
Information and Software Technology 38 (1996) 275-280

Method engineering: engineering of information systems development
methods and tools

Sjaak Brinkkemper”

Department of Computer Science, University of Twente, P. 0. Box 217, 7500 AE Enschede, Ihe Netherlands

Abstract

This paper proposes the term method engineering for the research field of the construction of information systems development methods
and tools. Some research issues in method engineering are identified. One major research topic in method engineering is discussed in depth:
situational methods, i.e. the configuration of a project approach that is tuned to the project at hand. A language and support tool for the
engineering of situational methods are discussed.

Keywords: Information systems research; Method engineering; Information systems development methods: Situational methods
-_- __-

1. Introduction

The everyday practice of information systems development
is very diverse. Application domains, analysis and design
techniques, programming languages, development para-
digms, and project strategies can all vary over different
spectra. For instance, the application domain can be trans-
action processing, real-time process control, or decision
support, which have their own specification formalisms and
systems development methods. The usefulness of the
emerging paradigms for systems development, such as
process networks and object-orientation, is debated between
the practitioners and the theoreticians. The research world
of information systems development is dispersed over
many areas. We make the following observations:

The syntactical structures (grammar, meta-model) of the
various specification formalisms are very similar. The
semantics of the formalisms, i.e. the precise interpretation
of the concepts and interrelationships, can be very distinct.
The application of information systems development
methods makes no sense without a proper automated
support tool. We see a further amalgamation of methods
and tools: functionality of tools is extended with engineer-
ing process support features, complex consistency rules
are automatically checked and guarded.
Little research is performed on real-life information
systems deveiopment projects. The problems of large-
scale systems development coping with all sorts of intricate
project constraints are hardly subject to investigations.

This leaves both the practitioner and the researcher in an
immature, difficult professional situation. Some structure in

this chaos would benefit to the deeper understanding of
systems development as an engineering phenomenon that

has, and will have, substantial impact on society. We there-
fore aim to clarify this by providing a research framework
for methods and tools for information systems develop-
ment, baptized with the name method engineering. In order
to establish a good starting point for the discussion we start
with the definition of the major terms method, technique,
tool, and methodology in the next section. Thereafter we
introduce the notion of method engineering and discuss
several research issues. The remainder of the paper is

devoted to situational methods, which are methods con-
figured specifically for the project at hand. The me&method
for the configuration of a situational method is presented,
along with a discussion of a method engineering language
to describe methods and tools, and with a tool to support
the method engineering process.

2. Basic terms

For decades the information systems world has been
struggling with its terminology. This is due to its young age
as well as to commercial influences. In order to establish a

proper scientific basis we need to agree on good terminology,
It is essential to relate the terms in accordance with other
branches of science that have similar methodical develop-
ment approaches, such as organizational sciences and
mechanical engineering. We give the definitions of the four
central notions in method engineering.

2.1. Definition 1: Method

*email:brinkkemper@cs.utwente.nl

A method is an approach to perform a systems develop-
ment project, based on a specific way of thinking,

0950.5849/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved

SSDI 0950-5849(95)01059-9

276 S. Brinkkemperllnformation and Software Technology 38 (19%) 275-280

consisting of directions and rules, structured in a sys-
tematic way in development activities with corresponding
development products.

evaluation of all aspects of methodical information
systems development.

The word ‘method’ comes from the Greek ‘methodos’,
which means way of investigation. Examples of methods
for information systems development are Information
Engineering, SSADM, and Jackson Systems Development.
Recently, several methods with object-orientation as the
central way of thinking were introduced, such as OMT of
Rumbaugh et al. [11, and Objectory of Jacobson [2].
Methods are usually described in textbooks and manuals
giving the step-wise structuring of the development
activities and the structural requirements for the products,
also called deliverables. As we are dealing with methods
for information systems, we will in the sequel refer to
information systems development methods as ISDMs.

This definition implies that we restrict the term method-
ology to scientific theory building about methodical infor-
mation systems development. The misuse of the term
methodology standing for method is a sign of the immaturity
of our field, and should consequently be abandoned. Observe
furthermore, from this definition, that there is just one
methodology of information systems development and that
all research activities in this field contribute to this metbod-
ology. Nevertheless, some methodological schools can be
distinguished: the software engineering world with its roots
in the programming traditions, the management information
systems (MIS) arena originating from business schools, and
the socio-technical approaches.

2.2. Definition 2: Technique 3. Method engineering

A technique is a procedure, possibly with a prescribed
notation, to perform a development activity.

Commonly, only notations are referred to as techniques.
But, similarly as, for instance, electrical engineering is
more than drawing electronic circuits using a standardized
notation for transistors, resistances and the like, a systems
developer employs his professional skills by applying certain
notations for design or programming in some structured
plan. We therefore claim that a technique should not only
embody the representational aspects of development, but
also the procedural aspects. Examples of techniques are
data modelling with entity-relationship diagrams, inter-
viewing with plain natural language, pseudo-coding with
action-diagrams. Techniques can be classified in several
ways: related to the degree of formality of the notation (e.g.
natural language, structured graphics, or Z), or related to
the type of development activity it supports (e.g. data
modelling, process modelling, interaction design).

The area of methods and tools is lacking a proper frame-
work for research. Methods and tools are being developed
and employed over years, but a structure to take stock,
generalize, and evaluate is needed. We therefore introduce
the term method engineering to provide such a structure.

3.1. Dejinition 5: Method engineering

Method engineering is the engineering discipline to
design, construct and adapt methods, techniques and
tools for the development of information systems.

2.3. Dejinition 3: Tool

Similarly as software engineering is concerned with all
aspects of software production, so is method engineering
dealing with all engineering activities related to methods,
techniques and tools. The term method engineering was
already introduced in mechanical engineering to describe the
construction of working methods in factories. Kumar
and Welke coined the term methodology engineering in
their paper on situational methods [31, but as explained in
the previous section we prefer the proper term method
engineering.

A tool is a possibly automated means to support a part
of a development process.

The spectrum of tools for systems development is very
varied. CASE tool, Integrated Project Support Environments
(IPSE), Analysts Workbenches are popular names for types
of tools. Some tools just support a couple of different
notations, whereas others provide assistance to the whole
development life-cycle.

It must be obvious that the area of method engineering
has links with a lot of other research areas. We mention
project management, software configuration management,
software engineering environments, software process
modelling, and computer supported cooperative work.

Given the present status of the field there exists a multi-
tude of open research questions. We have selected four of
them to be presented shortly.

2.4. Dejnition 4: Methodology of information systems
development

The methodology of information systems develop-
ment is the systematic description, explanation and

(1) Meta-modelling techniques. The design and evaluation
of methods and tools require special purpose speci-
fication techniques, called meta-modelling techniques,
for describing their procedural and representational
capabilities. Issues are: what are the proper constructs
for meta-modelling; what perspectives of me&models

S. Brinkkemperllnformation and Sojiware Technology 38 (19%) 275-280 211

(2)

(3)

should be distinguished; is there a most optimal tech-
nique for meta-modelling, or is the adequacy of the
technique related to the purpose of the investigation?
Tool interoperability. As indicated, there exist lots of
tools that only cover part of the development life-cycle.
So the ISD practice is confronted with the proper
integration of the tools at hand, called interoperability
of tools. Open problems are related to the overall
architecture of the integrated tools. Should this be
based on the storage structure (i.e. the repository) in a
data-integration architecture, or on a communication
structure between the functional components in a
control-integration architecture?
Situational methods. As all projects are different,
they cannot be properly supported by a standard
method in a textbook or manual. How can proper
methodical guidance and corresponding tool support be
provided to system developers? Construction principles
for methods and techniques need further investigation.
In the remainder of the paper we will discuss the first
research results to some of the questions being raised
due to situational methods.

Project environment

project factors

V

Characterisation
of project

A

characterieation validation

I
V

1

(4) Comparative review of methods and tools. How can
the quality of a method or of a tool be expressed in order
to compare them in a sound, scientifically verifiable
way? Quality of methods comprises aspects as complete-
ness, expressiveness, understandability, effectiveness of
resources, and efficiency. Efforts in meta-modelling of
methods and tools show the advantages of an objective,
unbiased description for comparative review [4-61

4. Situational methods

A situational method is an information systems develop-
ment method tuned to the situation of the project at hand
[71. Engineering a situational method requires standardized
building blocks and guide-lines, so-called me&methods, to
assemble these building blocks.

The importance of situational methods was already recog-
nized by Olle et al. [81, This ‘scenario philosophy’ has been
further elaborated by Kumar and Welke, who introduced
methodology engineering, being an approach to develop
and implement methods [31. A method representation model

I Methods
Administration I

<

method fragment
additions/updates

Selection of
method fragments

I

Method Base

selectad I I re uests for
method fragments %I new me od fragments

situational method
I I

requests for
adaptations

I exwience
Project performance accumulation

I 1

Fig. 1. The configuration process for situational methods.

278 S. Brinkkemperllnformation and Sojware Technology 38 (19%) 27.5-280

providing ISDM concepts and a technique to analyse and
compare existing methods was presented by Heym and
&terle [9] . Saeki et al. also developed a method represen-
tation model, as well as a data base called ‘method base’
from which several complete ISDMs can be selected [lo] .
Hidding et al. [111 introduce the notion of task package,
being a part of the process perspective of methods. Van
Slooten et al. outline the construction process of situational
methods, emphasizing the determination of the project
characterization [121. Harmsen et al. [7] present the
structure of a method based to be filled with parts of
existing ISDMs, called method fragments.

Critical to the support of engineering situational methods
is the provision of standardized method building blocks that
are stored and retrievable from a so-called method base.
Furthermore, a configuration process should be set up that
guides the assembly of these building blocks into a situational
method. This configuration process is shown in Fig. 1. The
building blocks, called method fragments, are defined as
coherent pieces of IS development methods. We distinguish
product fragments and process fragments. Product frag-
ments model the structures of the products (deliverables,
diagrams, tables, models) of a systems development method.
Process fragments are models of the development process.

Process fragments can be either high-level project strategies,
called method outlines, or more detailed procedures to
support the application of specification techniques. We are
currently developing a method engineering language, (MEL),
that allows to describe and manipulate method fragments.
We give a short introduction to MEL below under ‘A
method engineering language’.

Every project is different, so it is essential in the method
configuration process to characterize the project according
to a list of contingency factors. This project characterization
is input to the selection process, where method fragments
from the method base are retrieved. Experienced method
engineers may also work the other way round, i.e. start
with the selection of method fragments and validate this
choice against the project characterization. The unrelated
method fragments are then assembled into a situational
method. As the consistency and completeness of the method
may require additional method fragments, the selection
and validation processes could be repeated. Finally, the
situational method is forwarded to the systems developers
in the project. As the project may not be definitely clear at
the start, a further elaboration of the situational method can
be performed during the course of the project. Similarly,
drastic changes in the project require to change the

Me&CASE tool

Method Base
Methods

b Administration

Fig. 2. The architecture of Decamerone.

S. Brinkkemperllnformatiott and Safhvare Technology 38 (19%) 275-280 279

situational method by the removal of inappropriate fragments
followed by the insertion of suitable ones.

5. Tools to support method engineering

Currently, we are developing Decamerone, a Computer
Aided Method Engineering (CAME) tool that is based on
and used in conjunction with the meta-CASE tool Maestro II
[131. This meta-CASE tool is a fully adaptable CASE tool
providing support for the systems development process as
well as for the adaptation of the various diagram editors
available. The architecture of Decamerone is depicted in
Fig. 2. The three functional components in the tool, the
method administration tool, the method assembly tool and
the generators, provide complete support for the method
configuration process outlined in the previous section.
Output of the CAME tool is the situational method data that
enables to parameterize the meta-CASE tool with the
situational method resulting into a situational CASE tool.
See the paper of Harmsen et al. [141 for more details.

6. A method engineering language

For description, administration, selection, and assembly of
method fragments, we are developing the language MEL.
This language provides methodology-dedicated concepts and
operators, which apply to both higher level method frag-
ments, like stages and deliverables, and low level method
fragments, such as concepts and their relationships. MEL
descriptions can be represented graphically, but also in textual
or tabular form. We show only the textual representation.

Method fragments are described by listing their com-
ponents, and by specifying relationships with other method
fragments. For process fragments, optional@, alternative
steps, repeated steps, and parallelism can be specified. For
product fragments, only optionality can be indicated. A
large number of method fragment properties, such as goal,
purpose, creator, source method, application domain, are
keywords in MEL, possessing predetermined value
domains for ease of specification. To cope with method
fragments derived from other method fragments (such as
‘logical data model’ being derived from ‘data model’), and
to enable multiple views on essentially the same method
fragment (such as the manager’s and the analyst’s views on
ERD), an inheritance mechanism is introduced in MEL.
MEL recognizes certain verbs, such as ‘Create’ or ‘Make’,
and nouns, such as ‘Description’ and ‘Diagram’, accom-
modating various kinds of consistency checks. For instance,
a ‘Diagram’ has to be specified by concepts and associations,
whereas a ‘Description’ has not. Fig. 3 shows three examples
of method fragments described in MEL descriptions.

Note, that for the first product fragment, only two
properties are defined: source and purpose. Components of
this fragment are concepts, between which a number of

associations in the method base exist. The associations that
should be taken into account are indicated between the
brackets. Process fragments usually require one or more
product fragments. Components of process fragments are
kither activity descriptions, decisions, or other process
fragments, structured by constructs to model iteration,
parallelism, optionality, and choices. In the example, the
process fragment Create Entity-relationship Diagram consists
of activity descriptions, meaning that they are not further
specified by a process fragment. A process fragment usually
yields one or more deliverables. The last example illustrates
the inheritance mechanism to accommodate different views
on one method fragment. A managerial view on the first
product fragment Entity-relationship Diagram could be an
ER-diagram where the attributes are hidden.

Besides its method fragment description ability, MEL
can be used for the administration of method fragments, by
offering operations to change the underlying concept struc-
ture of the method base, the Methodology Data Model, or
the internal structure of method fragments. Furthermore,
constructs are provided for method fragment selection, by
offering query operations, and for method assembly, by
offering operations to combine or disconnect method frag-
ments. Fig. 4 depicts an example of each type of operation.

7. Summary and conclusion

We have introduced method engineering as a research
framework for information systems development methods
and tools. The basic terms for method engineering: method,
technique, tool and methodology, have been defined to aid
the future scientific debate. The research in the area of
method engineering has been exemplified with a discussion
of the first results of situational methods: a configuration
procedure for situational methods, a CAME tool, and a
method engineering language.

Essential to the future development of the field is to keep
our eyes open for the needs of the development practice.
The research agenda should be set with the needs from
industry in mind. Further detailing of research priorities
should guide the academic and industrial researchers
involved in method engineering projects. We are convinced
that method engineering is a promising research field.

Acknowledgements

We wish to thank members of the Design Methodology
research group of the Department of Computer Science,
University of Twente for their valuable contributions to the
overall research project of method engineering.

References

[11 Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F and Lorenson, W
Object-oriented Modehg and Design Prentice-Hall (199 1)

280

VI

[31

[41

L-51

[61

[71

[J31

S. Brinkkemperllnformation and Sofrware Technology 38 (19%) 275-280

PRODUCT Entity-relationship Diagram:
SOURCE UTMethod;
PURPOSE Data modelling;
(

CONCEPT Entity (ALL);
CONCEPT Relationship (Involves Entity);
CONCEPT Attribute (Describes Entity);

)-

PROCESS Create Entity-relationship Diagram:
simplified version; for demonstration purposes #
REQUIRED Function List;
GOAL Data modelling;
SOURCE UTMethod;
(

- Determine provional Attribute List;
- Determine Entity List;
REPEAT
- Create global Entity-relationship Diagram;
- Check global Entity-relationship Diagram:
UNTIL global Entity-relationship Diagram supports whole Function List;

1
DELIVERABLES (Entity List, Entity-relationship Diagram}.

PRODUCT Entity-relationship Diagram(Manager):
FOR Manager;
(

INHERITS FROM Entity-relationship Diagram {SOURCE UTMethod, GOAL Data modelling}
HIDE CONCEPT Attribute

)*

Fig. 3. MEL descriptions of method fragments.

Delete from Entity-relationship Diagram CONCEPT Attribute.

Select PRODUCT Where SOURCE = SSADM

Join Entity-relationship Diagram With Data-flow Diagram
Through (Entity Describes Data store: Entity Describes Data flow).

Fig. 4. Example of an administration, a selection, and an assembly operation.

Jacobson, I, Christerson, M, Jonsson, P and Overgaard, G Object-
oriented Sojbvare Engineering Addison-Wesley (1992)
Kumar, K and Welke, R J ‘Methodology engineering: a proposal
for situation-specific methodology construction’ in Cotterman, W W,
Senn J A (eds) Challenges and Strategies for Research in Systems
Development John Wiley (1992)
Song, X and Osterweil, L J ‘Toward objective, systematic design-
method comparisons’, IEEE Sofrware (May 1992) pp 43-53
Hong, S, vd Goor, G and Brinkkemper, S ‘A comparison of object-
oriented analysis and design methodologies’, Proc. 26th Hawaiian
ConJ: on System Sciences (HICSS-26) IEEE Computer Science
Press, Vol IV (1993) pp 689-698
Marttiin, P, Rossi, M, Tahvainanen, V-P and Lyytinen, K ‘A com-
parative review of CASE shells-a preliminary framework and
research outcomes’, in Information and Management Vol 25 No 1
(1993) pp 11-31
Harmsen, F, Brinkkemper, S and Oei, H ‘Situational method
engineering for information system project approaches’, in Verrijn
Stuart, A A and Olle T W (eds), ‘Methods and associated tools for
the information systems life cycle’. Proc. of the IFZP WG8.1
Working Conference CRIS’94 Maastricht, September 1994, North-
Holland, Amsterdam, pp 169-194
Olle, T W, Hagelstein, J, MacDonald, I G, Rolland, C, Sol, H G,
van Assche, F J M and Verrijn-Stuart, A A Information Systems

[91

[lOI

[ill

[I21

[I31

r141

Methodologies-a Framework for Understanding (2nd edn) Addison-
Wesley (1991),,
Heym, M and Osterle, H ‘Computer-aided methodology engineering’,
in Inj and Soft. Technol. Vol 35 No 617 (1993) pp 345-354
Saeki, M, Iguchi, K, Wen-Yin, K and Shinohara, M ‘A meta-
model for representing software specification & design methods’ in
P&ash, N, Rolland, C and Pernici, B (eds), Proc. of the IFIP
WG8. I Conference on Information Systems Development Process
Corn0 (1993)
Hidding, G J, Freund, G M and Joseph, J K ‘Modeling large pro-
cesses with task packages’, Workshop on Modeling in the Large,
AAAI Conference, Washington, DC (1993)
Slooten, K van, and Brinkkemper, S ‘A method engineering approach
to information systems development’, in Prakash, N, Rolland, C
and Pemici, B (eds), Proc. of the IFIP WG8.1 Conference on
Information Systems Development Process Como (1993)
Merbeth, G ‘Maestro II-the integrated CASE system of Softlab (in
German: Maestro II-das integrierte CASE-System von Softlab), in
Balzert. H (ed). CASE Svsteme und Werkz.eune 3e Auflage, BI
Wissenschaf&krlag (199l)
Harmsen, F, Brinkkemper, S and Oei, H ‘A language and tool
for the engineering of situational methods for information systems
development’, in Zupancic, J and Wrycza, S (eds), Proc. of the
ISD’94 Conference, Bled, Slovenia September 1994. pp 206-214

