupts. However, when it is idle,

the host must handle them on behalf of the guest, while still

ensuring safeness and determinism. Once again, two policies

are possible:

• Interrupts channels of the guest are active only when

the guest is actually being executed. Interrupts received

while the host is executing any critical task are lost. This

solution is simple and safe, but the loss of interrupts is a

drawback.

• Interrupts for the guest are received by the host even

if the guest is “asleep”, but under certain conditions.

A mechanism similar to the one described in section

IV-A should be implemented to prevent the host from an

“Interrupt Storm”. This would also guarantee a bounded

overhead due to guest interrupts handling. The interrupts

received should be buffered and delivered to the guest

when it is executed again. This policy theoretically avoids

interrupts lost for the guest, however its implementation is

a bit more complex than in the first policy. Note also that

this solution can simulate a periodic interrupt (e.g. clock

interrupt) to the guest. A dark spot though: waking-up

the guest is delicate. Indeed, it will probably not endure

well to be flooded by all the interrupts missed while

it was asleep, and a “temporization” policy would be

more appropriate. This question deserves further study

and experimentation and is part of our future work.

4) Memory isolation: this feature cannot be implemented

without a hardware support, i.e. without a MMU or at least a

MPU device. When such a hardware memory protection unit

is available, the host OS must ensure that it remains the only

one able to modify memory access rights. If the guest needs

to modify those rights, it should do so through a dedicated

hypercall, that will check the sanity of its request. Moreover,

the guest OS should only be able to access to a dedicated part

of the physical memory, but not to the memory of the host or

of its critical tasks.

5) Communication between the host and the guest: the

ultimate integration step of the guest OS is to allow him to

communicate with the host. We voluntarily will not go into

the details here, because a lot of solutions can be considered:

shared memory buffers, dedicated hypercalls, virtual network

devices, etc. In addition, these solutions depend on the re-

quirements set on data communications between the guest OS

and the host as well as the performance of the underlying

hardware.

6) Use-case – Trampoline over PharOS: A first prototype

of mixed systems has been realized with both PharOS and

Trampoline [1] OSes, used respectively for high and low criti-

cal functions on a Freescale S12XE architecture. Trampoline is

an open source Real-Time Operating System, that implements

the OSEK/VDX API, a standard in automotive embedded

software. This prototype is therefore a rather straightforward

solution to feature OSEK/VDX tasks on a PharOS driven

platform.

The paravirtualization of Trampoline is ensured by the

PharOS microkernel. In accordance with the principles ex-

posed previously, Trampoline is encapsulated in a time-

triggered (TT) task and executed in protected mode. This guest

TT task has a period of 10 ms, which corresponds to the

elementary time quantum of the Trampoline real-time kernel.

Using the notations from figure 6, the parameters of the guest

task are: p = 10ms,∆ = 10ms, b = 10%. In other words,

Trampoline is given 10% of the total CPU resource. Every

time the Trampoline task is awaken by the scheduler, the

mini-hypervisor implemented in the PharOS kernel simulates

a clock interrupt for Trampoline. This regular “tick” indicates

that 10ms have elapsed in the real world.

PharOS also provides hypercall services to Trampoline to

manage its basic functionalities. Communications between

host and guest OSes are not implemented yet in this prototype.

However, a solution based on a specific ET task interface, as

presented in section IV-A, is currently being studied.

The prototype is designed to execute safely two represen-

tative automotive applications. The first one is executed by

PharOS: six real-time tasks put together a subset of a body

controller. That controller includes some system output com-

mands, communication mechanisms through a CAN-bus and

sensors signal measurements. The second application, hosted

by Trampoline, is basically a diagnostic function (aliveness

monitoring) made of two real-time tasks based on the OSEK

API.

The Trampoline task has been designed as a single PharOS

task “group” (made of only one task), thus able to recover from

an error and restart (see section III-D). Various error scenarii

are used to stress PharOS safety mechanisms. The same tests

were transposed to the Trampoline application, all resulting in

successful detection and isolation by PharOS. The two main

tests are:

• Illegal memory access: an attempt to read or write to

PharOS memory space from Trampoline is detected and

Trampoline is restarted.

• Infinite loop: an erroneous Trampoline task entering

an infinite loop does not interfere with PharOS tasks

scheduling. It is the responsibility of the Trampoline

kernel however to detect this fault, and possibly restart



the task.

As a conclusion, let us stress that we have focused on one

paravirtualization technique through a practical use-case, but a

lot of alternatives can be considered. The choice of a solution

should depend on the type of the virtualized OS, and mostly on

the underlying architecture. Typically, multi-core architectures

offer many different ways to solve the CPU-sharing problem –

the simplest but clearly suboptimal solution being to dedicate

one core for each guest.

V. RELATED WORK

Spatial and temporal isolation mechanisms have been in-

troduced to support the virtualization of the execution of

multiple operating systems on a single platform [9], [10], a

long time ago. Since then, protection of information within

operating systems has been the subject of numerous work, such

as [4], [3] to name a few. Lately, the avionic domain has re-

popularized and defined the principles of spatial and temporal

partitioning [11], while Xen [12] has also re-popularized

research work in the area of virtualization. However, fewer

work have focused on issues of virtualization within real-time

constraints [13], especially in highly-constrainted memory

environments.

In [11], underlying mechanisms and issues to implement

spatial and temporal partitioning have been shown. Classically,

spatial partitioning relies on hardware memory protection

units. However, a software approach has also been proposed

called Software Fault Isolation [14] (SFI). In this approach,

memory references are statically checked and, when it is

possible, additional code is embedded in order to check

accesses during execution. Proof-carrying code (PCC) [15]

can be seen as a generalization of SFI, in which a safety

policy is expressed using first-order logic that is certified and

verified by a kernel prior to execution. But the problem of

these static-checking methods is that they do not provide any

protection against hardware bugs, nor do they allow execution

of unchecked third-party code, which PharOS does.

Currently, several operating systems implements spatial and

temporal partitioning such as DECOS [16] and successors

or LynxOS-178 [17], an ARINC 653 compliant OS [5].

However, in both cases, temporal partitioning is ensured by

static scheduling of partition time slots.

VI. CONCLUSION

The PharOS model, method and tools provide a strong

basis for real-time systems isolation. We have explained how

we combined temporal isolation with optimal scheduling and

dynamic task behavior, using offline compilation and analy-

sis, and online monitoring techniques. We showed how we

achieved spatial isolation by automatic generation of fine-

grained memory tables at compile time, and control of commu-

nication using a trusted “system layer” in a separate address

space. Using these isolation principles as a basis, we have

presented many different ways of extending PharOS to support

several levels of mixed-criticality:

• error confinement and recovery with groups of tasks;

• interrupts processing with appropriate monitoring and

physical core separation;

• paravirtualization of external OSes

Future work on PharOS will mainly focus on improving

resource-sharing techniques for paravirtualization (CPU cores,

interrupts channels, peripherals), and on new scheduling algo-

rithms on multi-core embedded platforms, based on our previ-

ous work [7]. In addition, we plan to improve the safeness of

our approach by making the system layer untrusted. The node

transitions checking would be handled by the microkernel (as

critical activities), and the system layer would ultimately be

allowed to fail without impacting other tasks. Such a solution

would also allow much more flexibility and facilitate the

virtualization of communicating tasks.
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