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A Method for Constructing Isomerization Reactions 

K. Balasubramanian 

Department of Chemistry and Lawrence Berkeley Laboratory, 
University of California, Berkeley, CA 94720 

Abstract 

LBL-12809 

A method is formulated for enumerating and constructing isomerization 

reactions of molecules exhibiting large amplitude non-rigid motions. This 

method not only enumerates the isomers of non-rigid molecules and the 

corresponding rigid molecules but also the symmetry species spanned by 

the equivalent structures whose representative is an isomer. Conse-

quently,. using the method of correlating the symmetry species of a 

group to the symmetry species of its subgroup the splitting patterns 

of isomers of non-rigid molecule to those of rigid molecule are obtained. 

This provides an elegant method for both enumerating and constructing 

reaction graphs. The method is illustrated with examples. 

This work was supported by the Director, Office of Energy Research, 
Office of Basic Energy Sciences, Chemical Sciences Division of the 
U.S. Department of Energy under Contract Number W-7405-ENG-48. 



1. Introduction 

1-7 In recent years several papers have appeared that concern 

representations and enumerations of dynamic processes in molecules 

exhibiting large amplitude motions. The inter-relationship among a set 

of rigid isomers that are transformable into one another by non-rigid 

symmetry operations can be described by the associated diagram called 

a reaction graph. A reaction graph as formulated in reference 7b is a 

diagram with vertices and edges, vertices representing isomers of the 

rigid molecules and the edges representing interconversions of such 

rigid isomers by operations in the rotation group of the non-rigid 

molecule. There are several other topological schemes and representa-

tions of processes of interest in dynamic stereochemistry. An excellent 

. 1 
review of such schemes can be found in the papers of Mis10w or the 

4 
recent book by Balaban. Several such chemical applications of graph 

theory can be found in the papers of Randic. 3 It is known that the 

isomers of molecules can be characterized and enumerated very elegantly 

. 10-13 harnessing the symmetry of the unsubst~tuted molecule. The 

combinatorial structures constructed using the symmetry of the molecule 

are generators and enumerators of such phenomena. One combinatorial 

structure is the well-known cycle index of a group,4,12-16 which is the 

generator of isomers. 

The cycle indices have been employed in chemical applications by 

1 3-11 . several authors.' In th~s paper we introduce and use a more general 

and powerful generator called a generalized character cycle index 

(hereafter abbreviated as GCCI). A GCCI is a cycle index that also has 

the character of the irreducible representation to which it corresponds. 

Consequently, GCCI's are generators of not only isomers (patterns in 
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P6lya terrninologyl2) but also the irreducible representations spanned 

by the set of functi~ns in each pattern or the equivalence class. 

Generation of symmetry species spanned by the set of equivalent molecular 

structures corresponding to an isomer is important. This is because to 

enumerate and construct isomerization reactions all that one needs to 

do is the correlation of the irreduc1ble representations of the molecular 

rotation group of the non-rigid molecule to those of the molecular rota-

tion group of the rigid molecule. The latter is a subgroup of the 

former so that in general, an irreducible representation of the former 

is a reducible representation of the latter. Such correlation of the 

symmetry species of group to subgroup is quite common in spectroscopy 

and other problems in chemical physics. 17 In this paper we employ this 

technique to correlate the isomers of non-rigid molecule to the rigid 

molecule by way of correlating the symmetry species contained in the 

set of structures that represent an isomer. In general, an isomer of 

a non-rigid molecule "splits" into more isomers when correlated to rigid 

molecular symmetry. 

Section II discusses the theory and in the last section we outline 

the method of correlation and enumeration of isomerization reactions. 

2. Theory 

Let G be the rotational subgroup of the molecular symmetry group. 

We use the rotation subgroup rather than the complete symmetry group 

since by definition, isomers are structures that are not transformable 

into one another by rotations. Let D be the set of unsubstituted sites 

and let R be the set of substituents. Then a molecular structure can be 

formed by a map from D to R. To illustrate, if one denotes the S unsub-

stituted sites of a trigonal bipyramid by D = {1,2,3,4,S} and R as the 

3 



set {C£, Bd then a structure corresponding to the molecule PC£3Br2 is 

generated by the following map fl from D to R. 

fl (1) C£ 

fl (2) = C£ 

fl (3) = C£ 

fl (4) = Br 

fl (5) = Br. 

A permutation g in G permutes the elements in D' , in turn g also permutes 

the maps from D to R. Thus two molecular structures or maps from D to R 

are equivalent if they are transformable into one another. Formally, 

two structures fl and f2 are equivalent if there is a gEG such that 

fl (d) = f 2 (gd), for every dED. 

For example, the map f2 shown below is equivalent to fl in the non-rigid 

rotation group of this molecule which is S5 (Sn stands for the set of n! 

permutations). 

f 2 (l) = Br 

f 2 (2) = Br 

f2 (3) = C£ 

f 2 (4) = C£ 

f 2 (5) = CL 

This is because fl and f2 are transformable by the above recipe, for 

example, if g = (14)(25). All equivalent maps can be grouped together 
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in a set and any structure in that set is an isomer. The set of equi-

valent structures corresponding to any isomer transform into each other 

under the operations of G and consequently, in general span a reducible 

representation of G which can be decomposed into irreducible components. 

Let us define the generalized character cycle index (GCCI) of a 

group G corresponding to character X of an irreducible representation r 

of G as 

P X 
G 

= 
1 

TGT 

b
l 

b
2 

b
n 

where xl x2 .••• x
n 

is a representation of a typical permutation g in G 

having b
l 

cycles of length 1, b2 cycles of length 2, ..•• ,b
n 

cycles of 

length n. To illustrate, permutations (12) (345) and (1) (23) (45) 

would have the representations x2x
3 

and xlx;, respectively. In order to 

book-keep the number of various substituents occurring in a structure 

let us introduce the concept of weight of a structure and substituent. 

With each substituent rER, let us associate a formal symbol w(r). Then 

the weight of any structure f is defined by the product of the weights 

of .the corresponding images. In symbols, 

W(f) = IT w(f(d)). 
dED 

To illustrate, if the weight associated with C£ is w
l 

and Br is w2 then 

h . h f h PC' 3 2 t e we~g tot e structure £3Br2 ~s w
l
w2• Isomers are structures that 

have the same weight and yet not transformale into one another by rotation. 

In this set up Williamson15 and more recently Merris16 (who generalized 

Williamson's formulation) showed that the generator of the irreducible 

representations contained in the set of all structures is given by the 

following Polya-like substitution in the GCCI. 

5 



X G.F. L 
n:R 

k (w(r)) ]. 

b
l 

b2 
The coefficient of a typical term wI w2 .••• in G.F. gives the number 

of times X occurs in the set of structures with 
bl b2 

the weight wI w2 •••.. 

Let us illustrate the above method with an example. The character 

table of the rotational subgroup of the non-rigid trigo~al bipyramid 

molecule is shown in Table 1. Table 2 contains all the GCCI's of this 

molecule. Consider the HI representation of this molecule. We consider 

the case of 3 different substituents with the weights a, band c. The 
HI 

GCCI and the G.F. are shown below. 

H 
GCCI 1 = 

. H 
1 G.F. 

1 5 3 2 2 
120 [5xl + 10 xl x2 - 20 xl x3 - 30 xl x4 + 15 xl x2 + 20 x2x3] 

H. 
GCCI l(~ + ak + bk + ck) 

2 20 (a+b+c) 

Thus there is one HI representation in the set of structures with the 

formula PC£3Br2' 2 HI representations in the set of structures with the 

formula PC£2Br2 I, etc. The GCCI corresponding to the totally symmetric 

representation enumerates the isomers since this GCCI is just the ordinary 

cycle index used by several authors for enumerating isomers. l ,4-l0 We 

, will use the formalism outlined here in the next section to enumerate 

isomerization reactions. 

6 
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3. Enumeration of Isomerization Reactions 

We start with the trigonal bipyramidal compounds which exhibit 
the 

large amplitude non-rigid motions by way of/pseudorotation proposed by 

Berry, now well-known as Berry mechanism. The rotational subgroup of 

this non-rigid molecule is the group S5' whose character table and GCCI's 

have already been obtained. Table 3 shows the generating functions for 

3 substituents with the weights a, band c. The first row in this table 

shows the various terms appearing in the generating function. All the 

subsequent rows give the coefficients of the corresponding terms for the 

irreducible representations they stand for. We consider a particular 

molecule with the formula PX2Y2z as an example. The enumerators cor-

d , h' f 1 h ff" f 2b2 'h ' respon 1ng to t 1S ormu a are t e coe 1C1ents 0 a c 1n t e var10US 

generating functions. The coefficient ofa2b2c in the totally symmetric 

representation Al gives the number of isomers which is just 1 in this 

case. There are (2 ~ 1) = 30 structures (maps) that are equivalent and 

they all represent one isomer, These 30 structures span the representation 

~ + 2Gl + 2Hl + H2 + 1. This is obtained immediately by collecting the 

coefficient of a
2

b
2

c in the generating function of each irreducible 

representation. 
it 

is 2, in H2/is 1 

For example, the coefficient 
it 

2 2 
of abc in G

l 
is 2. in 

and in I/is 1. Thus we arrive at the above result. 

H it 
1 

Isomerization reactions are obtained when one finds thE: set of represen-

tations spanned by the same 30. Structures in the rotational subgroup of 

the rigid molecule which is D
3

, This is easily done by correlating the 

species AI' Gl , HI' H2 and I to the species of the group D3 • The character 

table of D3 and the correlation table of the symmetry species of S5 to D3 

are shown in tables 4 and S, respectively. Consequently, these 30 struc-

tures span the representation 6Al + 4A2 + IDE. Note that these sets of 

7 



maps contain 6Al representations in D3 when they contained only one Al 

in Ss. Since the number of Al representations gives the number of 

isomers we arrive at the conclusion that the single isomer of the non-

rigid molecule PX2Y2z splits into 6 isomers when the molecule becomes 

rigid. Conversely, the 6 isomers of the rigid molecule are transformed 

into one another by pseudo-rotation. This is represented by the reaction 

graph in Figure 1. We recall from Ref. 7b that a reaction graph has an 

edge between two vertices i and j if the rigid isomers i and j are 

transformable by a rotation in the non-rigid molecular group. Conse-

quently, the reaction graph contains components that are always complete. 

Hence once we know the number of vertices in the reaction graph, the 

number of components and the number of vertices in each component, the 

reaction graph is immediately constructed. 

Let us illustrate this procedure with another non-trivial example 

of a triphenyl which exhibits 2-fold rotation around the bond connecting 

phenyl rings. The character table of the molecular symmetry group of 

8 this molecule was obtained by the present author. (c.f., Table V of 

Ref. 8). The rotational subgroup of the rigid molecule is easily seen 

to be D2 • The generating functions for the non-rigid molecule with 3 

substituents can be obtained with the procedure in Section 2. Let us 

consider triphenyls with the formula C18H12X2. There are 21 isomers 

(shown in Table 6 with the labels in Figure 2) for the non-rigid molecule 

. h ff" f l2b· 2. 21' h . f . s~nce t e coe ~c~ent 0 a ~s· ~n t e generat~ng unct~on corre-

sponding to the Al representation. In Table 7 we show the irreducible 

representations spanned by the set of equivalent structures whose repre-

sentative is the isomer indicated in the first column. Table 8 is the 

correlation table of symmetry species of the non-rigid rotation group to 

those of the rigid rotation group. In Table 9 we have the correlation 

8 
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of isomers obtained by way of correlating the symmetry species contained 

in the corresponding equivalent structures. From this table one can 

infer that isomers 9, 10, 11, 12, 16, 17 and lS split; each of them 

split into 2 isomers when correlated to rigid structure. All the other 

isomers do not split. This is shown in the reaction graph in Figure 3. 
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Table 1. The character table of S5' the rotational subgroup of the r. non-

rigid trigonal bipyramida1 phosphorous compounds 

r E (12) (123) (1234) _---112) (34) (12)(345) (12345) 

Order 1 10 20 30 15 20 24 

1 1 1 1 1 1 1 

A2 1 -1 1 -1 1 -1 1 

G1 4 2 1 0 0 -1 -1 

G2 4 -2 1 0 0 1 -1 

HI 5 1 -1 -1 1 1 0 

H2 5 -1 -1 1 1 -1 0 

I 6 0 0 0 -2 0 1 
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• Table 2. GCCI's of the group in Table 1. 120 p
G

X are 
shown below 

5 3 2 2 r xl x1x2 x1x3 x1x4 x1x2 x2x3 x5 

~ 1 10 20 30 15 20 24 

A2 1 -10 20 -30 15 -20 24 

G1 4 20 . 20 0 0 -20 -24 

G2 4 -20 20 0 0 20 -24 

HI 5 10 -20 -30 15 20 0 

H 2 5 -10 -20 30 15 -20 0 

I 6 0 0 0 -30 0 24 



Al 

A2 

GI 

G2 

HI 

H2 

I 

Table 3. Generating functions for non-rigid phosphrous compounds with at most 3 substituents 

N (V) 

~ ~ ~ ~ u 
LI") ~ (V) N ~ LI") ~ 

CIS CIS CIS CIS CIS ~ CIS 

U N N 
U NUN U U N (V) (V) (V) 
~ ~ (V) U-U ~ N U U U U ~ ~ 

(V) N ~ ~ (V) N ~ (V) N ~ N U U LI") 
CIS Cd Cd ~ CIS CIS CIS .0 ~~_.o -'!L ___ --O ____ 0 

I I I I I I I I I I I I I I I I I I I I I 

o o o o o o o o o o o o o o o o o o o o o 

o I I I I o I 2 2 2 I I 2 2 I I 2 I I I o 

o o o o o o o o o o o o o o o o o o o o o 

o o I I o o o I 2 I o I 2 2 I I I I o o o 

o o o o o o o o I o o o I I o o o o o o o 

o o o o o o o I I I o o I I o o I o o o o 

1,~ -< ~ 

I-' 
.p.. 



IS 

Table 4. Character table of D3 

D3 E (123) (12)(34) 

.. Order 1 2 3 

,,<,,! Al 1 1 1 

A2 1 +1 -1 

E 2 -1 0 

Table S. Correlation of symmetry species of 
Ss to D3 . 

Ss E (123) (12)(34) D3 

Al 1 1 1 Al 

A2 1 1 1 Al 

G1 4 1 0 Al + A2 + E 

G2 4 1 0 Al + A2 + E 

HI S -1 1 Al + 2E 
~ 

H2 S -1 1 Al + 2E , 
I 6 0 -2 2A2 + 2E 
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Table 6. The 21 isomers of the disubstituted non-rigid tripheny1. The 
positions of the substituent x's are indicated under the 
appropriate column. This table should be read in conjunction 
with Figure 2 

Isomer 1 2 3 4 5 6 7 8 9 10 i1 12 13 14 

1 x x 

" 2 x x 

3 x x 

4 x x 

5 x x 

6 x x 

7 x x 

8 x x 

9 x x 

10 x x 

11 x x 

12 x x 

13 x x 

14 x x 

15 x x 

16 x x 

17 x x 

18 x x 
''1 

19 x x 

20 x x 
, 

21 x x 
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Table 7. The irreducible representations spanned by the equivalent 
structures in each isomer 

No. of equivalent 
Isomer structures contained Irreducible representations 

in this isomer 
~ 

1 2 AI 
1 + BI 

1 
'~l 2 4 . AI 

1 + BI 
1 + EI 

3 4 AI 
1 + BI 

1 + EI 

4 4 AI 
1 + BI 

1 + EI 

5 4 AI 
1 + BI 

1 + EI 

6 2 AI 
1 + BI 

1 

7 4 AI 
1 + A" 

1 + BI 
1 + B" 

1 

8 4 AI 
1 + A" 

'1 + BI 
1 + B" 

1 

9 8 AI 
1 + BI 

1 + EI + A" 1 + B" 1 + E" 

10 8 AI 
1 + BI 

1 + EI + A" 
1 + B" 1 + E" 

11 8 AI 
1 + BI 

1 + EI + A" 
1 + B" 1 + E" 

12 8 AI 
1 + BI 

1 + EI + A" 1 + B" 1 + E" 

13 4 AI 
1 + BI 

1 + EI 

14 4 AI 
1 + BI 

1 + EI 

15 1 AI 
1 

16 8 AI 
1 + BI 

1 + AI 
2 

+ BI + 2EI 
2 

17 4 AI 
1 + BI 

2 + EI 

18 4 AI 
1 + BI 

2 + EI 

1.,..-1 

19 2 AI + A" 
1 1 

" 20 2 AI + A" 
1 1 

21 2 AI 
1 + A" 1 



Table 8. Correlation of symmetry species of the non­
rigid tripheny1 to rigid tripheny1. The 
labels of the nuclei are as in Fig. 2 

- -0\ 0\ -00 00 r--.. -'-" -'-" r-- ...-l_ C"'l_ 
'-" ...-l r-- ...-l 00 -0\ _ 

C"'l~ C"'l~ 
"C"'l '-" '-" '-" '-" 

~...-l -- --'-" .. N --r NO 
G16 

E _...-l ...-l...-l ...-l ...-l D2 LI')...-l .. '-" NLI') N LI') 

--r - '-" '-" '-" '-" 
'-' ..,j" -- ---...-l C"'l0 ...-l..,j" 
C"'l .. ...-l...-l ...-l...-l 
"0 .. .. 

...-l ...-l ...-l --r ...-l..,j" 
'-" '-' '-" '-" '-' '-" 

A' 
1 1 1 1 1 A 

B' 
1 1 1 -1 -1 B1 

A' 
2 1 1 -1 -1 B1 

B' 
2 1 1 1 1 A 

A" 
1 1 -1 -1 1 B3 

B" 
1 1 -1 1 -1 B2 

A" 2 1 -1 1 -1 B2 

B" 2 1 -1 -1 1 B3 

E' 2 -2 0 0 B2 + B3 

E" 2 +2 0 0 A + B1 

18 

'" 

~! 
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Figure 1. Isomerization reaction graph of the 

non-rigid molecule PX2Y2z. 

4 6 7 14 II 

2~~O) (0)@12 
3 5 9 8 10 13 

Figure 2. A non-rigid triphenyl molecule. The 

21 disubstituted isomers of this 

molecule are shown in Table 6 . 

• • • • • • • • • • • • • • 
2 3 4 5 6 7 8 9 10 II 12 13 14 

• • • • • • • • • • • • • • 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Figure~. Isomerization reaction graph of a 

disubstituted non-rigid triphenyl. 
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