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Abstract — This paper proposes the method of the 
multifractal division of the computational complexity classes, 
which is formalized by introducing the special equivalence 
relations on these classes. Exposing the self-similarity 
properties of the complexity classes structure, this method 
allows performing the accurate classification of the problems 
and demonstrates the capability of adaptation to the new 
advances in the computational complexity theory. 
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I. INTRODUCTION 
In order to form the classification of the computational 

problems, they are grouped into separate classes from the 
perspective of their complexity. The problems belonging 
to each class have the same type (decision, function, 
counting, etc.), identical computation model and similar 
requirements to time and space resources [1]. The most 
important complexity classes are indicated based on the 
following concept of reduction: 

Definition 1. The reduction BA poly≤  of the 
computational problem A to another problem B is 
presented by transformations of the problem instances and 
solutions, respectively denoted by f and h, which have the 
polynomial time complexity. 

Let us consider the NP class, which contains the 
decision problems whose solutions can be verified in 
polynomial time. Being a preorder on this class, the 
reduction relation poly≤  allows to indicate inside it the 
NP-complete problems that are the most difficult to solve. 
On the contrary, the class NPP ⊆  covers all problems 
that can be solved in the polynomial time using the 
deterministic Turing machine. Nevertheless, the graph 
isomorphism and factoring problems have not been 
included in class P or set of NP-complete problems and 
thereby their accurate classification under this approach 
remains impossible. 

Moreover, the closer inspection of the P class shows 
that it similarly contains the P-complete problems and the 
separate class NC, which respectively encompass the 
hardest and easiest problems according to the criterion of 
the parallel feasibility. Additionally, the P class also 
contains some problems that are not proven to be either P-
complete or included in the NC class. In particular, one 

example is the greatest common divisor problem 
represented in the decision form. 

Therefore, the internal structure of the P class is 
similar to the structure of the wider NP class. This 
observation demonstrates the self-similarity feature of the 
nested complexity classes structure. Based on these 
considerations, this paper proposes the new method for the 
proper classification of the computational problems by 
means of the multifractal division of the complexity 
classes. 

Within the deflation approach, the fractal division is 
constructed by the iterative application of the generator, 
which represents the decomposition rule, to the specified 
initiator and its smaller copies. The well-known 
illustrations of the fractal division are the pinwheel, half-
hex, sphinx and many others. For example, in the case of 
the pinwheel division, the initiator is represented by the 
right-angled triangle with legs in a ratio of 1:2. The 
generator performs the decomposition of such triangle into 
five homothetic triangles that all are smaller copies of the 
initiator [2]. 

Notice that the multifractal division is more general 
than the regular one, because it allows the application of 
multiple generators. The remainder of this paper focuses 
on the investigation of the division iteration that carries 
out the detailing of the internal structure of the P class. 

II.  INTERNAL STRUCTURE OF THE P CLASS

As a warm-up observation, note that the problems 
belonging to the P class have different suitability for the 
development of the parallel solving algorithms. In 
particular, the problems that are fully deprived of the 
natural parallelism, being inherently sequential, are 
considered as P-complete. On the contrary, the special 
class PNC ⊆  encompasses the problems that allow the 
efficient parallel implementation of the solving 
algorithms. However, the problem of establishing the 
exact relation between the NC and P classes is still open, 
although the assumption PNC ⊂  is the most common. 
The principal requirement for the problems belonging to 
the NC class is formulated as the opportunity to develop 
the parallel solving algorithms that achieve the 
polylogarithmic time complexity )(log nO k  using )( cnO
parallel processors, where k and c are some constants, 
while n is the size of input parameters [3].  
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Notice that the following formal definition of the NC 
class uses the concept of a Boolean circuit in order to 
identify the property of the natural parallelism in the 
algorithms. 

Definition 2. The complexity class NC is specified as 
a family of subsets ,kNC  i.e. 

.
0

∞

=

=
k

kNCNC  

Each subset kNC  covers the problems decidable by 
the Boolean circuits of the depth ),(log nO k  which are 

composed of the polynomial number of gates )1(On  
having at most two inputs. 

Since the NC class is the subset of the P class, it is 
fully composed only of the decision problems. In this 
regard, its function extension FPFNC ⊆  is specified in 
order to encompass the function problems that have the 
high parallel feasibility. Note that the formal criteria for 
the problem inclusion in the NC and FNC classes are the 
same. The only difference between the problems 
belonging to these classes occurs only in the form of the 
solution representation. In particular, the circuits 
corresponding to the FNC class problems have multiple 
outputs in contrast to the circuits for the NC class 
problems, which are limited to the presence of only one 
output. All the problems within the NC class are linked by 
the special NC-reductions in order to determine their 
relative parallel feasibility. 

Definition 3. The NC-reduction of the decision 
problem A to another decision problem B is denoted by 

BA NC
poly≤  and represents the special case of the general

reduction relation where the mapping f could be computed 
in the polylogarithmic time using the polynomial number 
of processors, i.e. .FNCf ∈  

Similar to the general reduction relation, the NC-
reduction is a preorder on the P class, which means that a 
pair ( )NC

polyP ≤ ,  is a preordered set of problems.

Establishing the relation BA NC
poly≤  imposes the following

simple restrictions on the inclusion of the A and B 
problems in the NC class: If ,NCB∈  then NCA∈  and if 

,NCA∉  then .NCB∉   

III. IDENTIFICATION OF THE P-COMPLETE PROBLEMS
BASED ON THE NC-REDUCTION RELATION 

Definition 4. The problem L is considered P-complete 
if it belongs to the P class and is linked to all other 
problems PL ∈′  by the NC-reduction .' LL NC

poly≤

The process of solving the P-complete problems is 
associated with the presence of the fundamental data 
dependencies (such as the read-after-write (RAW), write-
after-read (WAR), write-after-write (WAW) situations), 
which results in an inability to develop the efficient 
parallel algorithms. Most commonly, the P-completeness 
of the problem PL∈  is determined by specifying the 
relation LL NC

poly≤*  to the known P-complete problem .*L  

In the paper [4], Ladner has proven that the Circuit 
Value Problem (CVP) serves as one of the basic P-
complete problems, similarly to the satisfiability problem 
(SAT) in the NP-completeness theory. Instances of the 
CVP problem are presented in the form of sequences 

nCCC  ..., ,0=  composed of the input values ,0=iC

1=iC  and the basis functions ,ji CC =  ,kji CCC ∧=  
,kji CCC ∨=  applied to the previous elements of C, i.e. 

. , ikj <  At the same time, the element nC  designates the 
output gate of the circuit C, while its calculated value 
represents the solution of the CVP problem. 

Moreover, the CVP problem has several variations, 
such as TopCVP, MCVP, NANDCVP, NORCVP and 
PCVP, which also are P-complete and differ in the 
restrictions imposed on the construction of the problem 
instances C. Together, these variations provide a powerful 
basis for establishing the reductions to all other problems. 

Fig. 1. Example of the NC-reduction dNC
poly MFPMCVP ≤
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As an illustration, let us show the P-completeness of 
the maximum flow problem dMFP  (formulated in the 
decision form as the determination of the flow value 
parity) by specifying the reduction .MFPMCVP dNC

poly≤

Instances of the MCVP problem are represented by the 
monotone circuits C constructed over the incomplete basis 
{ }∨∧  ,  without application of the negation elements 

ji CC = . The transformation of instances f converts such 
monotone circuits C into networks ) ,( EVG ′′=′

composed of the vertices { } { } tsvvvV n  ,  ..., , , 10=′ ,
where s and t designate, respectively, the source and sink 
nodes of the network. The edges of the network Ee ′∈′  
and their capacity values )(ec ′  are formed by 
implementing the following operations: 

1. The input gates 1=iC  of the circuit instance C are
reflected in the structure of G′  by attaching the
arcs ) ,( ivs  with capacities .2) ,( jn

ivsc −=
2. The network is expanded by adding the edge

) ,( ij vv  with jn
ij vvc −= 2) ,(  for every argument

jC  of the function implemented by the iC
element.

3. The network vertex nv  that corresponds to the
output gate of the circuit is linked to the sink node
by attaching the arc ) ,( tvn  with .1) ,( =tvc n

4. For each gate ,kji CCC ∧=  the network structure

is modified by forming edges ) ,( tvi , whose
capacity values are limited only by the condition of
the flows conservation.

5. In a similar manner, the elements kji CCC ∨=  are
reflected in the network structure by adding the
backward connections to the source node ). ,( svi

Notice that the edges ) ,( tvi  and ) ,( svi  excepting 
) ,( tvn  serve for diverting the redundant flows and 

balancing the overall network. Moreover, the described 
algorithm f performs the construction of the network G′  
by processing the circuit elements in the independent 
manner, which means that .FNCf ∈  Let us combine the 
intermediate vertices of the network { }tsVV  , \′=  into the 
T and F subsets such that the nodes Tv∈  correspond to 
the true gates of the circuit, while the vertices Fv∈  
correspond to the false ones. The network G′  holds the 
standard flow formed by filling the flows passing through 
the edges ) ,( vvt  up to their capacity and assigning zero 
values to the flows that correspond to the edges ), ,( vv f  
where ,Tvt ∈  Fv f ∈  and .Vv∈  In addition, the 
specification of the standard flow requires setting 

1) ,( =tvf n  if .1=nC  

In order to explore in detail the standard flow, let us 
consider the (s, t)-cut   }{ },{ tFsT  of the network 

.G′  Note that the overall flow in such cut is equal to its 

total capacity, because only completely filled flows pass 
through the specified partition. This means that the 
standard flow is the maximum in the network .G′  
Excluding the arcs used for balancing the network, only 
flow passing through the edge ) ,( tvn  can have even or 
odd value depending on the output of the element .nC  
This observation provides the basis for establishing the 
mapping h between the solutions of the CVP and dMFP  
problems. Fig. 1 demonstrates the example of the 
reduction ,MFPMCVP dNC

poly≤ which clearly illustrates 
all above considerations. 

IV. DIVISION OF THE COMPLEXITY CLASSES INTO THE 
EQUIVALENCE CLASSES 

The specification of both BA NC
poly≤  and AB NC

poly≤

reductions means that the A and B problems are equivalent 
under the NC

poly≤  relation and have the same parallel
feasibility in terms of the NC class theory. In order to 
describe such case in detail, let us introduce the special 
subrelation .  ~ NC

poly
NC
poly ≤⊆

Definition 5. The binary relation NC
poly~  over the P

class is defined as the intersection of the original NC
poly≤

relation with the inverse relation ,
1−

≤NC
poly  i.e.

.  ~
1


−

≤≤= NC
poly

NC
poly

NC
poly  

In this expression, the relation resulting from the 
operation of the relations intersection is composed of all 
pairs of problems belonging to both relations that are the 
arguments of the operation, i.e.  

. ),( and  ),(|),(~
1







 ≤∈≤∈=

−NC
poly

NC
poly

NC
poly BABABA

The inverse relation, in turn, is obtained from the 
original one by switching the order of problems in each 
pair, i.e.  

{ }.   ),(|),( 
1 NC

poly
NC
poly ABBA ≤∈=≤

−

Theorem 1. The relation NC
poly~  is an equivalence

relation on the P class. 

▲ In order to prove this theorem, we need to show that the 
relation NC

poly~  holds the properties of the reflexivity,
symmetry, and transitivity. Above all, notice that the 
properties of the reflexivity and transitivity are stable 
under the operation of the inverse relation formation. This 

implies that both NC
poly≤  and

1−
≤NC

poly relations are 
reflexive and transitive and, consequently, are preorders 
on the P class. The following part of the proof is organized 
into three stages, which show that the intersection NC

poly~
preserves the reflexivity and transitivity properties of both 
relations and additionally is symmetric. 
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Since the relations NC
poly≤  and

1−
≤NC

poly  are reflexive, it

follows that NC
polyAA ≤∈ ),(  and

1
 ),(

−
≤∈ NC

polyAA  for any 
problem .PA∈  Then, by the definition of the intersection, 
we have that NC

polyAA ~ ),( ∈ , which means that the relation 
NC
poly~  is reflexive.

Assume there exist problems A, B and C such that 
NC
polyBA ~ ),( ∈  and .~ ),( NC

polyCB ∈  From the definition of 

the intersection, we receive that , ),( NC
polyBA ≤∈  

, ),( NC
polyCB ≤∈

1
 ),(

−
≤∈ NC

polyBA  and . ),(
1−

≤∈ NC
polyCB

Moreover, NC
polyCA ≤∈ ),(  and , ),(

1−
≤∈ NC

polyCA because 
both relations are transitive. Finally, applying the 
definition of the intersection again, we obtain that 

.~ ),( NC
polyCA ∈  This clearly shows the transitivity of the

NC
poly~  relation.

Suppose that NC
polyBA ~ ),( ∈  for some A and B 

problems. As in the previous stage, considering the 
definition of the intersection, we have that NC

polyBA ≤∈ ),(

and . ),(
1−

≤∈ NC
polyBA  Applying the operation of the 

inverse relation formation, we receive that 
1

 ),(
−

≤∈ NC
polyAB  and . ),(

11 −−






≤∈ NC

polyAB  Obviously, the 

last expression is equivalent to . ),( NC
polyAB ≤∈  Therefore, 

from the definition of the intersection, we obtain that 
,~ ),( NC

polyAB ∈  which shows that the relation NC
poly~  is

symmetric and finally completes the proof. ▼ 

In the light of the above theorem, we can conclude that 
the relation NC

poly~  splits the P class into a collection of
disjoint equivalence classes, forming a quotient set 

[ ] .|~/ ~ 



 ∈= PEEP NC

poly
NC
poly  

Here each equivalence class [ ] NC
poly

E ~  is denoted by

some representative problem E and covers all problems 
that are related to E by NC

poly~ . Therefore, the problems
that have the same parallel feasibility in terms of the NC 
class theory are grouped in one equivalence class. Fig. 2 
presents the simplified example of splitting the sample 
class P containing five problems into the equivalence 
classes of the subrelation NC

poly~  on the basis of the pre-

defined relation .NC
poly≤

In a similar manner, we can specify the equivalence 
relation  1   ~ −≤≤= polypolypoly  over the wider NP
class, thereby forming the corresponding quotient set 

.~/ polyNP  Therefore, we can conclude that based on the 
set ,~/ polyNP  the generator performs the formation of 
the subsequent iteration of the fractal division by replacing 
the equivalence class [ ]

poly
E ~  that contains the easiest

problems with the quotient set .~/ NC
polyP

Fig. 2. Simplified example of specifying the collection of the 
equivalence classes inside the sample class P 

V. CONCLUSIONS 
The method for classification of the computational 

problems based on the equivalence classes of the relations 
NC
poly~  and poly~  allows for a much more detailed

description of the internal structure of the complexity 
classes. In particular, such approach is sufficiently flexible 
to address the situations where PNC =  ( NC

polyP ~/
contains just one equivalence class) or PNC ⊂  (in this 
case, the P class can be divided into any number of subsets 
by introducing the corresponding equivalence classes). 
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