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(57) Abstract: A method of performing unsupervised detection of
repeating patterns in a series (TS) of events (E21, E12, ES5...), com-
prising the steps of: a) Providing a plurality of neurons (NR1 - NRP),
each neuron being representative of W event types; b) Acquiring an
input packet (IV) comprising N successive events of the series; ¢)
Attributing to at least some neurons a potential value (PT1 - PTP),
representative of the number of common events between the input
packet and the neuron; d) Modity the event types of neurons having
a potential value exceeding a first threshold Tr,; and e) generating
a tirst output signal (OS1 - OSP) for all neurons having a potential
value exceeding a second threshold T, and a second output signal,
different from the first one, for all other neurons. A digital electronic
circuit and system contigured for carrying out such a method.

[Continued on next page]



WO 2018/091706 A1 {1 I I0F0! ) W10 0N 0O 0 00

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report (Art. 21(3))



10

15

20

25

30

WO 2018/091706 PCT/EP2017/079767

METHOD, DIGITAL ELECTRONIC CIRCUIT AND SYSTEM FOR
UNSUPERVISED DETECTION OF REPEATING PATTERNS IN A SERIES OF
EVENTS

DESCRIPTION

Object of the invention

The invention relates to a method, a digital circuit, a system and a computer
program product for performing unsupervised detection of repeating patterns in
a series of events. It belongs to the technical fields of digital electronics and of
machine learning and more particularly to the sub-field of neural networks. It
lends itself to several applications including — but not limited to — video stream
processing (e.g. Dynamic Vision Sensors) and audio processing (e.g. artificial
cochleae).

Prior art

One of the most striking features of the cerebral cortex is its ability to wire itself
in order to adapt to its environment. Sensory substitution or addition
experiments suggest that neurons can make sense of any kind of sensory data,
presumably using the same basic mechanisms. One such mechanism is
supposed to be the so called spike-timing-dependent plasticity (STDP). It has
been shown that artificial neurons equipped with this mechanism can detect
repeating patterns of input “spikes”, in an unsupervised manner, even when
those patterns are embedded in noise. See e.g.:

- Masquelier, T., Guyonneau, R. & Thorpe, S. J. Spike timing
dependent plasticity finds the start of repeating patterns in continuous spike
trains. PLoS One 3, €1377 (2008).

- Masquelier, T., Guyonneau, R. & Thorpe, S. J. Competitive
STDP-Based Spike Pattern Learning. Neural Comput 21, 1259-1276 (2009).

- Gilson, M., Masquelier, T. & Hugues, E. STDP allows fast
rate-modulated coding with Poisson-like spike trains. PLoS Comput. Biol. 7,
e1002231 (2011).

This amazing ability has inspired a number of neuromorphic
algorithms and architectures, used for data processing and more particularly for
temporal pattern recognition.
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For instance WO 2012/054109 discloses an artificial neural
network having a plurality of synapses, each synapses having an adjustable
weight which takes discrete values and changes in discrete steps with a
probability depending on a time elapsed between a pair of spikes originating
from a post-synaptic neuron circuit and a pre-synaptic neuron circuit connected
to it. Operating such an artificial neural network is computationally intensive, as
updating the synapses weights (essential for learning) requires multiply-
accumulate operations, and multiplications are known to be the most space and
power-hungry operations in the digital implementation of artificial neural
networks.

WO02013119867 discloses an artificial neural network wherein
synapses do not have weights — or, equivalently, have binary weights: a
synapse is then either existing or non-existing. Despite this simplification,
operating this artificial neural network remains computationally intensive, as it
requires measuring and applying variable delays to input and output spikes.

Moreover, artificial neural networks according to the prior art
generally suffer from a lack of robustness: they may fail to detect a pattern it if is
slightly distorted, or if the event acquisition rates varies.

More particularly, in current STDP-based approaches, fine-
tuning of the numerous parameter of the rule is required. This also adversely
affects robustness. For instance, the ratio between weight reinforcement and
weight depression is crucial: if too large, most weights end up saturated, leading
to very active but non-selective neurons. If too low, the weights tend to
decrease until the neurons do not reach their threshold anymore, which is a
dead end.

The PhD thesis of Pirjo Moen “Attribute, Event Sequence, and
Event Type Similarity Notions for Data Mining”, University of Helsinki, February
2000, discloses several metrics for the similarity between event sequences.
These metrics are intended for application to data mining.

The invention aims at overcoming these drawbacks of the prior
art by providing a method and an architecture for performing unsupervised
detection of temporal patterns which is simple and economical to implement (in
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terms of computing time, energy consumption and/or silicon surface), effective
and robust.

According to some embodiments of the invention, these aims
are achieved thanks to the following technical features:

- Input events (“spikes”) are grouped into fixed-size packets.
The temporal order between events of a same packet is lost, which may seem a
drawback, but indeed increases robustness as it eases the detection of
distorted patterns and makes the method insensitive to changes of the event
rate

- Weighted or un-weighted synapses are replaced by set of
binary weights. Learning only requires flipping some of these binary weights
and performing sums and comparisons, thus minimizing the computational
burden.

- The number of binary weights which is set to “1” for each
neuron does not vary during the learning process. This avoids ending up with
non-selective or non-sensible neurons.

Like other neuromorphic architectures, spiking neural networks
are most often implemented by software running on general or specialized (e.qg.
graphical processing units, GPU) processors. In some cases, hardware
implementations — based e.g. on FPGA (Field Programmable Gate Array) or
other programmable circuits, or even on ASICs (Application Specific Integrated
Circuit) — are used to improve performances. These hardware implementations,
however, are often complex, requiring a large silicon surface, and therefore
expensive. In some cases, analog or mixed-signal implementations using
special devices such as memristors are used, but this approach is also complex
and expensive.

According to an aspect of the invention, these drawbacks of the
prior art are overcome by providing a digital hardware implementation of a
spiking network which is simple and economical in terms of computing time,
energy consumption and/or silicon surface, while being very effective for
performing robust unsupervised detection of repeating patterns

Description of the invention
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An object of the present invention is a method of performing unsupervised
detection of repeating patterns in a series of events, each event of the series
belonging to an event type of an M-element set of event types, the method
comprising the steps of:

a) Providing a plurality of neurons, each neuron being
representative of a W-element subset of the set of event types, with 1<W<M;

b) Acquiring an input packet comprising N successive events
of the series, with 1<N<M and preferably 1<N<M;

c) Attributing to at least some neurons a potential value,
representative of the number of events of the input packet whose types belong
to the W-element subset of the neuron;

d) for neurons having a potential value exceeding a first
threshold Ty, replacing nswap>1 event types of the corresponding W-element
subset, which are not common to the input packet, with event types comprised
in the input packet and not currently belonging to said W-element subset; and

e) generating an output signal indicative of neurons having a
potential value exceeding a second threshold TF, greater than the first
threshold;

steps b) to e) being repeated a plurality of times.

In a preferred embodiment, nswap and TL are set independently
for different neurons. More preferred, nswap and T are respectively decreased
and increased as the potential value of the neuron increases.

According to further embodiments of the method, each neuron
is implemented by a Boolean vector having M components, each component
being associated to a different event type of said set, W of said components
taking a first Boolean value and (M-W) of said components taking a second
Boolean value.

Preferably, step a) comprises performing random initialization of
the neurons.

More preferably, step b) comprises filling a M-element Boolean
vector, called input vector, each element of which is associated to a different
event type of said set, by setting at the first Boolean value elements associated
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to event types comprised in the input packet, and at the second Boolean values
elements associated to event types not comprised in the input packet.

Even more preferably, step ¢) comprises comparing (CMP)
element-wise the input vector and the vectors implementing neurons.

Optionally, the method further comprises a step f) of

generating a series of events from the output signals generated at step
e), and repeating steps a) to e) by taking said series as input.

Another object of the invention is a digital (preferably
integrated) electronic circuit configured for carrying out such a method, said
digital electronic circuit comprising:

- an input unit, configured for receiving, on an input port of
the digital electronic circuit, a series of digital signals representing respective
events, each signal of the series belonging to a signal type of an M-element set
of signal types, and for generating a data packet representative of N contiguous
signals of the series, with 1<N<M and preferably 1<N<M;

- a memory storing data defining a plurality of neurons, the
data defining each one of said neurons comprising a set of binary weights
representative of a subset of the set of signal types;

- a maitch calculating unit, connected to said input unit and
said memory, configured for receiving a data packet from the input unit; for
computing, for at least some of the neurons defined by the data stored by the
memory, a potential value representative of the number of signals of the input
packet whose types belong to the subset of the neuron; and for generating, on
an output port of the digital electronic circuit, a series of output signals indicative
of neurons having a potential value exceeding a threshold TF, called firing
threshold; and

- a learning unit, connected to said input unit, said match
calculating unit and said memory, configured for modifying, inside said memory,
the set of binary weights of neurons having a potential value exceeding a
threshold TL, called learning threshold, said modifying comprising swapping
Nswap=1 binary weights representative of signal types of the subset of the set of
signal types which are not common to the input packet, with a same number of
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binary weights representative of signal types comprised in the input packet and
not currently belonging to said subset of the set of signal types.

Another subject of the invention is a digital electronic system
comprising:

- a plurality of such digital electronic circuits, at least two of
which comprise input units having filters configured to allow incoming digital
signals having different values of an indicator of a neuron population comprised
by each digital signal of said series, wherein the matching units of said digital
electronic circuit are configured for generating a said output signal also
containing an updated indicator of a neuron population; and

- asignal merger having a plurality of input ports and a single
output port, the input ports of the signal merger being connected to the output
ports of said digital electronic circuits and the output port of the signal merger
being connected to the input ports of said digital electronic circuits and to an
output port of the digital electronic system.

Yet another object of the invention is a computer program
product, stored on a non-volatile computer-readable data-storage medium,
comprising computer-executable instructions to cause a computer to carry out

such a method.

Brief description of the drawings
Additional features and advantages of the present invention will become
apparent from the subsequent description, taken in conjunction with the
accompanying drawings, which show:

- Figure 1, a block diagram of an implementation of the
inventive method;

- Figures 2A, 2B and 3, plots illustrating the technical results
of the invention;

- figure 4, a high-level block diagram of a digital electronic
circuit according to an embodiment of the invention;

- figure 5, a detailed block diagram of an input unit of the
digital electronic circuit of figure 4;
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- figure 6, a detailed block diagram of a match calculating unit
of the digital electronic circuit of figure 4;

- figures 7A and 7B, a detailed block diagram of a learning
unit of the digital electronic circuit of figure 4;

- FIGURE 7C, a block diagram of a logical unit of figure 7B;
and

- figure 8, a high-level block diagram of a digital system

comprising several instances of the circuit of figure 4.

Embodiments of the invention

The inventive method allows analyzing a series of “events”. In actual digital
implementations, an event may typically be expressed by a fixed-length binary
word. For instance, if 10-bit words are used, there will be 2'°=1024 different
event types. Each event type may represent e.g. the luminance values of a set
of pixels of an image detector, a sound in an audio stream, etc. Let {E1 ... EM}
be the M-element set of allowable event types, and TS be a list of successive
events, each event of TS belonging to an event type of the set. For the sake of
simplicity, each event of TS will be identified by its event type. Therefore, it will
be possible to write e.g. TS = (E21, E12, E5 ...).

The list TS does not need to have timestamps, but it needs to
be ordered. It is possible that some events are in fact simultaneous or quasi-
simultaneous, in which case their order in the list is partially arbitrary.

A “pattern” is constituted by a group of nearby events that occur
repeatedly within the series TS, even if different repetitions slightly differ, e.g.
due to noise (some events can be missing, or additional events can be
interleaved). The inventive method aims at detecting such patterns, otherwise
stated at generating a distinguishable output signal when a pattern occurs. The
detection is performed by unsupervised learning, i.e. it is not required to enter a
list of the pattern to be detected: after some presentations, the algorithm learns
alone to recognize repeating patterns within the input series TS.

As illustrated on figure 1, the series TS is read sequentially,

until a predetermined number N (usually greater than 1) of events has been
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acquired, forming a “packet” PK. The series can then be seen as a succession
of packets.

In an advantageous embodiment of the invention, the acquired
packet is used to fill a M-element Boolean vector, or array, called input vector
IV, each element of which is associated to an event type: E1, E2... EM. Initially,
all the elements of the input vector IV are set to “0”; whenever an element “Ei” is
acquired, the corresponding element of the input vector takes the value “1”. At
the end of the acquisition of a packet, the input vector IV will therefore contain N
“ones” and M-N “zeros”. The following table 1 shows an example of an input
vector for the case M=20, N=4, PK = {E3, E5, E10, E12}:

E|E|E E/E|IE|E|E |E |E |E |E |E |E |E |E |E |E
1 6 |7 1011 (12 |13 |14 |15 |16 |17 |18 |19 | 20
oj0(1/0}1(0}0(0{0(1 (0 (1 |0 |O |O |O |O |O |O |O

It is interesting to note that the input vector does not keep track
of the order of the events within the packet. As explained above, this is an
important feature of the invention, and does contribute to its robustness.

It will be understood that the size N of a packet PK has to be
smaller — and preferably much smaller, i.e. by at least a factor of 10 — than the
number M of event types (albeit this is not the case for the example of table 1,
which is only provided as an illustration). Indeed, the inventive method does not
allow taking into account the presence of several events of a same type within a
same packet, therefore such a situation should be exceptional.

The detection of patterns is performed using a set of P
“neurons”, each associated to a set of W unique event types, i.e. to a subset of
the M-element set of all possible event types. Typically, W is greater than 1 and
smaller than the number N of events in a packet and than the number M of
event types; the number P of neuron may advantageously be equal to M, for
reasons which will be explained furthers, but this is by no mean essential.

According to an advantageous embodiment of the invention,
each neuron NR1, NR2...NRi ...NRP is represented by a M-element Boolean
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vector, or array, each element WGij of which is associated to an event type Ej;
this is analogous to the representation of an event packet by the input vector.
Neurons are initialized by randomly setting W of their elements to “1”, while the
remaining (M-W) elements are at “0”. Elements of the neuron vector having a
value of “1” are also called “weights”.

Whenever an event packet PK is acquired, it is compared
(reference CMP on figure 1) to any one of the P neurons. Advantageously, the
comparison consists in performing a logical AND between corresponding
elements of the input vector and of each neuron. This allows identifying events
of the input packet corresponding to the event types of each neuron
(“matches”). The number of matches for a neuron determines its “potential”
PT1, PT2...PTi...PTP. Table 2 illustrates an example, based on the input vector

of table 1, where W=4. Matches are indicated in bold characters, and the

potential values are underlined.

m{m|m |{m; |m: {@mMm/ |m:; @mMm; ]| mMm;@m:; @Mm; |m:; @m:; @ m: @m: ;@ Mm:; m:; | m:; @m;]m}|[m/]|™o
< | = | vV|w|rlO]lOo|N]|]o|lo|2m2lal=2l2=2]2=2=|M]|a
g o—nl\)mhcnm\loo@og
— 3
= 5
< o
[0}

Wlo |01 ]o |1 lo]Jofolo|1]o[1]o]o|o|o]o]o]o o
Zlo|1|1|ojo|o|1|lo]jo|lo]o|lo]jo|o]jo|1]|o|lo|oO|oO]|1
Zl1|lo|1|o|1]ofo|lo|o|ojo|1|o|o|o|1|0o|0o|O]|O]|3
N

Zlolo|o|1|o|l1|o|1]o]o|1]|1]0o]|o]|o]|1|o|lo|lo|o]oO
D

Table 2

In the exemplary embodiment discussed here, a potential value
is attributed to each one of the neuron, but this is not necessarily the case. The
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potential is not necessarily equal to the number of matches, as in this
exemplary embodiment. More generally, it may be any value representative of
this number, e.g. a suitable, preferably monotone, function thereof.

If all the events occur independently and with the same
probability, then the potential has a hypergeometric distribution with N draws
from a population of size M containing W successes (or, equivalently, W draws
from a population of size M containing N successes). If N<<M (which is possible
for applications where M is large), then the probability of the potential being
greater or equal than a threshold T quickly drops with T. For example with
M=1024, N=64 and W=32, then the probability Pr of the potential being greater
or equal than 9 is 10 approximately. That being said, for most real applications
input events will not occur independently, and their frequencies may also differ.

All the neurons whose potential is greater or equal than a first,
or “learning”, threshold TLi (index “”, which will be omitted when this does not
cause confusion, is used because the threshold may be — and preferably is —
different for each neuron) are modified according to a learning rule (functional
bloc LR on figure 1). The idea is that only neurons which are already sufficiently
similar to the input packet should be trained in order to recognize it.

The training is performed by swapping a certain number ngyap Of
— randomly chosen — unused weights of the neurons (i.e. “ones” of the neuron
vector which do not coincide with “ones” of the input vectors) with — also
randomly chosen — active but unused inputs (i.e. “zeros” of the neuron vector
which coincide with “ones” of the input vector). In other words, nswap €vent types
of the neuron vector, which are not common to the event types of the input
packet, are exchanged with event types comprised in the input packet and not
currently belonging to the neuron. For example, taking nswap=1, the weight of the
position #1 of neuron NR2, which is unused, is moved to position #10 of the
same neuron, which corresponds to an active but unused input.

Table 3 shows the vector of the second neuron NR2 after the

swapping.
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Table 3

It is clear that this makes the neuron’s weights more similar to
the current input packet. Hence if the same packet arrives again, the potential of
neuron NR2 will reach 4. This rule is similar to the biological learning rule known
as spike-timing-dependent plasticity (STDP), which reinforces the connections
with afferents that contributed in triggering a postsynaptic spike. Yet with STDP
the weight modification is subtle but concerns all contributing afferents, while
with the inventive rule the weight modification is drastic (i.e. from 0 to 1), but
concerns only newap afferents. Importantly, with the inventive swapping rule, the
number of non-zero weights is kept constant for each neuron.

When the potential of a neuron reaches or exceeds a second,
or “firing”, threshold TF, the neurons emits an output signal (it “fires”). According
to an advantageous implementation of the invention, each neurons has a binary
output OS1, 0S2...0Si...OSP which normally takes a “0” value, and which
commutes to “1” when the threshold TF is reached. Advantageously, the
second (“firing”) threshold TF is the same for all the neurons and is at least
equal to the highest possible value for the first (“learning”) threshold TL. The
output signal may take any alternative format, provided that it allows identifying
the neurons which have fired.

As it will be demonstrated further, with reference to figures 2A,
2B and 3, thanks to this learning rule some neurons will gradually become
“selective” to any repeating input pattern, that is they will reach their second
thresholds and fire when their “preferred” pattern appears, but hardly ever
otherwise.

It has been found that it is useful to vary both the learning rate
Nswap, @nd the first threshold TL independently for each neuron. When learning
begins, a relatively low threshold is necessary to start moving the weights. On
the same ground, one wants to move many weights, in order to rapidly forget
the arbitrary random initial weights, and rapidly shape them according to the
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input. As learning progresses, the potentials caused by the repeating patterns
tend to increase. This means one can safely increase TL up to a maximum
value Tmax Without missing the patterns, yet decreasing the false alarm rate. At
this point it is also useful to decrease the learning rate, in order to secure the
learned patterns. The learning speed nswap can decrease until Nmn=0 to
completely stop learning, or until npmin =1 if one still wants to slowly adapt to the
possibly changing input patterns.

According to a particular embodiment of the invention, the
following heuristic rule is proposed to decrease nswap and increase TLi:

TLi is initialized at a same value Tmin for all “i", and then,
whenever the i-th neuron NRi reaches its learning threshold TLi:

e TLi:=min(Tmax, PTi)
®  Ngwap := MaX(Nmin, Nswap - ANswap™ (P Ti-TLi))

where PTi is the potential of NRi and dnswap iSs @ parameter
which tunes the decrease speed (e.g. 1/4W).

Advantageously, the second (firing) threshold is taken equal to
the maximal value taken by the learning threshold: TF=T max.

Interestingly, the outputs of the firing neurons also form a series
of events, just like TS. More precisely, the firing on each one of the P neurons
will constitute an event, and there will be P possible event types. Some of these
events may happen simultaneously, if several neurons, trained to detect a same
pattern, fire at the same time. This means that it is possible to stack multiple
neuron layers using exactly the same algorithm; this is particularly easy if P=M.
Neurons in higher layers will learn “meta-patterns”, that is combinations of
patterns. Besides, it is worth mentioning that neurons typically fire much less
frequently than their inputs. This means that packets in higher layers will need
more time to be filled, which corresponds to longer integration times.

The inventive method has been tested on synthetic data.
Events have been generated randomly using independent Poisson processes
(gray dots on figure 2A). On top of this activity, three repeating patterns have
been introduced (“+”, “x” and black dots on the same figure). The patterns
consist in 16 nearly simultaneous events of different kinds. They repeat at

irregular intervals.



10

15

20

25

30

WO 2018/091706 13 PCT/EP2017/079767

The parameters used for this simulation were:

M = 1024

N = 64

W =32

Tmin=7

Tmax=TF=9

Nswap = 32,

Nrmin = 1

dNswap = 8

P= 1024

f = 20Hz (mean frequency of the inhomogeneous Poisson
processes).

Figure 2B shows the output events, generated by neurons
when their potential reaches TF. Neurons tend to be active if and only if some
patterns repeat (that is, the random gray input spikes generate virtually no
output activity). The most selective neurons for each pattern are those with the
maximum number of “good weights” (i.e. corresponding to the pattern’'s 16
events), among the neurons that have reached the final threshold Tmax. These
are very stable neurons which will not forget what they have learned easily.
Learning only takes a few presentations (~5). After learning most patterns are
detected, and false alarms are very rare.

The firing threshold TF is equal to 9. According to the
hypergeometric law, the probability of false alarm per packet is thus ~7.10°,
that is one every ~42 seconds. It is worth mentioning that if the task is to detect
larger patterns (e.g. 32 events instead of 16), then one can use larger
thresholds, leading to much lower false alarm probabilities, e.g. TF=18 leads to
one false alarm every 20 000 years. It is an advantageous feature of the
invention that the false alarm probability for a given value of the firing threshold
can be analytically computed.

In another simulation, a single pattern was used, and the
number of its presentations during 1 second of input was varied. The probability
Pr of having at least one selective neuron was computed as a function of the
number of presentations and for three different values of the number of
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neurons, P (1024, 2048 and 4096). A selective neuron is defined as having at
least 8 good weights (chance level = 0.5), and having reached the final
threshold Tmax at t = 1s. Figure 3 shows the results. Learning is very fast: with
1024 neurons, 7 presentations are needed to reach a probability of 1, but with
4096 neurons, 4 presentations are enough.

The inventive method has been described with respect to a
specific embodiment, but it is not limited to it. For instance, different
implementations could be used for the input vector and for neurons.

The inventive method may be carried out using a suitably
programmed computer — possibly including a graphic processing unit (GPU) to
speed-up execution. A computer program comprising computer-executable
instructions to cause a computer system to carry out the inventive method may
be stored on a non-volatile computer-readable data-storage medium, e.g. a
flash memory.

Alternatively, the inventive method may be carried out using
dedicated hardware, typically a digital electronic, preferably integrated circuit,
either specific (ASIC) or based on programmable logic (e.g. a Field
Programmable Gate Array, FPGA).

Figure 4 shows a general block diagram of a digital electronic
circuit SNN according to an embodiment of the invention. The circuit may e.g.
be implemented in a FPGA and comprises four main functional blocks:

- An input unit IU which receives event-representing signals
ES from an input port of the circuit and generates data packets PK representing
a number N of events. The figure shows that the input unit comprises two sub-
blocks, a FIFO (first-in first-out) buffer 1B and a “packet maker” PM whose
structure will be described in detail with reference to figure 5.

- A random-access (RAM) memory NM storing data
describing the neurons. In the exemplary embodiment, each neuron is defined
by several items of information: a vector of binary weights BWV, a value for the
learning threshold TL and a value for the nswap Which controls learning speed.
Memory NM is preferably a dual-port block RAM belonging to the FPGA. In the
following it will be assumed that the memory NM contains M memory words,
identified by log.(M)-bit addresses, each word storing the items of information
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defining a neuron. Moreover, it will be assumed that each neuron has a M-bit
binary weight vector. This is not essential, but it simplifies the implementation
and, as discussed above and explained in detail with reference to figure 8,
eases multi-layer processing.

- A matching unit, or match calculator MU which receives at
its input data packets coming from the input unit and vectors of binary weights
read from the memory, and uses them for computing neuron potentials and
generating output signals (or “output spikes”) OS, identifying neurons which
have fired. Advantageously, the matching unit also modifies the learning
threshold of neurons, and writes it into the appropriate location of the memory
NM. The matching unit will be described in detail with reference to figure 6.

- Alearning unit LU which implements the learning algorithm.
This unit receives “learning events” from the matching unit, data packets from
the input unit and binary weights from the memory, and uses these elements for
computing updated data describing the neurons, which are written into the
memory. The learning unit will be described in detail with reference to figures
7A, 7B and 7C.

The subdivision of the circuit in functional blocks may or may
not correspond to a physical reality. For instance, in a FPGA or ASIC
implementation, logic blocks belonging to a same functional block may or may
not be adjacent to each other. In a multi-chip implementation, it is not necessary
that all the element of a same functional block are realized on a same chip, or
that all the logical block of a same chip belong to a same functional block. This
is to say that the boundaries between functional blocks are largely conventional.

For reasons that will be understood later, in the exemplary
embodiment event-representing signals ES consist of two fields: an “address”
field EA, which identifies the event type, and a “population” field NPN. For
instance, a 16-bit signal ES may comprise a 10-bit event field, allowing
identifying 1024 different event types, and a 6-bit population field.

As mentioned above, the input unit comprises a FIFO buffer 1B
and a packet maker PM. The FIFO buffer is a conventional device and does not
deserve a detailed description. It is necessary in most implementations because
event-representing signals ES arrive asynchronously; without a buffer, a new
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signal may arrive before that the packet maker has finished processing the
previous one, and be lost.

A block diagram of the packet maker is illustrated on figure 5.
Clock, enable and set/reset signals, as well as power supplies, are omitted for
the sake of simplicity.

Event-representing signals received from the FIFO buffer are
temporarily stored in an input register IR.

A controller PMCTR, which may be modeled by a finite state
machine, may read from register IR the population number NPN to perform a
“filtering”: only signals having particular values of the NPN fields are processed.
The usefulness of this filtering operation will be explained later, with reference
to figure 8. The address field EA is provided to the select input S| of an M-
output demultiplexer DMX, having a constant value of “1” applied to its data
input DI. Each possible value of the address field EA, i.e. each possible signal
type, uniquely identifies an output of the demultiplexer, and a logical “1” is
transferred to said output to be stored in a corresponding memory element of an
M-bit register PKR. Before receiving the first signal, all the memory elements of
said register had been initialized to “0”.

If all the received signals were different from each other, after
receiving N signal the register PKR would contain exactly N “1” identifying said
signals, and (M-N) “0”. It would therefore correspond to what has been called, in
the preceding description of the unsupervised detection method, an “input
packet”. However, in practice, there is a possibility that two or more incoming
signal are of a same type; such signals only contribute to a single “1” in the
packet — otherwise stated, duplicate signals have to be discarded in order to
ensure that each packet contains exactly N “ones”.

For this purpose, the address field of each incoming signal is
also provided to the select input SI of an M-input multiplexer MX, whose output
is connected to the controller PMCTR. This allows the controller to “read” a
memory element just before a “1” is written into it. If the element contains a “0”,
a counter PMCN is incremented; if it already contains a “1”, the incoming signal
is considered a duplicate to be ignored, and the counter is not incremented.
When the counter attains the value of “N” (the packet size, provided e.g. by an
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external signal), the register PKR contains a fully formed” packet PK, which is
transferred to another register, VPKR, in order to be provided to the packet
maker output (in practice, this means that the matching unit receives a signal
informing it that it can read the packet at the output of the packet maker, said
output being directly connected to the register VPKR). The transfer Unlike PKR,
whose content changes at each reception of an event-representing signal,
VPKR always contains a “fully formed” signal, and its content only changes
upon the completion of the next packet. This is why VPKR, and not PKR, is
directly connected to the output of the packet maker.

The controller exchanges different signals with other blocks of
the circuit: it receives a “Event_ready” signal from the FIFO buffer, indicating
that the buffer is not full, and sends to it a “Read Event” prompting the
transmission of the first available signal to the input register IR; it sends a
“Spike Packet Ready” signal to the match calculator unit MU and receives from
it a “Match Calculator Ready”; the “Spike Packet Ready” signal also triggers the
transfer of the packet PK from the register PKR to VPKR. And, depending on
the received signals, it controls the operation of the other logical blocks
(demultiplexer, multiplexer, counter, register).

Figure 6 is a block diagram of the matching unit MU.

Like the packet maker (and, as it will be discussed later, the
learning unit), the matching unit comprises a controller MCTRL — which, again,
may be modeled by a finite state machine — controlling the operation of the
logical blocks of the unit and exchanging signals with the controllers of other
units. As discussed above, it exchanges “Spike Packet Ready” and “Match
Calculator Ready” signals with the input unit in order to acquire packets PK from
it. It also receives a “STDP Unit Ready” signal informing it when the learning
unit is ready to update neurons.

The main task of the packet maker is to calculate the matching
between a packet PK and the binary weight vectors BWV of all the neurons — or
at least of a predetermined subset thereof. To do so, the controller MCTRL
increments a counter SYAC, whose content successively takes values
corresponding to all the memory (or “synaptic”) addresses SYA of the binary
weights vector of the different neurons. The content of the counter is used to
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perform a reading access to the memory, allowing the matching unit to read the
binary weight vector BWV and the learning threshold TL of the corresponding
neuron, which are stored in respective registers. The current SYA address is
also stored in a field of an output register OSR, connected to an output port of
the circuit. Another field of the output register stores the population number
NPN, which may be provided from a signal coming from outside the circuit, or
be a constant value (e.g. if the filter implemented by the input unit controller
ensures that only signals having a same population number are processed; in
this case, the value of NPN stored in the output register OSR may be different
from that of the processed signals; again, this issue will be discussed later with
reference to figure 8). Moreover, the synaptic address SYA is also stored in a
field of another register, called the “learning event register” LER, to which the
learning unit has access.

The packet PK coming from the packet maker and the binary
weight vector BWV read from the memory — both M-bit binary words — undergo
a bit-wise logical AND operation, carried out by a bank of AND gates MAG
operating in parallel. The outputs of these logical gates are stored in an M-bit
register MR, called the matching register. It will easily be understood that a
memory element of the matching register only contains a “1” if both the packet
PK and the weight vector contains a “1” at the corresponding position, i.e. if they
match. An adder MADD (e.g. a three-stage pipelined adder) computes the sum
of all the bits of the matching register; the result is the potential value PT of the
current neuron for the processed packet.

The potential PT is provided at the input of three logical blocks:

- A first digital comparer MCMP1 compares it with the firing
threshold TF, provided by an external signal. If PT is greater or equal than TF,
an “Output Spike Ready” flag is raised at an output of the circuit, to notify that
an output signal OS may be read from the output register OSR. The output
signal OS consists in the address of the firing neuron, SYA, and optionally of a
population number NPN.

- Alogic block MIN receives the potential PT on a first input
and an externally provided value TLnax, representing a maximal allowed value

for the learning threshold, on a second output. The lowest of the values present
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at the inputs is transmitted to the output of the logic block, to be stored in a field
TL of the learning event register LER. TL’ represents an updated value of the
learning threshold — see equation (1) above. Alternatively, the potential PT
could be stored in the learning event register LER to be transmitted to the
learning unit, and the logic block MIN could belong to said learning unit.

- A second digital comparer MCMP2 compares the potential
PT to the learning threshold TL, read from the memory. If PT is greater or equal
than TL, a “Learning Event Ready” (LR) flag is raised to notify to the learning
unit that it can read a “learning event” LEV from the learning event register LER,
containing the address SYA of the neuron whose binary weight vector has to be
updated from the learning unit and the updated learning threshold TL'.

Digital comparers are well known digital elements. Logic block
MIN can be obtained by combining a digital comparer and a multiplexer.

Figures 7A and 7B form a block diagram of the learning unit LU.

The learning unit receives a learning triggering signal LTS,
comprising the learning event LEV and the LR flag, from the matching unit.
More precisely, the LR signal triggers the storing of LEV in a FIFO buffer LUB.
When it is full, and therefore unable to acquire further LTS signals, the buffer
generates a “FIFO full” signal — whose complement constitutes the “STDP Unit
Ready” transmitted to the controller MCTRL of the matching unit; when “STDP
Unit Ready” goes to zero, the matching unit stops its operation, and when
“STDP Unit Ready” goes again to one it resumes it. When empty, the buffer
also generates a “FIFO empty” signal, which is transmitted to a controller LCTR
of the learning unit; the “FIFO empty” signal is also transmitted to the controller
MCTRL of the matching unit, which triggers the “Match Calculator Ready” flag
when it is informed that the learning unit has finished its job. The controller can
be modeled as a Finite State Machine, and supervises the operation of the
logical blocks of the learning unit. In particular, it generates a “FIFO Read_en”
signal triggering the extraction of the first available data element from the buffer
LUB.

The data element extracted from the buffer is a learning event
LEV, which comprises a synaptic address SYA, i.e. the address of a neuron
within the memory NM, and the updated learning threshold of the same neuron,
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TL'. The synaptic address is transmitted to the address port of the memory,
while TL’ is temporarily stored in a corresponding field of an output register
LOR.

Transmitting the synaptic address SYA to the memory NM
triggers a reading operation of the data items, stored at said address, defining a
neuron which has crossed the learning threshold. These data items are the
binary weight vector BWV, the learning threshold TL itself and the swap number
Newap- 1hey are temporarily stored in an input register IOR. The learning
threshold is not processed by the learning unit, so its storage could also be
omitted. Instead, the learning unit changes the values of the binary weight
vector BWV and, preferably, of the swap number nsyqp: this is the aim of the
learning process. The updated values of the binary weight vector, BWV’, and of
the swap number, n'swap, are stored in respective field of the output register
LOR, together with TL’ (see above). Upon reception, from the memory, of a
“Write_enable” signal generated by the controller LCTR, the content of the
output register is written into the memory location of address SYA, thus
completing the learning process.

Updating nswap Simply consists in subtracting the decrement
dnswap from it, which is performed by a conventional subtracting block, SB1.

Updating the binary weight vector, on the contrary, is the most
complex operation performed by the whole circuit. As explained above, it
consists in swapping nswap “0nes” and “zeros” within the vector. To ensure that
the exact number of bits is swapped, the current (i.e. not updated) value of
Nswap, read from the IOR register, is transmitted to the controller LCTR, which
stores it into a counter LUCN. The counter is decremented after each swapping
operation; the learning process ends when its content reaches zero, and this
triggers the generation of the “Write_enable” signal from the controller (see
above).

The bit swapping block WSLB, which constitutes the bulk of the
learning unit, receives at its inputs the data packet PK, generated from the
packet maker PM, and the current binary weight vector BWV from the IOR

register.
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The binary weight vector BWV and the complemented (i.e.
passed through a bank of M “NOT” gates) data packet PK undergo a bit-wise
logical AND operation, carried out by a bank of AND gates LAG1 operating in
parallel. The result, which is called the “ineffective weights vector” IWV is stored
in a register. The IWV vector contains a “1” at each position corresponding to a
“1” in the weight vector and a “0” in the data packet; otherwise stated, IWV
represents active weights associated to missing events.

The complemented (i.e. passed through a bank of M “NOT”
gates) binary weight vector BWV and the data packet PK undergo a bit-wise
logical AND operation, carried out by another bank of AND gates LAG2
operating in parallel. The result, which is called the “ineffective spikes vector”
ISV is stored in a register. The ISV vector contains a “1” at each position
corresponding to a “0” in the weight vector and a “1” in the data packet;
otherwise stated, ISV represents events of the packet corresponding to inactive
weights.

The IWV and ISV vectors are transferred to respective circular
shift registers CSR1, CSR2, and undergo a circular shift by a same
(pseudo)random amount rv, determined by a random number generator RNG,
controlled by the controller LCTR and having an output connected to a shift
input port of each circular shift register. Several implementations of random
generators are known in the art of digital electronics. According to a particular
embodiment, RNG is a simple counter always counting up in each clock cycle.
Because the exact time of processing each learning event LEV depends on
several parameters, the value of this counter at a given time can be considered
random for the purposes of the learning algorithm. Such an embodiment is
advantageous because it requires particularly few hardware resources.

The circularly-shifted vectors IWV and ISV then undergo a bit-
wise logical AND operation with respective mask vectors WM, SM, stored by
registers. Before the first swapping, all the bits of the mask vectors are set at a
logical “1”, therefore IWV and ISV are unchanged by the bit-wise AND
operation. References WMAG, SMAG designate the banks of logical AND gates
performing the operation.



10

15

20

25

30

WO 2018/091706

22 PCT/EP2017/079767

The binary vectors at the outputs of the AND gates are passed
through respective logical blocks FFAB1, FFAB2 which find the first active bit of
each of them. Otherwise stated, FFAB1 outputs a value which represents the
position of the first logical “1” in the MIVW=ISW AND WM vector; FFAB2 does
the same thing for ISV (MISV=ISW AND SM).

A possible implementation of the FFAB1 block is illustrated on
figure 7C; that of FFAB2 may be identical. In the embodiment of figures 7A/7B,
MIWYV is a 1024-bit binary word, however figure 7C uses a 16-bit word for the
sake of simplicity. More precisely, the value of IWV is taken to be
“0010000010000000”. This 16-bit word is used to fill a 4x4 two-dimensional
array, whose lines are LO: “0010”; L1: “0000”; L2: “1000” and L3: “0000".
Conversely, the columns are CO “0010”; C1: “0000”; C2: “1000” and C3: “0000".
The first active bit is the third one, i.e. the bit belonging to line LO and columns
C2. Four four-input OR gates POG1 — POG4 are used for OR-ing the bits of the
four columns. The output of a logical gate is a bit taking the value “1” if the
corresponding line contains at least one “17, representing an ineffective weight,
and “0” otherwise. In the example, the bits corresponding to lines LO and L2 are
set to “17, those of lines L1 and L3 to “0”. A first priority encoder PRE1 receives
at its inputs the outputs of these logical gates (1 — 0 — 1 — 0). The inputs have
different priorities: the one corresponding to line LO has the highest priority,
followed by L1, then L2 and finally L3. The output of the priority encoder is a 2-
bit word identifying the highest-priority input having a “1” value; in this case, this
output is “007, identifying line LO. This output is provided at the “select” input SI
of a multiplexer PMUX, whose four inputs are connected to respective lines of
the columns. Therefore, the four bits of the selected line LO are present on the
output of the multiplexer, to be provided as inputs to a second priority encoder
PRE2, whose output is another 2-bit word identifying the position of the first “1”
of the line — in this case “10”, corresponding to the third position. A 4-bit number
is then formed by juxtaposing the outputs of the first and second priority
encoders, in this order. The value of this number (00107, i.e. 2) corresponds to
the position of the first “1” within the IWV vector —i.e. the third position.

The random number rv, determining the amount of the circular

shift is then subtracted from the output of logical blocks FFAB1, FFAB2 using
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subtracting blocks SB2, SB3. It is important to note that these are “circular”
subtractions: for instance, if the output of FFAB1, that of FFAB2 and rv are 10-
bit binary words, a negative result -|r| of the subtraction will be represented by a
positive number 2'°-|r|-1; therefore, the result will always be comprised between
0 and 2'°-1=1023.

It will be easily understood that the results of the subtractions
represent the v active bits of the IWV and of the ISV vectors. Otherwise
stated, the subtractions readjust the positions found by logical blocks FFAB1,
FFAB2, compensating the circular shift.

It has been implicitly assumed that a positive value of rv
corresponds to a shift to the right of the bits of ISW and ISV. If it corresponded
to a shift to the left, the subtracting blocks SB2, SB3 should simply be replaced
by adders.

A first multiplexer LMUX1 has two data inputs connected to the
outputs of the subtracting blocks SB2, SB3, a select input Sl connected to the
controller LCTR and an output connected to an address input of a register
UWR, whose content has been initialized to the current value of the weight
vector BWV. A second multiplexer LMUX2 has two data inputs receiving
constant binary values: “1” and “0”, a select input Sl connected to the controller
LCTR and an output connected to a data input of register UWR. The register
also has a “write_enable” input receiving a signal (reference wr_en) generated
by the controller. It will be understood that, with suitable control signals from the
controller, the multiplexer can be used to write a “0” at the position of the rv™
ineffective weight of the binary weight vector, and a “1” at the position of the rv™"
ineffective spike. This is the first of the required swapping operations, improving
the match between the weight vector and the data packet.

The output of SB2 is also applied to an address input of the
register storing the WM mask, said register having a constant “0” applied at its
data input. Similarly, the output of SB3 is also applied to an address input of the
register storing the SM mask, said register having a constant “0” applied at its
data input. As a consequence, a “0” is put in each of the masks at the position

of a swapped bit.
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The updated masks are then bit-wise AND-ed with the circularly
shifted IWV and ISV vectors, the results being applied at the input of logical
blocks FFAB1, FFAB2. Due to the bit-wise AND operations with the updated
mask, the first active bits of IWV and ISV are now put to zero, therefore FFAB1
and FFAB2 find the second active bits of the original IWV/ISV vectors, and so
on.

These operations are repeated nswap times (the controllers
decreases the content of counter LUCN by one at each iteration, and stops
when a value of 0 is reached; it also stops when BWV’ perfectly matches the
input packet, i.e. when there are no more ineffective weights and spikes, and
therefore the MIWV and MISV vectors only contain zeros), thus resulting in the
flipping of a same number of “ineffective weight” and “ineffective spike” bits or,
equivalently, in their swapping. This condition is checked by “OR-ing” the
outputs of logical gates POG1 — POG4 using an additional four-input OR gate
POG5 (see figure 7C). Gate POGS5 generates a one-bit signal EM which is
transmitted to the controller LCTR (not represented on figures 7A/7B for the
sake of simplicity).

The updated binary weight vector BWV’, contained in the UWR
register, is then transmitted to the corresponding field of the output vector LOR,
before being written into the memory, as already explained.

The circuit described above (figures 4 — 7C) has been
implemented using a XC6SLX150T-3 Spartan-6 ® FPGA by Xilinx ®. Synthesis
was performed using Verilog language and a XST synthesizer, also by Xilinx.
The circuit comprised 1024 neurons and 1024 synapses (i.e. M=1024); the
number N of spikes in a packet was taken equal to 64 and the number W of
weights in a neuron was 32. The initial value of the learning threshold was taken
to be 7, and its final value (TLuax) was 12; the firing threshold was also equal to
12. The initial value of nswap was 32, with a decrement dngwap 0f 8 down to O (or,
in some other embodiment, to a nonzero minimal value, e.g. 1).
Advantageously, all these parameters are programmable in the FPGA through a
JTAG port.

A set of 64 “conventional” supervised STDP neurons was
added to classify the detected pattern. A supervised STDP neuron has an extra
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external input (called “supervisor”), encoded also through AER (Address Event
Representation), which forces post-synaptic spikes from this neuron when its
representative “category” (or feature) is present at the input. Therefore,
whenever a “supervisor” spike arrives, the corresponding active synapses will
be potentiated. Otherwise active synapses will be depressed. Suitable STDP
neurons are described e.g. in the paper by Masquelier T, Guyonneau R, and
Thorpe SJ “Spike Timing Dependent Plasticity Finds the Start of Repeating
Patterns in Continuous Spike Trains” PLoS ONE 3(1): e1377 (2008).

The implementation used 25% of the slices and 21% of the
block RAMs of the FPGA; interface circuits and supervised neurons consumed
an additional 19% of the slices and 25% of the block RAMs. The circuit was
operated at a clock frequency of 100 MHz. The learning unit was able to accept
about one packet every 10.24 pus, i.e. every 1024 clock cycle. Each packet
contained 64 events (spikes), therefore the theoretical event acceptance rate of
the circuit was of about 6 Meps (million events per seconds); in practice, an
acceptance rate of 5.3 Meps was actually achieved. By way of comparison, a
software simulation running on one core of an Intel ® Core™ i5 CPU could not
exceed 10 keps (thousand events per second).

Power consumption at maximum speed rate was 530 mW:
143 mW of static consumption and 387 mW of dynamic consumption,
corresponding to 73 nJ for each input spike. It has been estimated that a
standard-cell ASIC implementation, based for instance on Toshiba’s FFSA™
technology) would reduce consumption by 70% while improving speed by a
factor of 5.

The circuit has been tested using event-representing signals
generated by a simulator. Repeating patterns were generated, including at least
one event among 32 different event types; signals representing 992 other event
types were generated randomly. It was found that 6 presentations were
sufficient to ensure reliable detection of the patterns. The detection algorithm
turned out to be quite insensitive to spike loss: the rate of successful detection
was only reduced by 2% (from 100% to 98%) if 40% of the spikes were deleted;
the rate was still of 88% with a 50% deletion rate. It also proved reasonably
insensitive to jitter: at an input spike rate of 20.48 keps (average time to make a
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packet: about 3.2 ms) a jitter of up to 2 ms only reduced the detection rate by
4% (from 100% to 96%).

Figure 8 illustrates a diagram of a digital system comprising a
plurality of digital electronic circuits of the type described above — in the
exemplary embodiment of the figure there are three such circuits: SNN1, SNN2
and SNNS3. Each of these circuits implements a population filter: PF1, PF2, PF3,
only allowing in event-representing signals characterized by a particular
population number. On the figure, the filters are represented as separate logic
blocks but, as explained above, they may be implemented by the input unit
controllers. In particular, the filters PF1 and PF2 of circuits SNN1 and SNN2
only allow in signals with population number NPN=1, and filter PF3 of circuit
SNN3 only allows in signals with population number NPN=2.

Optionally an additional circuit SUP implementing a different,
supervised, artificial neural network (of any known type) may also be present.
This circuits implements a population filter PF4 which only allows in signals with
population number NPN=3.

The output ports of circuits SNN1, SNN2, SNN3 and SUP are
connected to respective input ports of a digital signal merger SMG, having a
single output which is connected to the inputs of the circuits, thus implementing
a data loop. An event generator EG (for instance, a dynamic vision sensor, or
DVS) is also connected to a respective input of the merger through an input
interface circuit 1IC (for instance, an Address-Event-Representation — AER —
interface). An output interface circuit OIC (for instance, another AER interface)
is connected to the output of the merger. The merger SMG provides arbitration
to manage the collisions between output signals of circuits “firing” almost
simultaneously. The output interface circuit has a population filter allowing in
signals with population number NPN=4.

The input interface generates event-representing signals ES
with a population number of 1; therefore they are processed by circuits SNN1
and SNN2. These circuits have a matching unit configured to generate output
signals having a population number of 2; this way, these output signals
constitute events suitable to be processed by circuit SNN3. In turn, this circuit
produces output signals with population number of 3, suitable to be processed



10

15

20

25

30

WO 2018/091706

27 PCT/EP2017/079767

by the supervised artificial neural network SUP. And the output signals of this
latter circuit have a population number of 4, in order to be accepted by the
output interface. Overall, the system implements a multi-layer neural network
wherein circuits SNN1 and SNN2 implement a first layer, circuit SNN3 a second
layer and SUP a third layer. The first and second layers perform unsupervised
detection of recurring pattern, while the third (supervised) layer associates each
detected pattern to a predetermined class.

Two separate circuits are advantageously used to implement
the first layer to assist in the detection of patterns which are split between two
successive packets. For this purpose, circuit SNN2 ignores the first N/2 events
with population number NPN=1; this ensures that the first packet generated by
its input unit comprises the last N/2 events of the first packet of the circuit SNN1
and the first N/2 events of its second pattern, and so on. This way, if a pattern
happens to be split between two successive packets of one circuit (a situation
which might result in a missed detection), it will fall right in the middle of a
packet of the other circuit. Due to duplicate events, after a while the
synchronization between circuits SNN1 and SNN2 risks being lost and a reset is
necessary. The same approach may be used for other layers.

A general controller GCTR supervises the operation of the
system. For instance, it may set the values of different parameters of the circuits
of the systems (e.g. TL, TF, nswap, N, the population numbers of the filters...; in
figures 5 — 8, all these parameters are represented by signal coming from
outside the units), perform different tests etc.

The system of figure 8 may be implemented in a single FPGA
(or another kind of programmable device), or ASIC, or in the form of a multi-chip
system.

The invention has been described with reference to a specific
embodiment, but it is not limited to it.

For instance, the implementation of one or some logic blocks
may be changed without changing that of the other blocks — except, if
necessary, for ensuring the compatibility of the data formats. The disclosed
implementations, however, are believed to realize an optimal trade-off between

complexity, speed and power consumption.
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In particular, in the swapping block WSLB of the learning unit,
Nswap fandom numbers could be generated successively in order to swap non-
successive ineffective weight and ineffective spike bits. This implementation,
however, would be much slower.

The data representations may also be changed to a certain
extent. For instance, in the exemplary embodiment; the binary weight vector of
each neuron is represented by a single M-bit binary word. In an alternative
representation, it could be represented by W binary words of log.M bits, each
representing the address of a bit set to 1. If M=1024 and W=32, this
representation requires 320 bits per neuron, instead of 1024 resulting in a
considerable saving in memory space. This implementation, however, is less
flexible and a conversion to the “explicit” M-bit representation is required in
order to be able to perform the bitwise AND operation in the matching unit and
in the learning unit.

The number W of weights is not necessarily the same for all the
neurons; similarly, thresholds TL and TF may be different from a neuron to
another. If different neuron uses different values for TF, the matching unit will
have to be slightly modified in order to include an additional register storing the
TF value for the currently processed neuron.

Emphasis has been put on FPGA implementations, but this is
not limiting. Any other hardware implementation, including multi-chip boards,
ASIC, semi-custom IC fall within the scope of the invention.
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CLAIMS

1. A method of performing unsupervised detection of repeating
patterns in a series (TS) of events (E21, E12, E5 ...), each event of the series
belonging to an event type of an M-element set of event types, the method
comprising the steps of:

a) Providing a plurality of neurons (NR1 — NRP), each neuron
being representative of a W-element subset of the set of event types, with
1<W<M;

b) Acquiring an input packet comprising N successive events
of the series, with 1<N<M;

c) Attributing to at least some neurons a potential value (PT1 —
PTP), representative of the number of events of the input packet whose types
belong to the W-element subset of the neuron;

d) for neurons having a potential value exceeding a first
threshold Ty, replacing nswap=1 event types of the corresponding W-element
subset, which do not coincide with the input packet, with event types comprised
in the input packet and not currently belonging to said W-element subset; and

e) generating an output signal (OS1 — OSP) indicative of
neurons having a potential value exceeding a second threshold TF, greater than
the first threshold;

steps b) to e) being repeated a plurality of times;

the method being carried out by a computer or by dedicated

hardware.

2. The method of claim 1 wherein ngwep and TL are set

independently for different neurons.

3. The method of claim 2 wherein ngyap and T are respectively
decreased and increased as the potential value of the neuron increases.

4. The method of any of the preceding claims wherein each
neuron is implemented by a Boolean vector having M components (WGij), each
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component being associated to a different event type of said set, W of said
components taking a first Boolean value and (M-W) of said components taking

a second Boolean value.

5. The method of claim 4 wherein step a) comprises

performing random initialization of the neurons.

6. The method of any of claims 4 or 5 wherein step b)
comprises filling a M-element Boolean vector, called input vector (IV), each
element of which is associated to a different event type of said set, by setting at
the first Boolean value elements associated to event types comprised in the
input packet, and at the second Boolean values elements associated to event

types not comprised in the input packet.

7. The method of claim 6 wherein step c¢) comprises
comparing (CMP) element-wise the input vector and the vectors implementing

neurons.

8. The method of any of the preceding claims further
comprising a step of

fy generating a series of events from the output signals
generated at step e), and repeating steps a) to e) by taking said series as input.

9. The method of claim 8 wherein the number P of neuron is
equal to the number M of event types.

10. A digital electronic circuit configured for carrying out a
method according to any of the preceding claims.

11. The digital electronic circuit (SNN) of claim 10, comprising:

- an input unit, (IU) configured for receiving, on an input port
of the digital electronic circuit, a series of digital signals (ES) representing
respective events, each signal of the series belonging to a signal type of an M-
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element set of signal types, and for generating a data packet (PK)
representative of N contiguous signals of the series, with 1<N<M;

- a memory (NM) storing data defining a plurality of neurons,
the data defining each one of said neurons comprising a set of binary weights
(BWYV) representative of a subset of the set of signal types,;

- a match calculating unit (MCU), connected to said input unit
and said memory, configured for receiving a data packet (PK) from the input
unit; for computing, for at least some of the neurons defined by the data stored
by the memory (NM), a potential value (PT) representative of the number of
signals of the input packet whose types belong to the subset of the neuron; and
for generating, on an output port of the digital electronic circuit, a series of
output signals (OS) indicative of neurons having a potential value exceeding a
threshold TF, called firing threshold; and

- a learning unit (LU), connected to said input unit, said
match calculating unit and said memory, configured for modifying, inside said
memory, the set of binary weights of neurons having a potential value
exceeding a threshold TL, called learning threshold, said modifying comprising
swapping nswap=1 binary weights representative of signal types of the subset of
the set of signal types which do not coincide with the input packet, with a same
number of binary weights representative of signal types comprised in the input

packet and not currently belonging to said subset of the set of signal types.

12. The digital electronic circuit of claim 11, wherein the data
stored by said memory and defining each one of said neurons also comprise

values of TL and ngyap.

13. The digital electronic circuit of claim 12, wherein at least
one of said matching unit and of said learning unit is further configured for
modifying the values of TL and nsuap Stored by the memory by decreasing TL
and increasing nswap as the potential value of the corresponding neuron

increases.
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14. The digital electronic circuit of any of claims 11 to 13,
wherein the data stored by said memory and defining each one of said neurons
also comprise a value of TF.

15. The digital electronic circuit of any of claims 11 to 14,
wherein the subsets of the set of signal types associated to all neurons have a

same number (W) of elements.

16. The digital electronic circuit of any of claims 11 to 15,
wherein the set of binary weights (BWV) of each neuron, representative of said
subset of the set of signal types, is implemented by a Boolean vector stored by
said memory, said vector having M components, each component being
associated to a different signal type of said M-element set of signal types, the
components associated with the elements of said subset taking a first Boolean
value and said the remaining components taking a second Boolean value
different from the first one.

17. The digital electronic circuit of any of claims 11 to 16,
wherein the input unit comprises a demultiplexer (DMX) having a data input
(DI), a select input (SI) and M outputs, and an M-bit register (PKR) having M
memory elements, each having a data input connected to a respective output of
the multiplexer, the demultiplexer being configured for receiving on its data input
a first constant binary value and on its select input a said digital signal (ES), or a
portion thereof (EA), belonging one signal type of said M-element set of signal
types, whereby said first constant Boolean value is stored in one of said M
memory elements associated with said signal type, the M memory elements of
the register being initialized at a second constant Boolean value different from
the first one.

18. The digital electronic circuit of claim 17 further comprising a
counter (PMCN) and a controller (PMCTR), wherein the controller is configured
for comparing the content of the M-bit register (PKR) to the digital signal
present on its select input in order to determine the content of the memory
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element associated to the signal type to which said digital signal (ES) belongs;
for incrementing the counter if said content has said second constant Boolean
value and for providing the content of the M-bit register, constituting said data
packet (PK), to the match calculating unit when the counter indicates that digital

signals belonging to N different signal types have been received.

19. The digital electronic circuit of claim 18 when depending
from claim 16, wherein said match calculating unit comprises a bank of logical
AND gates (MAG), a binary adder (MADD), a first (MCMP1) digital comparator
and a controller (MCTRL), wherein the controller is configured for:

- successively reading from the memory the sets of binary
weights (BWV) of a plurality of said neurons;

- using said bank of logical AND gates (MAG) for computing
M-bit matching binary words by performing a bit-wise logical AND operation
between each of said sets of binary weights and the data packet received from
the input unit;

- using said binary adder (MADD) for computing neuron
potentials (PT) by adding the bits of each matching binary word; and

- using said first digital comparator (MCMP1) for performing a
comparison of each neuron potentials to said firing threshold TF and, depending

on the result of said comparison, generating said output signal (OS).

20. The digital electronic circuit of claim 19 wherein said match
calculating unit further comprises a second digital comparator (MCMP2), and its
controller (MCTRL) is further configured for:

- using said second digital comparator (MCMP2) for
performing a comparison of each neuron potentials to said learning threshold
TL and, depending on the result of said comparison, generating a learning
triggering signal (LTS) indicative of the neuron and transmitting it to the learning

unit.

21. The digital electronic circuit of any of claims 19 and 20,
wherein said match calculating unit also comprises a digital block (MIN) for
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selecting the smallest of said potential value and a final value of said learning
threshold and providing it to the memory as a new value (TL’) of TL for the

corresponding neuron.

22. The digital electronic circuit of any of claims 17 to 21, when
dependent from claim 16, wherein the learning unit comprises:

- a first bank of logical AND gates (LAG1) configured for
receiving at their inputs the set of binary weights (BWV) for a neuron and an
inverted version of a data packet generated by the input unit, the output signals
of said first bank of logical AND gates forming a first binary word (IWV) called
an ineffective weights vector;

- a second bank of logical AND gates (LAG2) configured for
receiving at their inputs an inverted version of said set of binary weights (BWV)
and said data packet (PK), the output signals of said first bank of logical AND
gates forming a second binary word (ISV) called an ineffective spikes vector;

- afirst (CSR1) and second (CSR2) circular shift registers for
storing said ineffective weights vector and said ineffective spikes vector;

- a random number generator (RNG), connected to the first
and second circular shift registers to cause the content of said registers to
undergo a circular shift of a same, random amount (rv); and

- alogical block (WSLB) configured for:

- determining the positions of the nswaps first bits of the
content of the first circular shift register having a first binary value, then
readjusting the determined position to compensate the random amount
(rv) of said circular shift;

- determining the positions of the nswaps first bits of the
content of the second circular shift register having said first binary value,
then readjusting the determined position to compensate the random
amount (rv) of said circular shift;

- storing a second binary value, different from said first
binary value, in a memory element of a temporary register (UWR) having,
within said register, said first readjusted positions; storing the first binary

value in the memory elements of the temporary register having, within
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said register, said second readjusted positions; and keeping the content

of the remaining memory elements of the temporary register unchanged;

the learning unit being further configured for providing the

content of the temporary register to the memory as said updated set of binary

weights (BWV’) for the corresponding neuron.

23. The digital electronic circuit of any of claims 11 to 22,
wherein each digital signal of said series (ES) also comprises an indicator of a
neuron population (NPN) and wherein said input unit also comprises a filter
(PF1 — PF3) configured to allow or reject incoming digital signals depending on
a value of the corresponding indicator of a neuron population.

24. A digital electronic system comprising:

- a plurality of digital electronic circuits (SNN1 — SNNB3)
according to claim 23, at least two of which comprise input units having filters
(PF1 — PF3) configured to allow incoming digital signals having different values
of said indicator of a neuron population (NPN), wherein the matching units of
said digital electronic circuit are configured for generating a said output signal
also containing an updated indicator of a neuron population; and

- a signal merger (SMG) having a plurality of input ports and
a single output port, the input ports of the signal merger being connected to the
output ports of said digital electronic circuits and the output port of the signal
merger being connected to the input ports of said digital electronic circuits and

to an output port of the digital electronic system.

25. A digital electronic system according to claim 24, further
comprising a digital circuit implementing a supervised artificial neural network
(SUP) having an input port and an output port, the input port of said circuit being
connected to the output port of the signal merger through a filter (PF4)
configured to allow or reject incoming digital signals depending on a value of the
corresponding indicator of a neuron population, the output port of said circuit
being connected to an input port of the signal merger.
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26. A digital electronic circuit or system according to any of
claims 11 to 25, implemented by a FPGA.

27. A computer program product, stored on a non-volatile
computer-readable data-storage medium, comprising computer-executable
instructions to cause a computer to carry out a method according to any of
claims 1t0 9.
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