
, ?. 
.. . - -  . 

..- DOE CASE S-78,211 

'METHOD FOR COMPRESSION OF DATA USING SINGLE PASS LZSS AND 
RUN-LENGTH ENCODING 

Inventor: Gary J. Berlin 
375 Beech Island Ave. 
Beech Island, SC 29841 

US CITIZEN 



DISCLAIMER 

This report was prepared as an account of work sponsored by a n  agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or implied, o r  assumes any legal liabili- 
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa- 
ratus, product, o r  process disclosed, or  represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, pmcess, o r  service by 

trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessar- 
ily state or reflect those of the United States Government or any agency thereof. 

. 



Portions of this document may be iliegible 
in electronic image products. Image are 
produced from the best available original 
document. 



1 

PATENT 

METHOD FOR COMPRESSION OF DATA 
5 USING SINGLE PASS LZSS AND RUN-LENGTH ENCODING 

BACKGROUND OF THE INVENTION 

10 

1. Field of the Invention: 

The present invention relates to methods for compressing binary 

data. More particularly, the present invention relates to a method for 

compressing digital data using LZSS compression and run-length 

encoding. The United States Government has rights in this invention 

pursuant to Contract No. DE-AC09-89SR18035 between the U.S. 

Department of Energy and Westinghouse Savannah River Company. 

2. Discussion of Background: 

15 

Information processing systems, data transmission systems and the 

20 like frequently store large amounts of binary data in a mass memory 

storage device or transfer binary data from one memory storage device 

to another. Memory storage devices include tape drives, hard disk drives 

and other magnetic or optical media, all of which have a limited amount 

of space. To make better use of the fixed storage capacity of memory 

storage devices, methods have been developed to 'kompress" the stream 

of data for storage. "Compressing the data" means that data is not stored 

literally but rather, where possible, the'data is replaced with shorter 

expressions of it that can be decoded to restore the data to its original, 

literal condition when the data is brought out of storage. The original 

25 



2 

input data stream can be reconstructed Erom the compressed data stream 

using a decompressor/decompression unit. 

There are two major families of data compression methods. Both 

of these families are derived from methods developed by Ziv and 

Lempel. The first family of methods is known as LZ77 and the second 

family is known as LZ78. Both methods compress the data stream by 

dividing the input data stream into a data string typically being at least 

one byte in length and then replacing strings that repeat a previous string 

with codes indicating that a particular string is a duplicate of a 

5 

10 predecessor. 

The codes can take different forms depending on the compression 

encoding scheme. For many LZ-based compression methods, each of the 

codes includes a "run-length" and an "offset." The run-length represents 

the number of data bytes in the data string being repeated and the offset 

represents the location or index of the data string being repeated. In this 

configuration, the codes are usually two bytes or 16 bits in length, with 4 

bits being allocated for the run-length part of the code and 12 bits being 

allocated for the offset part of the code. 

15 

Data bytes that are repeated can be represented by codes comprised 

20 of a run-length and the actual data byte being repeated. In this 

configuration, for a 16 bit code, 8 bits are typically allocated for the run- 

length part of the code and 8 bits are allocated for the actual data byte 

being repeated. For example, see portions of the encoding scheme in 

U.S. 4,586,027, issued to Tsukiyama, et al. 
..- 

25 Despite the numerous encoding schemes known in the prior art, 

most only allocate 4 or 8 bits for the run-length part of the code, 



3 

5 

10 

15 

20 

25 

therefore, run-lengths of more than 15 bytes (represented by the four-bit 

binary number 11 11) or 255 bytes (represented by an eight-bit binary 

number) must be encoded using more than one code. The use of more 

than one code to represent a single, large data string is inefficient, 

especially for data strings having large numbers of identical data bytes in 

succession, such as data representing scanned multi-billpixel images. 

Also, in some of these compression methods, the code turns out to 

be longer than the string of data bytes being represented, creating data 

"expansion" for that string. Consequently, a variation of LZ77-based 

compression methods was introduced by Storer (see U.S. Patent 

4,876,541) and Szymanski to eliminate this problem. In their method, 

which is known as LZSS, a "sliding window" is used, thus allowing 

symbols to be taken directly from the input data stream and used 

whenever a code would be longer than the repeating data string being 

represented. Also, a flag bit is added to each code and each data byte to 

distinguish them from each other. 

However, current LZSS-based compression methods and run- 

length encoding schemes must be performed independent of one another. 

That is, a first "pass" must be made using LZSS compression methods 

and then a second pass must be made using run-length encoding 

techniques. The use of more than a single pass to take advantage of both 

LZSS compression and run-length encoding is time-consuming and thus 

inefficient. Therefore, a more efficient coding scheme is needed to take 

advantage of both compression methods without having to make multiple 

passes at the data. 

-.- 



4 

SUMMARY OF THE INVENTION 

According to its major aspects and broadly stated, the present 

invention is a method for compressing a stream of digital data in the 

form of a series of data bytes. In particular, it is a single pass 

compression system modified to use LZSS-based compression along with 

a run-length encoding scheme especially suited for strings of identical 

data bytes having large run-lengths, such as data representing scanned 

images. The encoding method comprises reading an input data stream to 

determine the lengths of data strings. For data strings having run-lengths 

greater than 2 bytes but less than 18 bytes, a "cleared" offset and the 

actual run-length are written to an output buffer and then a run byte is 

written to the output buffer. For data strings of 18 bytes or longer, a 

"set" offset and an encoded run-length are written to the output buffer 

and then a coded run-length byte is written to the output buffer. The 

first of two parts of the encoded run-length is the quotient obtained when 

255 is divided into the run length; the second part is the remainder from 

this division. Data bytes that are not part of repeating data strings of 

sufficient length, less than three bytes according to a preferred 

embodiment of the present invention, are written directly to the output 

buffer. 

5 

10 

15 

20 

A major feature of the present invention is the two-part encoding 

scheme for large strings of identical data bytes that uses multiples of 255 

for the first part and the remainder between the actual run length and the 

nearest whole multiple of 255 for the second part. The advantage of this 

feature is that data strings having an extremely large number of identical 

.. - 

25 



5 

data bytes in succession can be effectively and accurately represented by a 

single encoding event equivalent to two words (32 bits) of data. In this 

manner, up to 4079 identical and continuous data bytes can be 

represented by a single encoding event. Thus, for data streams that 

include large strings of identical bytes, the compression achieved by the 

present method is far greater than prior art compression methods using a 

standard LZ-based method. 

5 

Also, using reverse indexing as part of LZSS-based compression 

allows the present invention to employ both run-length encoding along 

with the LZSS-based compression in a single compression pass. Reverse 

indexing eliminates the "sliding window" concept of LZSS-based 

compression methods. It also allows offset codes of 0 and 1 to be used as 

part of the run-length encoding, because offsets of 0 or 1 cannot occur in 

reverse indexing schemes. These advantages simplify normal LZSS- 

based compression code to the extent that it can be modified so that run- 

length encoding is used in the same pass as the LZSS-based compression 

10 

15 

method. 

Another feature of the present invention is the three layer 

approach to encoding. Specifically, for strings of fewer than three 

identical bytes, no compression is attempted; for strings between three 

and 17 bytes, the actual run length is used; and for very long strings, 

more than 18 bytes, the run length is encoded. This three layer approach 

recognizes the importance of time in compressing and decompressing 

data can offset the value of saved storage space if the savings are small. 

20 

c- 

Other features and advantages of the present invention will be 

apparent to those skilled in the art from a careful reading of the Detailed 

25 



5 

6 

Description of a Preferred Embodiment presented below and 

accompanied by the drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the drawings, 

Fig. 1 is a schematic diagram of a compression method according 

to a preferred embodiment of the present invention; 

Fig. 2 is a diagram of a sample input data stream for compression; 

10 and 

Fig. 3 is a diagram of a compressed output data stream using the 

encoding scheme according to the method of the present invention. 

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT 

15 

In the following description similar components are referred to by 

the same reference numeral in order to simplify the understanding of the 

sequential aspect of the drawings. 

Data compression involves reducing the actual amount of data 

20 taken from an input device and writing the reduced amount to an output 

device. The input device typically has an input buffer that receives a 

sequential stream of input data. The input data stream is preferably 

divided into a series of individual data bytes, each of which is usually 

comprised of eight bits. Each group of eight bits, that is, each data byte, 

typically represents one character of text or other equivalent unit. 

..- 

25 



7 

Many data compression methods have routines or techniques for 

compressing a continuous string of identical data bytes, for example, data 

bytes representing scanned multi-bidpixel images. Encoding schemes for 

such a data string often involve configuring a code that represents the 

data string and writing the code to a buffer in the output device. The 

code can, and typically does, include the actual data byte being repeated 

(referred to as the "run byte") but it also includes the run-length of the 

data byte string, that is, the number of times the run byte is repeated in 

succession. 

5 

10 Referring now to Fig. 1, the data compression method 20 in its 

preferred embodiment is shown schematically. According to the present 

invention, data from an input data stream 22 is transferred to an input 

buffer 24, where it is compressed using an encoding scheme (shown 

generally as box 26 and to be described in detail) as it is being 

transferred to an output buffer 28. 15 

In general, input data stream 22 is transferred into input buffer 24 

and then read sequentially to determine which data is to be compressed 

for storage and which data is to remain uncompressed. Input data stream 

22 is read to find strings of identical data bytes occurring in succession 

and having a sufficient length, preferably a length of at least three, 

successive identical data bytes. Depending on their length, these strings 

are represented by a code in one of two forms. Data remaining 

uncompressed is written directly to output buffer 28. 

20 

-. - 
Input data stream 22 can be stored in any type of input buffer 24, 

such as a hard disk or a magnetic tape drive, but is preferably a portion 

of the inpudoutput buffer of the input device from which the data is 

25 



8 

5 

10 

15 

20 

25 

being transferred. For example, input buffer 24 can be a portion of 

random access memory (RAM) configured especially for inputloutput 

operations. 

As shown in Fig. 1, input data stream 22 is transferred to input 

buffer 24 in any convenient manner known in the prior art for 

transferring digital data. For example, input buffer 24 may be in 

connection with a serial register (not shown) so that input data stream 22 

is loaded into input buffer 24 serially. Alternatively, a plurality of 

parallel registers (not shown) may be used to load input data stream 22 

into input buffer 24. 

Initially, encoding scheme 26 determines if data bytes from input 

data stream 22 are part of a string of identical data bytes having a mn- 

length of greater than 2 bytes (shown as function box 32). If not greater 

than this preferred reference number, the data bytes are written directly 

to output buffer 28 (shown as function box 34) as uncompressed data 

bytes in the order in which they are read. The run-length preferably 

needs to be greater than 2 bytes because an extra byte in addition to the 

two-byte code is needed to encode the string of identical data bytes, as 

will be discussed in greater detail below. 

If the run-length of the string of data bytes in question is greater 

than 2 bytes, it is then determined if the run-length is less than 18 bytes 

(as shown in function box 36). If the run-length is less than this 

preferred reference number, a clear offset (offset = 0) is generated 

(function box 42) and the offset and the actual run-length are written to 

output buffer 28 (as shown in function box 44). Then, the run byte of 

the data string is written to output buffer 28 (shown as function box 46). 

..- 



Again, the information written to output buffer 28, whether in the form 

of uncompressed data bytes or encoded data, is written to output buffer 

28 in the order in which input data stream 22 is read. 

If the run-length of the data byte string in question is greater than 

5 or equal to the reference number 18, a set offset (offset = 1) is generated 

(as shown in function box 52). Then, the run-length of the data byte 

string is encoded (shown generally as function box 54) and the offset and 

encoded run-length are written to output buffer 28 (shown as function 

box 56). Finally, the run byte itself is written to output buffer 28 (shown 

10 as function box 58). 

In either encoding situation, the actual or encoded run-length may 

be written to output buffer 28 before the offset is written. However, 

consistency must be maintained throughout the compression method and 

with respect to the corresponding decompression method so that 

15 decompression is accurate. 

In Fig. 2, a sample version of input data stream 22 is shown. In 

Fig. 3, an output stream of the input data stream 22 of Fig. 2 is shown 

compressed according to the preferred manner of the present invention. 

Referring again to Fig. 2, input data stream 22 preferably comprises a 

sequential series of data bytes 64, each of which is represented by a 

letter. Preferably, each data byte 64 is comprised of 8 bits and 

represents a text character or other equivalent unit. For example, one 

data byte might represent the integer portion of a number and the 

immediately following data byte may represent the fractional portion of 

20 

-- 

25 that same number. 

9 



10 

5 

10 

15 

20 

25 

Output data stream 62, as shown in Fig. 3, preferably comprises a 

series of data bytes 64, along with codes 66 and run bytes 68, which will 

be discussed in greater detail below. In most LZ-based compression 

methods, each code 66 is preferably 2 bytes, or 16 bits in length. Also, 

similar to data bytes 64, each run byte 68 is preferably 8 bits in length. 

Because input data stream 22 is read sequentially during 

compression, data bytes 64 being read form a plurality of data byte 

strings of varying length. For example, data bytes B, C and D form a 

three-byte data string, BCD, in byte positions 2-4 of input data stream 

22. Depending on the nature of input data stream 22, data strings may 

contain identical data bytes 64 in succession, such as the 5-byte data string 

EEEEE (shown generally as 72) in byte positions 5-9 of input data 

stream 22. 

For example, if input data stream 22 represents scanned, multi- 

bivpixel images, input data stream 22 may contain an extremely large 

number of identical bytes in succession, such as the blank areas or clear 

portions of a page being scanned. In the sample version of input data 

stream 22, it can be seen that, in addition to first data string 72 in byte 

positions 5-9, there is a large group (for purposes of this example, 

preferably 536 bytes in length) of data bytes "L" (shown generally as 74) 

in byte positions 14-549. 

Both first data string 72 and second data string 74 are comprised 

of identical data bytes 64 occurring a given number of times in a row. 

For first data string 72, the data byte "E" is repeated 5 times. Stated 

another way, first data string 72 has a run-length of "5" and an "E" run 

byte. Similarly, second data string 74 has a run-length of 536 and an "L" 

.- 



11 

run byte. It is these two data strings that will be used to demonstrate the 

encoding technique of the compression method according to the present 

invention. 

In order to compress input data stream 22 according to the present 

5 invention, the data bytes 64 in input stream 22 are read sequentially, 

beginning with the data byte in position 1 ("A"). The compression 

method then looks ahead to see if "A" in position 1 is part of a data string 

of more than 2 identical data bytes occurring in succession. Because "A" 

in position 1 is not part of such a data string, it will therefore be moved 

to output buffer 28 as an uncompressed data byte. Thus, the value "A" is 

written directly to output buffer 28, preferably using a byte move 

instruction. 

10 

Next, the data byte 64 in position 2 ("B") is read and determined to 

be not a part of a data sting of interest. Thus, "B" is written directly to 

output buffer 28 using a byte move instruction. Similar read and write 

operations occur for data bytes 64 in positions 3 and 4 ('IC" and "D", 

respectively) because neither data byte is part of a string of identical data 

bytes having a run-length greater than 2. 

15 

Upon reading the data byte 64 in position 5 ("E"), the compression 

20 method looks ahead and sees identical data bytes 64 in positions 6,7,8 

and 9. Thus, the data bytes 64 in positions 5-9 are all a part of a string 

of identical bytes ("E") having a run-length greater than 2. Accordingly, 

the data string in positions 5-9 is to be encoded in one of two ways, 

depending on whether or not the string's run-length is less than 18 bytes 

(see function box 36 in Fig. 1). 

..- 

25 



12 

Because first data string 72 has a run-length of less than the 

preferred reference number 18, namely 5, it is compressed in the manner 

as shown in function boxes 42,44, and 46 of Figure 1, with the resulting 

data written to output buffer 28 as shown in Fig. 3. That is, first data 

string 72 is written to output buffer 28 as code 66 followed by run byte 

68. 

5 

In most LZ-based compression methods, the code consists 

preferably of an offset and a run-length that are collectively the length of 

2 data bytes, or 16 bits. Offset 76, which i s  used to index previously 

read data strings, often occupies 12 of the 16 bits. Of course, code 66 

may be of a different size and bit allocations to the offset and run-length 

parts thereof may differ depending on the specific LZ-based compression 

method being used. 

10 

Also, different indexing schemes can be used within the particular 

LZSS-based compression method in use. For example, reverse indexing 

is a desired indexing scheme for use in LZSS-based compression code 

because it eliminates the need for maintaining a "sliding window" in 

normal LZSS-based compression. Also, when using reverse indexing, 

offsets of 0 or 1 are never generated because data strings must be at least 

2 and preferably at least 3 bytes in length before the contents of the data 

string is configured in the manner described herein. Thus, the present 

invention uses offsets of 0 or 1 to indicate the configuration of a data 

15 

20 

string according to the present invention. 
*.- 

In the present invention, code 66 is comprised of an offset 76, 

25 which is 12 bits in length, and a run-length 78, which is 4 bits in length. 

When a data string having a run-length greater than 2 bytes but less than 



13 

18 bytes is read, a cleared offset (offset = 0) and the actual run-length of 

the data string is written to output buffer 28, followed by the run byte of 

the data string. Thus, for first data string 72, offset 76 having the value 

"0" and run-length 78 having the value "5" is written to output buffer 28. 

Then, run byte 68 having the value "E" is written to output buffer 28. 5 

Therefore, first data string 72, which is a 5-byte data string from 

input data stream 22, is represented in output stream 62 by a 2-byte code 

66 and a single run byte 68. Although compression in this case was only 

from 5 bytes to 3 bytes, compression ratios are, of course, much greater 

for data strings having long run-lengths, specifically having run-lengths 

of longer than 18 bytes. 

10 

After first data string 72 is read from input data stream 22 and 

code 66 and run byte 68 are written to output buffer 28, the data byte 

"G" in position 10 of input data stream 22 is read. Accordingly, the 

value "G" is written directly to output buffer 28 because "G" in position 

10 of input data stream 22 is not part of a string of identical data bytes. 

Each remaining position of input data stream 22 is read sequentially in 

the manner described above until second data string 74 is read. 

15 

Second data string 74 is a 536-byte string within input data stream 

20 22, as shown partially in Fig. 2. For data strings having run-lengths 

longer than 18 bytes, a set offset (offset = 1) and a two-part, encoded 

run-length, rather than the actual run length, is written to output buffer 

28, followed by a run byte for the data string. In the case of second data 

string 74, offset 76 having the value "1" and encoded run-length 82 is 

written to output buffer 28. Run byte 68 is then written to output buffer 

28 after encoded run-length 82. 

.. - 

25 



14 

Unlike the actual run-length value of data strings less than 18 bytes 

(such as run-length 78), encoded run-length 82 is comprised of a first 

part 84 and second part 86. To generate first and second parts 84,86, 

the actual run-length of the data string is divided by a factor of 255 to 

obtain a quotient and a remainder. The quotient, which cannot exceed 4 

bits in length in this preferred embodiment, is written to output buffer 28 

as first part 84 of encoded run-length 82. Similarly, the remainder, 

which is preferably an extra 8-bits in length, is written to output buffer 

28 as second part 86 of encoded run-length 82. 

5 

10 In the case of second data string 74, the factor of 255 can be 

divided into 536 a total of 2 times with a remainder of 26 (2 x 255 = 

510; 536 - 510 = 26). Thus, first part 84 having the value "2" and 

second part 86 having the value "26" are written to output buffer 28. 

Then, run byte 68 having the value "L" is written to output buffer 28. 

15 Therefore, second data string 74, which is a 536-byte data string 

within input data stream 22, is represented in output stream 62 by a 2- 

byte (or 16-bit) code 66 (a 12-bit offset and a 4-bit first part 84 of 

encoded run-length 82), an extra byte (8-bit second part 86 of encoded 

run-length 82) and a single run byte 68. Thus, the 536-byte second data 

string 74 has been represented in output stream 62 as a 4-byte code. 20 

Compression in this manner can accommodate data strings having 

run-lengths of up to approximately 4080 bytes. That is, first part 84 of 

encoded run-length 82 is 4-bits in length and can hold a value of up to 15 

(1111 in binary form). Thus, 255 can be divided into the data string 

run-length up to 15 times with an available remainder of 254 (for a total 

of 4079 bytes) before the next compression event is needed. 

*.- 

25 



15 

The present compression method can be used alone but is 

preferably used in conjunction with other LZSS-based or similar 

compression methods, including bit flag partitioning methods. Such 

methods are described in the commonly assigned and co-pending 

application entitled "Method for Compression of Binary Data". As 

discussed previously, the present compression method works particularly 

well with LZSS-based compression methods using reverse indexing 

because run-lengths must be at least 2 bytes in length and therefore 

offsets of 0 or 1 will never be generated as part of output stream 62. 

Thus, values of 0 and 1 can be written in the offset location of codes 66 

to indicate strings of identical data bytes without causing confusion with 

the normal data written into the offset location as part of reverse 

indexing or other compression techniques. 

5 

10 

Using the present compression scheme in conjunction with other 

compression methods involves slightly modifying the code of the other 

compression method being used. Such modification involves looking for 

data strings having at least 3 identical data bytes in succession. Also, the 

compression code is modified so that those data strings are encoded in 

one of the two ways, depending on whether the run-length is greater than 

or equal to 18 bytes, as discussed. 

15 

20 

Finally, the compression code is modified so that, in the event that 

a particular data string is compressed more effectively using one 

compression technique rather than .. - the other, the most effective 

compression technique will be used. Such is achieved by comparing the 

respective output codes using each compression technique and then 25 



23 

ABSTRACT OF THE DISCLOSURE 

A method used preferably with LZSS-based compression methods 

for compressing a stream of digital data. The method uses a run-length 

encoding scheme especially suited for data strings of identical data bytes 

having large run-lengths, such as data representing scanned images. The 

method reads an input data stream to determine the length of the data 

strings. Longer data strings are then encoded in one of two ways 

depending on the length of the string. For data strings having run- 

lengths less than 18 bytes, a cleared offset and the actual run-length are 

written to an output buffer and then a run byte is written to the output 

buffer. For data strings of 18 bytes or longer, a set offset and an 

encoded run-length are written to the output buffer and then a run byte is 

written to the output buffer. The encoded run-length is written in two 

parts obtained by dividing the run length by a factor of 255. The first of 

two parts of the encoded run-length is the quotient; the second part is the 

remainder. Data bytes that are not part of data strings of sufficient 

length are written directly to the output buffer. 

5 

10 

15 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 

e 

I 

'roN 

I ' I  

I 

b 


