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One of the key tools in applying physics-based models to machine vision has been the analysis of color 
histograms. In the mid-1980’s it was recognized that the color histogram for a single inhomogeneous surface 
with highlights will have a planar distribution in color space. I t  has since been shown that the colors do not 
fall randomly in a plane but form clusters a t  specific points. Physics-based models of reflection predict that 
the shape of the histogram is related not only to the illumination color and the object color but also to such 
noncolor properties as surface roughness and imaging geometry. We present an algorithm for analyzing color 
histograms that yields estimates of surface roughness, phase angle between the camera and the light source, 
and illumination intensity. These three scene parameters are related to three histogram measurements. 
However, the relationship is complex and cannot be solved analytically. Therefore we developed a method 
for estimating these properties that is based on interpolation between histograms that come from images of 
known scene properties. We present tests of our algorithm on simulated data, and the results compare well 
with the known simulation parameters. We also test our method on real images, and the results compare 
favorably with the actual parameters estimated by other means. Our method for estimating scene properties 
is very fast and requires only a single color image. 

1. INTRODUCTION 

Color histograms have long been used by the machine vi- 
sion community in image understanding. Color is usu- 
ally thought of as an  important property of objects and is 
often used for segmentation and classification. Unfortu- 
nately, color is not uniform for all objects of a given class 
or even across a single object. Color variation has come 
to be expected in real images, and vision researchers have 
been working on modeling this variation. 

The earliest uses of color histograms modeled the his- 
togram as a Gaussian cluster in color space.’ For ex- 
ample, pixels that correspond to grass were modeled as 
having a canonical color of green with some possible devia- 
tion from this color. The color variation was modeled 
as a probability distribution, so that the further a pixel 
was from the characteristic color, the less likely that 
i t  corresponded to grass. Figure 1 shows a diagram of 
this idea. 

In 1985, Shafer showed that,  for dielectric materials 
with highlights from a single light source, the color his- 
togram associated with a single object forms a plane.2 
This plane is defined by two color vectors: a body- 
reflection vector and a surface-reflection vector. Every 
pixel’s color is a linear combination of these two colors. 
In a diagram accompanying this idea (Fig. 2), Shafer pre- 
sented his visualization that the histogram would fill out 
a parallelogram. Reference 2 does not contain a descrip- 
tion of how to determine these two vectors. In fact, for 
any planar histogram, there are many sets of two vectors 
that could define it. 

In  1987, Klinker and Gershon independently observed 

that the color histogram for a dielectric illuminated by a 
single source forms a T shape or a dogleg in color ~ p a c e . ~ ~ ~  
Figure 3 shows that this color histogram is composed of 
two linear clusters, one corresponding to pixels that ex- 
hibit mostly body reflection and one corresponding to pix- 
els that exhibit mostly surface reflection. This T shape 
made it possible to identify characteristic body reflection 
and illumination colors. In 1988, Healey showed that the 
number of dimensions occupied by the histogram may be 
used to distinguish metals from  dielectric^.^ 

In a previous study we showed that color histograms 
have identifiable features that depend in a precise mathe- 
matical way on such noncolor scene properties as sur- 
face roughness and imaging geometry.6 In this paper we 
show that three scene properties, namely, the illumina- 
tion intensity, the roughness of the surface, and the phase 
angle between camera and light source, may be recovered 
from three measurements of the histogram shape. 

However, the functions that relate the scene properties 
to the histogram measurements are interdependent and 
highly nonlinear, involving trigonometric and exponential 
functions. Because an analytic solution is not possible, 
we developed a method that interpolates between data 
from a lookup table. The lookup table covers a range of 
scene parameters and records measurements of the his- 
tograms that result from each combination of these scene 
parameters. Then a polynomial function is fitted to the 
data to approximate the relationships between scene pa- 
rameters and histogram shape. 

Our research also shows how the colors observed in 
a highlight depend not only on the scene colors but 
also on the surface roughness and the imaging geom- 
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etry. Our estimates of these scene parameters enable 
us to improve our initial estimate of the illumination 
color. This capability, along with the estimate of the il- 
lumination intensity, allows us to discount the effect of 
the illuminant to recover estimates of the object’s re- 
flectance. Section 2 explains the relationship between 
the color histogram features and the various scene pa- 
rameters. Section 3 presents an algorithm for comput- 
ing estimates of these parameters from the histogram. 
We also describe the development of our algorithm for 
an ideal camera. Section 4 shows how the algorithm has 
been extended to accommodate real cameras. Section 5 
presents our results from experiments on real images. 

2. UNDERSTANDING COLOR 
HISTOGRAMS 
When we use the term color histogram, we are talking 
about a distribution of colors in the three-dimensional 
red-green-blue space. For a typical imaging system 
with 8 bits for each color band, there are 2563 bins into 
which a pixel may fall. In this study we consider only 
whether a bin is full or empty. We do not use a fourth 
dimension to display the number of pixels that have a 
particular red-green-blue value. A fourth dimension 
would be difficult to visualize but, more significantly, 
would also be dependent on such things as  object size and 
shape. 

In our research we use the dichromatic reflection model, 
which states that the light L reflected from a dielectric ob- 
ject is the sum of two components: a surface component 
L,$ and a body component Lh (Ref. 2 ) :  

Each of the two components is a function of the wave- 
length of light ( A )  and the angles of incidence ( e l ) ,  

reflection ( O r ) ,  and phase angle (#,I. The dichromatic 
reflection model further states that each component in 
turn may be separated into a color term c that depends 
only on ( A )  and a magnitude term m that depends only 
on (Oil, ( O r ) ,  and (0,): 

In a color camera the light is typically sampled by sensors 
with red, green, and blue filters to yield a color pixel vector 
c .  If the sensors have responsivity sf( A) (where f is one 
of red, green, or blue), then the elements of the color vector 
are formed: 

(3)  

Because tristimulus integration is a linear transforma- 
tion, the color vector c may also be separated into body- 
reflection and surface-reflection components and may be 
decomposed into color vectors c h  and c,< and magnitudes 
mb and m,: 

c /  = L(A, H , ,  e,, H,)sf( A)dA. 

We require that the color vectors ch and c ,  be of length 
1; as a result, the magnitude term must account for the 
overall brightness of the light coming from the surface, 
as well as for the gain of the sensor in transforming the 
light into pixel values. 

Figure 4 contains a sketch of a typical color histogram 
for a dielectric surface illuminated by a single light source. 
As labeled, the histogram has two linear clusters of pix- 
els: the body-reflection cluster and the highlight cluster. 
The first of these clusters extends from the black corner of 
the cube (point a) to the point of maximum body reflection 
(point b). The other cluster starts somewhere along the 
body-reflection cluster (point c) and extends to the high- 
light maximum (point d) .  

If the object has a complete blackbody color, there 
will be no body-reflection component and hence no body- 
reflection cluster. If the body-reflection color is the same 
hue as the surface-reflection color, the body-reflection 
cluster and the highlight cluster will be collinear. This is 
the case for white and gray objects because neither their 
body color nor their surface color imparts any hue to re- 
flected light. Therefore objects of these colors cannot be 
analyzed by this type of method. 

A. Body-Reflection Cluster 
The linear cluster that we call the body-reflection cluster 
corresponds to pixels that exhibit mostly body reflection 

d 
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Fig. 4. Histogram of an object. 
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with very little surface reflection. If there is no ambient 
illumination in the scene, this cluster begins at the black 
point of the color cube (point a in Fig. 41, corresponding 
to points on the surface whose normal is 90" or more 
away from the direction of the illumination. The point 
at the other extreme of the body-reflection cluster (point 
b) corresponds to the largest amount of body reflection 
seen anywhere on the object. If we assume that  the body- 
reflection component is Lambertian, the magnitude term 
will obey the equation 

where 0, is the angle of illumination incidence. The 
gain of the camera in converting photons measured by 
the CCD array into pixel values is represented by y .  The 
brightness of the body reflection is represented by 
the term Bb. This term factors in both the reflectance of 
the object (albedo) and the intensity of the light. 

In the Lambertian model the magnitude of the body 
reflection is proportional to the cosine of the incidence 
angle, so pixels located halfway along the body-reflection 
cluster correspond to surface points with normals that are 
arccod 1/2) or 60" away from the illumination direction. 
If the object exhibits all possible surface normals the body- 
reflection cluster will be full length and densely filled. If 
the object is composed of a small number of flat surfaces 
there will be gaps in the body-reflection cluster. For this 
paper we assume that the objects that we are viewing 
have a broad, continuous distribution of surface normals. 

A vector fitted to the body-reflection cluster (from point 
a to point b in Fig. 4) will point in the direction of the 
body-reflection color, which is the product of the object 
color and the illumination color. Once the illumination 
color has been determined by analysis of the highlight, 
the object color alone may be estimated, as proposed in 
some color constancy 

If we assume that there is on the object some point that 
is visible to the camera and that has a surface normal 
pointing directly at the light source, then at that point 
cos(0,) = 1. This means that the length of the fitted vec- 
tor (the magnitude lab[) corresponds to the gain y times 
the object's apparent brightness Bb. If the intensity of 
the illumination can also be recovered by highlight analy- 
sis, then the albedo of the object can be separated out 
from the object's apparent brightness (assuming that the 
gain of the camera had been calibrated). Otherwise i t  
will be impossible to distinguish a bright light shining on 
a dark surface from a dim light shining on a bright sur- 
face. Fortunately, highlights provide an invaluable clue 
in distinguishing between these cases. 

B. Highlight Cluster 
The cluster of pixels that we call the highlight cluster 
corresponds to pixels that show a nonnegligible amount 
of surface reflection. This cluster corresponds exactly to 
the area of the image that we would call the highlight. 
In the histogram, the highlight cluster starts where this 
cluster intersects with the body-reflection cluster (point c 
in Fig. 4) and extends upward from there to the brightest 
point of the highlight (point d).  

In this presentation we use the Torrance-Sparrow 
model of scattering." This theory models a surface as 

a collection of tiny facets, each of which may have a 
local surface normal that is different from the global 
surface normal. The distribution of facet normals is 
modeled as Gaussian, with (7 describing the standard 
deviation. Smooth surfaces will have a small standard 
deviation, whereas rougher surfaces will have a larger 
standard deviation. The facets are larger than the wave- 
length of visible light but are too small to be seen as 
texture. We refer to roughness on this small scale as 
optical roughness. We assume that the facet size is a 
constant for the surfaces in which we are interested. 

The equation that we use for scattering gives the 
amount of surface reflection as 

where Os is the off-specular angle and 0, is the angle of 
reflection. B, is the intensity of the illumination, y is 
the camera gain, and a is a constant that includes the 
facet size (a variable in the original Torrance-Sparrow 
model). G is an attenuation factor that depends on 
geometry and that comes into play at grazing angles. 
G is a complicated function of incidence angle, reflection 
angle, and phase angle, and we do not reproduce it here; 
see Ref. 11 for details. 

F is the Fresnel coefficient that describes the percent- 
age of the light that is reflected at the interface; this coef- 
ficient is a function of geometry, wavelength, polarization 
state, and index of refraction of the material in question. 
However, it is very weakly dependent on incident angle 
and wavelength (over the visible range), so we will follow 
the neutral interface reflection model and assume that 
F is constant for a given material." Furthermore, for a 
wide range of plastics and paints, the indices of refrac- 
tion are very nearly identical. Henceforth we assume 
that materials have an index of refraction of 1.5, corre- 
sponding to 4.0% Fresnel reflection. 

1. Length of Highlight Cluster 
When looking at highlights on a variety of surfaces, 
we can quickly observe that highlights are brighter and 
sharper on some surfaces and dimmer and more diffused 
on other surfaces. (It  is the fact that highlights may be 
diffused that causes us to eschew the term diffuse reflec- 
tion and to use the term body reflection instead.) Very 
smooth surfaces exhibit only a tiny amount of scattering of 
the surface reflection, whereas very rough surfaces have 
a great deal of scattering. This scattering of surface re- 
flection is a result of the optical roughness of the surface. 

We can see from Eq. (6) that the sharpness of the peak 
is determined by the standard deviation of facet angles 
(T and that the height of the peak is inversely propor- 
tional to (T. Intuitively this result makes sense because 
surface reflection scattered over a very small area will be 
more concentrated. A smooth object will have a small 
standard deviation of facet slopes, u, resulting in a long 
highlight cluster. A rough object will have a large (r 

and thus will exhibit a shorter cluster. Figure 5 shows 
a plot of the length of the highlight cluster versus the 
object's roughness for simulated images where all other 
factors have been held constant. The horizontal axis in- 
dicates the standard deviation of facet angles (in degrees), 
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Fig. 6. Dependence of cluster length on imaging geometry. 

which is our measure of roughness. The vertical axis in- 
dicates the Euclidean distance in red-green-blue space 
from point c to point d (see Fig. 4). 

Equation (6) indicates that the intensity of the light 
source B, also affects the magnitude of the surface re- 
flection and thus the length of the highlight cluster. I t  
is obvious from Eq. (6) that the length is directly propor- 
tional to this brightness. I t  will be assumed that the gain 
of the camera y has been calibrated and that  the facet size 
cy is known. If not, then only the overall gain yaB, could 
be recovered from the histogram. 

The graph presented in Fig. 5 was calculated for the 
imaging geometry in which the light source and the cam- 
era are separated by a phase angle of 0" with respect to 
the object. However, Eq. (6) predicts that  the imaging 
geometry will have an effect on highlight magnitude, as  
indicated by the cos(@,) term in the denominator and the 
attenuation term G in the numerator. Figure 6 shows 
how the length of the highlight cluster changes as the 
camera and the light source are separated by different 
angles with respect to the object (while the roughness is 
held constant a t  1). This figure demonstrates that the 
length changes slowly as the imaging geometry changes. 
The effect is small but noticeable, so imaging geometry 
must be considered to make an accurate estimate of sur- 
face roughness. 

2. Width of Highlight Cluster 
Another difference between histograms for smooth and 
rough surfaces is the width of the highlight cluster where 
it meets the body-reflection cluster (the distance from 
point c1 to point c p  in Fig. 4). The highlight cluster will 
be wider for rougher surfaces and narrower for smoother 
surfaces. This is because rougher objects will scatter 
surface reflection more widely, over a larger number of 
reflection angles. 

In the color histogram a noticeable amount of surface 
reflection results in pixels that  are displaced from the 
body cluster in the direction of the illumination color. If 
we take any highlight pixel and project along the surface- 
color vector onto the body-reflection vector, we can tell 
how much body reflection is present in that pixel. If 

we consider all the pixels in the highlight area of the 
image and look a t  how much body reflection is in each 
of them, we will obtain some range of body-reflection 
magnitudes. If the surface is very smooth with a sharp, 
bright highlight, this range will be small. However, if we 
consider a rougher object with a more diffused highlight, 
the range of body-reflection magnitudes will be larger 
because the highlight is spread over a larger number of 
surface normals. 

This property is independent of object size o r  shape. 
I t  simply shows the variation in surface normals over the 
area of the highlight. We do not have to fit a surface 
shape to the image to know how much scattering the ob- 
ject exhibits. It is encoded right there in the histogram. 

We simulated objects with different roughness values 
and identified those pixels that showed surface reflection. 
We calculated the body reflection for each of these points 
and computed the variation. This variation was divided 
by the overall length of the body-reflection vector to yield 
a fraction (the length of divided by the length of 
ab in Fig. 4). A fraction of 0.5 would mean that the 
highlight cluster's base extended across half the length 
of the body-reflection cluster. Figure 7 shows how the 
highlight-cluster width varies with the surface roughness 
if a point light source is used. 

The brightness of the illumination B, will also have 
some effect on the width of the highlight cluster. As the 
light intensity is increased, pcints on the surface that had 
amounts of surface reflection too small to  be noticed may 
become bright enough to be included with the highlight 
pixels. Clearly the width will grow as the light inten- 
sity grows. However, the growth is not linear because 
width measures the variation in body reflection amounts 
over the area of the highlight rather than the actual in- 
tensity of the highlight. In simulations we found that 
the highlight width grows very slowly as  the illumination 
intensity  increase^.'^ Consequently, although roughness 
affects both the length and the width of the highlight 
cluster, changes in illumination intensity primarily affect 
the length. Therefore it should be possible to distinguish 
a bright source illuminating a rough object from a dim 
source illuminating a shiny one. 

Although the width of the highlight cluster does not 
depend on the object's size and shape, it does depend on 
the imaging geometry. To understand why this is so, 
imagine a highlight that spreads 15" in every direction 
from its maximum. If the camera and the light source 
are separated by 30" the perfect specular angle will be 
at 15" with respect to the illumination direction. The 
highlight will spread over points with surface normals 
ranging from 0" to 30". [For ease of explanation, we 
ignore the influence of the l/cos(@,) term.] The amount 
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Fig. 7. Dependence of highlight-cluster width on object rough- 
ness. 
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of body reflection at these points will vary from cos(0) = 

1.0 to  cos(30) = 0.87, a width of 0.13. If the camera and 
the light source are separated by go", the perfect specular 
angle will be at 45", with the highlight spreading from 
30" to  60". Then the amount of body reflection will vary 
from cos(30) = 0.87 to cos(6O) = 0.50, a width of 0.37. 

Figure 8 shows how the width of the highlight cluster 
varies with roughness for a variety of imaging geometries. 
The angle label is a measure of the angle (in degrees) that 
separates the light source and the camera (with respect to 
the object). We assume that the object is small enough 
and far enough from the camera that this angle is the 
same for all points on the surface. 

For the case of highlight-cluster width, the measure- 
ment is very sensitive to different viewing geometries, so 
the phase angle between the camera and the light source 
must be known or estimated somehow. Thus it is par- 
ticularly fortuitous that such an estimate can be made 
directly from the histogram itself, as we now describe. 

3.  Intersection of Clusters 
When we introduced the diagram in Fig. 4, we described 
the highlight cluster as beginning somewhere along the 
body-reflection cluster. Klinker derived the 50% heuris- 
tic, which stated that for a large range of viewing geome- 
tries the highlight cluster would start somewhere in the 
upper 50% of the body-reflection c l ~ s t e r . ~  Now we show 
how to pinpoint the location. 

The distance along the body-reflection cluster where 
the two clusters intersect (the length of aC divided by 
the length of ab in Fig. 4) shows the amount of body 
reflection a t  those points on the surface that  are high- 
lighted. Assuming that body reflection is Lambertian, 
the amount of body reflection is proportional to the co- 
sine of the incidence angle. If the two clusters inter- 
sect at the maximum point on the body-reflection cluster, 
then the highlight occurs at those points that have the 
maximum amount of body reflection, where surface nor- 
mals point directly at the light source. If the two clusters 
meet halfway along the body-reflection cluster, the high- 
light must occur at points with surface normal pointing 
arccod 1/2) or 60" away from the illumination direction. 

If the body reflection is Lambertian, it does not depend 
in any way on the angle from which i t  is viewed. Thus 
the body reflection does not tell us anything about the 
camera direction. However, the surface reflection is de- 
pendent on both the illumination and the camera direc- 
tions. If we ignore for a moment the llcos(0,) term in 
Eq. (6), we can see that the maximum amount of sur- 
face reflection will occur at those points on the surface 
where the angle of incidence equals the angle of reflec- 
tion. Thus, if the highlight occurs at a point at which 

Dependence ofhighlight width on roughness for different 

the surface normal faces 10" away from the light-source 
direction, the light source and the camera must be 20" 
apart with respect to that point on the surface. 

The 
histograms have been projected into the plane defined 
by the body-reflection and the surface-reflection colors, so 
that the horizontal direction indicates increasing amounts 
of body reflection and the vertical direction indicates 
increasing amount of surface reflection. This time the 
amount of roughness has been held constant at = 1 
while the angular separation of the light source and the 
camera has been varied from 0" to 80". This graph shows 
how the meeting point decreases as the angle separating 
the camera and the light source increases. Incidentally, 
this graph also shows how the length and the width of the 
cluster are affected by imaging geometry as described in 
Subsections 2.B.1 and 2.B.2. 

I t  does not matter whether the object has one highlight 
or many. If the object is small compared to the distance 
to the light source and the camera, the highlightis) will 
always occur at points with the same surface normal for a 
given imaging geometry. Figure 10 shows what happens 
when we plot intersection versus imaging geometry. The 
horizontal axis shows the phase angle between the light 
source and the camera with respect to the object. The 
vertical axis is the intersection ratio lFcl/labl (see Fig. 4). 

The presence of the l/cos(H,) term in Eq. (6) indicates 
that the maximum amount of surface reflection will not al- 
ways occur precisely at the perfect specular angle. This 
is particularly true of rougher surfaces, on which the high- 
light is spread over a wide range of reflection angles so 
that l/cos(0,) varies significantly. This causes the off- 
specular peaks described in Ref. 11. The result is that 
the intersection is very slightly dependent on the surface 
roughness (see Ref. 13 for more details). 

4.  Direction of Highlight Cluster 
The highlight cluster is usually long and narrow in shape, 
and a vector can be fitted to i t  (from point c to  point d in 
Fig. 4). Klinker argued that this vector will usually cor- 

Figure 9 graphically illustrates this phenomenon. 

Fig. 9. 
ing imaging geometry. 

Illustration of how highlight cluster varies with chang- 

o.60L 0.50 0 20 40 60 BO 100 

phase angle 

Fig. 10. Dependence of intersection point on imaging geometry. 
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respond closely to the surface-reflection color.g This is 
true for smooth objects, where the highlight has a small 
area, and for imaging geometries, where the body re- 
flection changes slowly over that  area. In this case the 
amount of body reflection a t  the base of the highlight clus- 
ter and the amount a t  the tip varies by a small amount. 

In contrast, if the object is optically rough and the high- 
light occurs on a part of the object where the cosine of the 
incidence angle changes more rapidly, then the amount 
of body reflection a t  the base of the highlight cluster may 
vary significantly from the amount a t  the tip. This condi- 
tion has the effect of skewing the highlight cluster away 
from the direction of the illumination color, toward the 
body-reflection color. The estimate of the illumination 
color made from fitting a vector to this cluster will be 
somewhat inaccurate. 

We can visualize this phenomenon by projecting the his- 
togram onto the plane defined by the body-reflection color 
and the surface-reflection color. We simulated dichro- 
matic reflection for a series of objects with increasing 
roughness values, but with body color held constant. 
Figure 11 shows a cross section of the histograms that re- 
sult. The horizontal direction is the direction of increas- 
ing amounts of body reflection; all three histograms fall 
exactly on this line for body-reflection pixels. The verti- 
cal direction is defined by increasing amounts of surface 
reflection. For surfaces with a standard-deviation of 
facet angles ((7) equal to 4”, a vector fitted to the high- 
light cluster will point exactly in this direction. A vector 
fitted to the highlight cluster when (7 = 8 will deviate 
slightly from the vertical direction. In the extreme case 
in which (7 = 16, the vector will deviate dramatically. 

In the color histogram the vectors describing the body- 
reflection color and the illumination color are not gener- 
ally perpendicular. The angle between them depends on 
the hue difference between the two colors, which is not 
known in advance. If the vector fitted to the highlight 
cluster does not point exactly in the direction of increas- 
ing amounts of surface reflection, the estimate of illumi- 
nation color will be inaccurate by some amount. This 
effect will in turn bias the estimate of the object color, 
which we obtain by dividing the body-reflection color by 
the illumination color. 

Furthermore, skewing of the highlight cluster will also 
affect measurements of the cluster’s length, width, and 
intersection. Figure 12 shows an enlargement of the his- 
togram for the roughest surface, with key points labeled. 
The estimate of illumination color that we obtain by 
fitting a vector to this highlight cluster will give the direc- 
tion of the light color as  cd, whereas the correct illumina- 
tion color is defined by the vertical direction c’d (because 
the histogram was projected into the plane defined by the 
body- and the surface-reflection colors). 

When the highlight cluster is skewed away from the 
direction of the illumination color, the cluster will appear 
longer than it would otherwise be. The amount of sur- 
face reflection a t  the brightest point is the vertical dis- 
placement in the graph (the distance from point c’ to point 
d in Fig. 12) rather than the distance along the highlight 
cluster (the distance from point c to point d 1. Similarly, 
the width of the cluster is determined by projecting all 
pixels along the illumination-color vector (straight down 
for this graph). Thus the correct measure of highlight 
width is the variation in body reflection, which is the dis- 
tance from c1 to ca’ rather than the distance from c1 to 
c2. I t  follows, then, that the correct intersection ratio is 
given by lac’l/labl rather than l E E l / l ~ l .  

The vector fitted to the highlight cluster (from point c 
to point d in Fig. 4) is a good first estimate of the illu- 
mination color, but we now know that it  may be skewed. 
If we know the surface roughness and the imaging 
geometry, we can calculate the amount of skewing and 
can compensate for it. 

Recently Wolff showed that the Lambertian model is 
somewhat inaccurate for body reflection from many real 
surfaces, particularly at extreme reflection angles; he 
proposed a different model to replace it.14 Also, some 
researchers prefer to use the Beckmann-Spizzichino 
modelI5 or a combination of the Beckmann-Spizzichino 
and the Torrance-Sparrow models16 to describe surface 
scattering. Although a choice of different models would 
change the exact positions of the graphs in this section, 
the general relationships would remain the same. These 
dependencies of the color histogram on scene parameters 
are a consequence of the different geometric distributions 
as well as  the different hues of the two components of 
reflection. 

In Subsections 2.B.1 and 2.B.2 we showed that the 
roughness of the object affects the length and the width of 
the highlight cluster but that there is some dependence on 
imaging geometry. Then in Subsection 2.B.3 we showed 
that the imaging geometry determines the intersection of 
the two clusters but that there is some dependence on 
roughness. Furthermore, the intensity of the illumina- 
tion affects the length and the width of the highlight’s 
cluster as  well, although in different ways. The degree of 
dependence of each histogram measurement on the scene 
parameters is characterized in Table 1. 

In this section we have shown that the direction of the 
highlight cluster can be skewed away from the direction 
of the illumination color, depending on both the amount 
of roughness and the imaging geometry. The highlight- 
cluster length, width, and intersection are defined with 
respect to the cluster direction, so measurements of these 
features also depend on the estimate of the illumina- 

_ -  
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Fig. 12. Skewed highlight. 
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Table 1. Dependence of Histogram Features 
on Scene Parameters 

~~ 

Illumination 
Feature Roughness Phase Angle Intensity 

Length Strong Weak Strong 
Width Strong Strong Weak 
Intersection Weak Strong None 

tion color. If that direction changes, the other histogram 
measurements will also change. 

There- 
fore we propose to solve for roughness, phase angle, and 
illumination intensity simultaneously, based on the mea- 
surements of the histogram. 

Obviously these factors are all interdependent. 

3. ANALYZING COLOR HISTOGRAMS 
Section 2 described the relationship between the shape 
of the color histogram and the various scene properties. 
Understanding the relationship is the first step in analyz- 
ing color histograms. The next step is determining how 
to exploit the histogram to recover quantitative measures 
of the scene properties. 

In this section we assume an ideal sensor that has 
highly desirable properties. This kind of camera, which 
is unobtainable in practice, shows the limit of what can 
be obtained under the best possible imaging conditions. 
Specifically, we assume a noise-free camera with a linear 
response. We also assume that  the camera is linear over 
the range of all possible pixel values that might occur 
in our images, so that we do not have to worry about 
clipping a t  some maximum value. In Section 4 we show 
how the program has been adapted for application to 
images obtained with real cameras. 

A. Knowns and Unknowns 
The known image parameters that can be measured from 
the color histogram are the body-reflection cluster's length 
and direction; the highlight cluster's length, width, and 
direction; and the intersection point of the two clusters. 
The result is four scalar values and two vector quantities, 
which are denoted by the following variables: 

I ,  length of highlight cluster; 
w ,  width of highlight cluster; 
i, intersection of two clusters; 
b,  length of body-reflection cluster; 
d,, direction of highlight cluster; 
dh, direction of body-reflection cluster. 

The unknown scene parameters that we would like to re- 
cover from the histogram can also be divided into scalar 
values and vector quantities. The scalar values are the 
surface roughness, the phase angle between the light- 
source and the camera directions, the illumination inten- 
sity, and the surface albedo. The vector quantities are 
the chromaticity of the illumination and of the object. 
These variables are 

cr, optical roughness; 
H,, phase angle; 
B,, illumination intensity; 
Bo, object albedo; 
C,, chromaticity of light source; 
C,, object chromaticity under white light. 

For convenience, we have separated the illumination 
color and the object reflectance into intensity components 
and chromatic components. The object's chromaticity C, 
may be estimated in a straightforward way from the di- 
rection of the body-reflection cluster dh and from the color 
of the light source C,. The red, the green, and the blue 
components of the body-reflection vector are divided by 
the red, the green, and the blue components, respectively, 
of the light-source color: 

The result is normalized to length 1. This estimate as- 
sumes that the illumination and the object-reflectance 
functions are well sampled by the three sensor functions 
and that these sensor functions form an approximately or- 
thogonal measurement space. Fortunately the color fil- 
ters used in many color cameras are nearly orthogonal, 
and the reflectance functions of many common objects 
are smooth functions of ~ a v e 1 e n g t h . l ~  In some situa- 
tions (such as  that of fluorescent lights, which have sharp 
peaks in the spectrum) the assumption of smooth spec- 
tral functions will not hold, and then the estimate may 
be less accurate. 

The albedo of the object B, is also recovered in a 
straightforward manner from the length of the body- 
reflection cluster b and the illumination intensity B,. 
From Eq. (5) the body-reflection magnitude is 

mb = YBh COS(O,), (8) 

where Bb is the object's apparent brightness. The body- 
cluster length b is equal to the maximum value of mi,, 
when cos(Oi) = 1. Therefore b = yBh. Because the ap- 
parent brightness of the object is the product of the object 
albedo Bo and the illumination intensity B,?, the albedo is 

(9) 

For the remaining unknowns the situation is not so 
simple. From Section 2 we know that the length 1 is 
related to surface roughness and illumination intensity 
but is also dependent on imaging geometry. The remain- 
ing knowns (1 ,  w ,  i, d,) and unknowns (0, O p ,  B,, C,) are 
examined in detail in the next few subsections. 

B. Exact Solution 
Equations (5) and (6) describe the amounts of body and 
surface reflection mh and m, as a function of imaging 
geometry and light intensity B,. Equation (6) also shows 
how the amount of surface reflection a t  a given point 
varies with the roughness of the surface u. 

Unfortunately, a direct solution of these scene param- 
eters from the histogram measurements is not possible. 
The length of the highlight cluster indicates the maxi- 
mum amount of surface reflection seen anywhere on the 
object. For given values of cr, O,, and B,, the length 1 
may be calculated from 

over all the values of H , ,  H,, H,? . (10) 

This equation cannot be inverted to yield a direct solution 
of the scene parameters cr, O,, and B, from the length. 
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Fig. 13 Skewed length measurement. 

Although Eq. (10) has no direct solution, it might be 
possible to solve it iteratively, through some sort of search 
(e.g., by gradient descent). However, such an  approach 
assumes that the length 1 can be accurately measured 
from the histogram. In Subsection 2.B.1, the length is 
measured from the tip of the highlight cluster to i ts base 
along the direction of the highlight color. Unfortunately, 
the highlight color is not typically known in advance. AS 

described in Subsection 2.B.4, one may estimate the high- 
light color by fitting a vector to the pixels that  form the 
highlight cluster. However, this cluster may be skewed. 

This effect is shown in Fig. 13, which is the histogram 
of a simulated rough object illuminated with white light. 
The dotted, measured line shows the direction calculated 
for the best-fit vector to the highlight cluster. (In this 
case the best-fit line to  the cluster would not pass through 
the brightest point in the highlight cluster.) The posi- 
tion of the dotted line in Fig. 13 shows the projection 
of the brightest highlight pixel onto the body-reflection 
vector along the best-fit vector. The ideal line indicates 
the direction of the actual illumination color. The skew- 
ing causes the measured length to be longer than i t  
would have been if the correct illumination color had 
been known. 

This illustration contrasts the concept of ideal length 
that we would like to obtain from the histogram with the 
measured length that can actually be recovered without 
a priori knowledge about the illumination color. We ob- 
tained all the graphs presented in Section 2 that relate 
histogram measurements to scene parameters by having 
knowledge of the illumination color. 

Figure 14 shows how both the ideal length and the mea- 
sured length vary with roughness for the case in which the 
camera and the light source are separated by 20". For 
smooth surfaces both values show an inverse relation- 
ship between length and roughness. As the roughness 
increases, the deviation between the two curves grows; 
eventually the measured length begins increasing again. 
This is because increasing the roughness also causes an  
increase in the skew angle of the highlight cluster, as 
discussed in Subsection 2.B.4. As the skew of the high- 
light cluster increases, so does its apparent length. If 
the measured length were the only value available, it 
would be diffcult to tell a very smooth surface from a very 
rough one. 

A similar story applies to the measurement of width 
and intersection. When the highlight is skewed, the val- 
ues measured from the histogram will be different from 
the ideal values shown in the graphs in Section 2. In the 
absence of a priori information, we can measure only what 
is available in the histogram. How do we derive the ideal 
values from those that are measured? Once that task is 

C. Approximate Solution 
Our approach is to recover scene parameters by an ap- 
proximate method, directly from the initial histogram 
measurements. Therefore we do not need to  recover 
ideal histogram values from the measured ones. The 
ideal values of the histogram are a useful abstraction be- 
cause their relationship to scene parameters is easy to 
explain. However, the ideal values cannot be obtained 
from the histogram without knowledge of the illumina- 
tion color. 

Figure 15 shows the variation in the measured length 
as roughness and phase angle are changed. Each value 
of length describes a contour within the space of rough- 
ness and phase angle. Given a length measurement from 
a histogram, the associated scene parameters must lie 
somewhere on that contour. When illumination inten- 
sity is considered along with roughness and phase angle, 
these three scene parameters form a three-dimensional 
parameter space. A length measurement would then 
describe a two-dimensional surface within this space, 
showing the possible roughness, phase angle, and light- 
intensity values that could give rise to a histogram with 
this highlight-cluster length. 

The intersection and width measurements will also de- 
scribe surfaces within the parameter space. Ideally each 
of the histogram measurements will intersect a t  a single 
point in the parameter space, making it possible to re- 
cover unique values for surface roughness, phase angle, 
and illumination intensity. Hence the obvious questions 
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Fig. 14. Ideal versus measured length 
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Fig. 16. Surface of roughness and phase angles within 
length- width-intersection (LWI) space. 

are: how can we generate these contours of equal length, 
equal width, and equal intersection; and do these contours 
intersect to give unique solutions? 

Subsection 3.B pointed out that there is no analytic so- 
lution to generate the contours. However, the graph in 
Fig. 15 shows how the highlight-cluster length varies 
with the roughness and the phase angle at discrete 
points. These values come from simulating an object 
with these parameters and then measuring the length, 
the width, and the intersection of the highlight clus- 
ter in the resulting color histogram. By simulating a 
large range of roughness values, phase angles, and illu- 
mination intensities, we create lookup tables of length, 
width, and intersection measurements. A program can 
then search through the lookup tables to find the scene 
parameters that correspond to a given set of histo- 
gram measurements. 

The more interesting question is whether a unique solu- 
tion exists for a given triple (I, w ,  i). If a particular triple 
has more than one solution, then different combinations 
of scene parameters can give rise to identical histogram 
measurements. The existence of more than one solution 
for a triple also means that a search through the contours 
in parameter space cannot be guaranteed to converge. 

To visualize the distribution of possible (I, w ,  i) triples, 
Fig. 16 shows the space of all possible values for length, 
width, and intersection. The axis coming out of the page 
encodes the range of highlight-cluster lengths; the ver- 
tical axis shows the range of widths; and the horizon- 
tal axis shows intersection measurements. The surface 
within this cube is defined by lines of equal roughness in 
one direction and lines of equal phase angle in another di- 
rection. This surface shows which combinations of LWI 
are possible for histograms within the simulated range. 
Points in the space not falling on the surface correspond 
to histograms that do not make sense. 

Although the surface curves around in the LWI space, 
it does not intersect itself anywhere. Thus any triple of 
LWI that falls on the surface is associated with a unique 
set of surface-roughness and phase angle values. The 
only remaining problem is to determine from these his- 
togram measurements where on the surface these values 
will lie. 

D. Generating Lookup Tables 
A large range of roughness values, phase angles, and illu- 
mination intensities are used to create the lookup tables. 
The ranges are shown in Table 2. The roughness value 
is the standard deviation of facet angles with respect to 
the global surface normal, in degrees. The phase angle 
is the angle between the camera and the light source with 
respect to the object, also in degrees. The light intensity 
is a percentage of a hypothetical light's maximum output. 

For each set of roughness, phase angle, and light- 
intensity values, a simulated object is generated with the 
noise-free camera model. The histogram associated with 
the object is automatically separated into body-reflection 
and highlight clusters (see Ref. 13 for details). Vectors 
are fitted to each of the clusters. 

Once the direction of the highlight cluster has been 
measured, the vector d, is used to project all highlight 
pixels onto the body-reflection vector dh. These projec- 
tions determine the relative contributions of the vectors 
in each pixel. Each color pixel p in the histogram can 
then be defined as 

This is essentially the dichromatic equation, although the 
highlight-cluster direction d, may differ from the actual 
highlight color. The histogram measurements are then 
defined simply as 

I = max(m,) over all p , (12) 

b = max(rnb) over all p , (13) 

i = mb/b (14) 

w = [max(mb) - min(mb)]/b 

for that p with maximum m, , 

over all p for which m,$ > T .  (15) 

The threshold T can be set to any arbitrary small value for 
the case of a noise-free sensor. The value will be set more 
carefully in Section 4, where we discuss real cameras. 

E. Calculating Roughness, Phase Angle, 
and Illumination Intensity 
The surface shown in Fig. 16 shows contours of equal 
roughness and phase angle within the LWI space. Once 
length, width, and intersection measurements have been 
obtained from a histogram, the problem is to determine 
which contours they fall on. It is unlikely that an arbi- 
trary histogram will have measurements that fall exactly 
on the contours shown. Therefore some sort of interpo- 
lation is required. 

In our research we use a polynomial approximation to 
the surface in LWI space. We assume that the roughness 

Table 2. Range of Parameters 
Parameter Minimum Maximum Increment Total Used 

Roughness 1" 15" 2" 8 

Intensity 50% 100% 10% 6 
Overall 480 

Phase angle 0" 90" 10" 10 
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Table 3. Fit of Polynomial Functions 

Function R squared 

can be approximated as  a polynomial function of length, 
width, and intersection measurements of the histogram 

= A + BL + Cw + Di f El2 f Fw2 
(16) -t Gi2  + Hlw + I l i  + Jiw + . , . . 

The lookup table provides the means for calculating the 
coefficients of the polynomial. This table also provides 
almost 500 sets of histogram measurements and the as- 
sociated roughness values. Least-squares estimation is 
used to calculate the best-fit nth-degree polynomial to the 
entire data set. A fourth-degree polynomial is used in 
our experiments. 

Similarly, the phase angle and the illumination inten- 
sity are also approximated as polynomial functions of the 
histogram length, width, and intersection: 

B,q 2 h"(1, w ,  i). (18) 

Least squares is used to calculate the coefficients for 
these polynomials also. The R-squared fit of the fourth- 
degree polynomials to the data is shown in Table 3. The 
R-squared value of 0.877 for t~ indicates that a fourth- 
degree polynomial can account for 87.7% of the variance 
of this variable. 

Generation of the lookup table is obviously very time 
consuming (taking approximately 8 h on a SPARC 11) 
because it involves calculation of almost 500 graphics 
simulations. However, the table generation and coeffi- 
cient calculation must be done only once and can be done 
ahead of time. At run time our system takes a histogram 
from an image with unknown parameters, automatically 
separates it into two clusters, and measures their di- 
mensions. The polynomial equations are then applied to 
yield a quick estimate of the roughness, the phase angle, 
and the illumination intensity. The run-time portion is 
very quick, taking less than 3 s for a histogram corre- 
sponding to an image region of 3600 pixels. If the his- 
togram has already been split into clusters in the process 
of segmenting the image,' the time required for calculat- 
ing the scene parameters is less than 1 s. 

To test the polynomial approximations, 100 test images 
were simulated and were then analyzed by our method. 
These test images were noise free, generated with the 
same idealized camera model used to generate the lookup 
table. The surface-roughness, the phase angle, and the 
illumination intensity values used in the test images were 
chosen by a pseudorandom-number generator. The test 
values were constrained to lie within the ranges used in 
the lookup table (see Table 2). 

The calculated values of u, e,, and B, were compared 
with the original values used to generate the image. In 

almost all cases the calculated values were near the origi- 
nal ones. However, for 2% of the cases, the values 
were obviously wrong. For example, a negative value 
of roughness or illumination intensity is clearly unrea- 
sonable. Fortunately, we can detect bad values auto- 
matically by checking to see whether recovered values 
are within the allowable range. Recovered values that 
fall outside this range indicate that a different method 
should be used to recover the scene parameters. For ex- 
ample, a lower-degree polynomial approximation could be 
used for these cases. Although the fourth-degree poly- 
nomial more effectively approximates the function over 
its whole range, it may deviate somewhat a t  the ex- 
tremes of the function. In fact, the problem cases (2%) 
occur when the roughness is very low (between 1" and 
2") and the phase angle is very large (greater than 75"). 
The problem disappears if a third-degree polynomial is 
used instead, although the overall error in all cases is 
slightly higher. 

Table 4 shows the results for the remaining 98 cases, in 
which the fourth-degree polynomial produced reasonable 
estimates. The average error in recovering the param- 
eter is shown, and the step sizes used in the table are 
reiterated. The errors are smaller than the table resolu- 
tion, which shows that the interpolation method is fairly 
effective. 

The results for calculating roughness and phase angle 
are very good. They show that these noncolor parame- 
ters may be calculated with reasonably high accuracy just 
by consideration of the shape of the color histogram. The 
error in calculating illumination intensity is a bit higher, 
although it still provides a useful estimate. This error is 
not too surprising because the R-squared fit of the func- 
tion for calculating illumination intensity is somewhat 
worse than for the other two functions (see Table 3). 

F. Calculating Illumination Chromaticity 
As we pointed out in Subsection 2.B.4, the highlight clus- 
ter may be somewhat skewed from the direction of the 
highlight color. The skew is particularly pronounced 
a t  certain imaging geometries and when the surface is 
rough. These two factors determine how much the body 
reflection changes over the area of the highlight. 

Therefore, if we know, or can calculate, the surface 
roughness and the imaging geometry, we can in turn 
calculate the amount of highlight skewing. Once the 
skew is known, its effect can be subtracted from the di- 
rection of the highlight cluster to give the true color of 
the illumination. 

In Subsection 3.E we showed how to estimate the 
roughness and the phase angle from the color histogram. 
These estimates are now used to estimate the skew- 
ing. A similar lookup-table approach is used. When the 
simulations are performed to calculate length, width, and 
intersection for the range of scene parameters given in 

Table 4. Results on Simulated Data 
Parameter Average Error Table Resolution 

Roughness 1.20" 2" 
Phase angle 4.40" 10" 
Intensity 8.18% 10% 

Cases considered 98/100 
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Table 5. Results in Calculating Skew 
Average error 1.73" 
Average skew 8.63" 
Minimum value 0.01" 
Maximum value 27.5" 
Number of skews > 1" 69 
Cases considered 98/100 

Table 2, the skewing of the highlight is also calculated. 
In the graphics simulation the correct illumination color 
is obviously known in advance, so the angle between 
this color and the vector fitted to the highlight cluster is 
calculated and is stored in the lookup table along with 
the values for length, width, and intersection. Then a 
polynomial function is used to calculate the skew angle 
as  a function of roughness, phase angle, and illumination 
intensity: 

(19) 

The coeficients of the nth-degree polynomial function 
are calculated with a least-squares fit to the data in the 
lookup table. A third-degree polynomial was tested and 
gave an R-squared fit of 0.993. 

Once the skew has been calculated, the highlight color 
C, may be calculated from the measured direction d, 
with the calculated skew angle. Obviously, if the poly- 
nomial functions described in Subsection 3.E produce 
bogus estimates of roughness, phase angle, or illumina- 
tion intensity, there is little point in plugging them into 
the equation for calculating skew. In those 2% of the 100 
test cases, the program did not attempt to calculate the 
illumination color. For the remaining 98% test cases, 
the skew angle was used to calculate the illumination 
color. The error in 
estimating skew is the difference between the correct 
skew angle and the skew angle calculated by our method. 
The correct skew angle is easily calculated from the il- 
lumination color used to generate the test picture. The 
table shows the average error over the 98 cases consid- 
ered. It also shows the minimum, the maximum, and 
the average of the actual skew values. For 69 of the 
test images, the scene parameters were such that the 
highlight was skewed by 1" or more. 

As an example, we now describe the performance of 
our algorithm on one of the test simulations. The test 
image, shown in Plate 15, is a red cylinder under white 
light (C, = [0.58, 0,58, 0.581). The cylinder position is 
aligned such that its vertical axis is parallel to the ver- 
tical axis of the simulated imaging plane. The surface 
roughness is 12.06" standard deviation of the facet angles, 
the phase angle between the camera and the light source 
with respect to the object is 63.30", and the illumination 
intensity is 90% of maximum. 

The histogram associated with this image is shown in 
Fig. 17. The graph shows the projection of the color his- 
togram into the red-green plane. The histogram forms 
a smooth curve because it corresponds to a noise-free 
simulation of an idealized cylinder. The program auto- 
matically divided the histogram into body-reflection and 
highlight clusters. The unit vector fitted to the direction 
of the highlight cluster is d, = [O.Sl, 0.45, 0.371. The 
length of the highlight cluster was measured as  74.1, 

skew i= A,,((T, O p ,  €4). 

The results are shown in Table 5. 

the width of the highlight cluster was measured as 0.47 
(the highlight cluster extends over slightly less than half 
the body cluster), and the intersection of the two clusters 
was measured as 0.51 (the brightest point in the highlight 
cluster was projected onto the body cluster just above the 
halfway point). These measurements were all obtained 
with the vector d, to calculate the amount of body reflec- 
tion and surface reflection. 

The direction fitted to the highlight cluster is signifi- 
cantly skewed away from the direction of the actual illu- 
mination color. I t  represents a much redder color than 
the white illumination color and hence would be a poor 
estimate of the illumination color. It would also yield 
an inaccurate estimate of the object color when the influ- 
ence of the illumination color is divided out of the body- 
reflection color. 

With the application of polynomial relations (16)-( 18) 
to the length, the width, and the intersection mea- 
surements, the program estimated the roughness value 
as  11.99", phase angle as  67.05", and the illumina- 
tion intensity as 89% of maximum. We then applied 
relation (19) to these estimates of ~7, O p ,  and B, and 
estimated the skew between the highlight-cluster di- 
rection and the actual illumination color to be 18.75". 
Application of this skew to the cluster direction d, 
produced an estimate of the light-source chromaticity as  
C, = [0.59, 0.57, 0.571. This is very close to the original 
white color. 

A picture made by simulation of the cylinder with the 
recovered parameters is shown in Plate 16. The differ- 
ence between this picture and the original is very subtle. 
The results for this example are summarized in Table 6. 
The full algorithm is diagramed in Fig. 18. 

4. EXTENDING THE ANALYSIS 
TO REAL IMAGES 
In Section 3 we described how to estimate scene param- 
eters from a color histogram if an ideal sensor is used. 
Specifically, we assumed that the camera used for viewing 
objects is noise free and linear over the range of all pos- 
sible intensity values. The possibility of clipping a t  some 
maximum camera value was not considered in Section 3. 

However, these assumptions are not very realistic. 
Some forms of noise exist in all real-camera systems. 
And although linearity of response over a limited range 
is common in many cameras, all real cameras have some 
maximum value. Clipping at the maximum value is 
particularly common in pictures with highlights because 
highlights are so much brighter than other parts of the 
scene. Other problems that are common in real images 
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Table 6. Example Results 
Simulated Image Histogram Measurements Recovered Parameters 

C,? = r0.58, 0.58, 0.581 d, = [0.81, 0.45, 0.371 C, = [0.59, 0.57, 0.571 
D = 11.99" u = 12.06" 1 = 74.1 

8, = 63.30" w = 0.47 8, = 67.05" 
E,? = 8 9 8  i = 0.51 E ,  = 90% 

Off line: 

Calculate functionsf, g, h, A. 

Run time: 

Separate histogram into two clusters, 
Measure 1. w, i, d,. 

t 
Calculate u, ep, 8,. 

Calculate color of illumination C'. 

Calculate color C, and albedo Bo of object. 

Fig. 18. Algorithm for calculating scene parameters. 

are nonlinearity, color imbalance, and chromatic aberra- 
tion. The next few subsections briefly describe how we 
adapted the algorithm to deal with these issues. 

A. Camera Noise 
Real cameras present many limitations for taking ac- 
curate images. CCD cameras, which are used by most 
vision researchers, present many problems such as dark 
current, shot noise, amplifier noise, and line jitter." 
Some of these problems, such as  shot noise, are an inher- 
ent property of CCD cameras and cannot even be removed 
with high-quality manufacturing. 

In dealing with noise in the pixel values, we take a 
two-pronged attack: we explicitly account for the noise 
in generating the lookup tables, and we try to remove 
some noise when analyzing each histogram. 

We modeled camera noise as having a Gaussian distri- 
bution with a mean of zero. The standard deviation of 
camera noise, rc,  was modeled as 1.275. The camera is 
assumed to measure 8 bitdpixel, giving a range from 0 
to 255. 

In developing the algorithm for ideal cameras, we re- 
quired a threshold for distinguishing highlight pixels from 
pixels on the body-reflection cluster, although this thresh- 
old could be arbitrary (see Subsection 3.D). With an 
explicit noise model, the threshold should be based on 
the standard deviation of the camera noise. We chose 
to set the threshold T at  40,, so more than 99% of 
the noisy body-reflection pixels will fall within the body- 
reflection cluster 

When we generated the lookup tables for Section 3, 
we simulated noise-free images and measured the result- 
ing histograms. Now, for the noisy-camera model, we 
simulate images again, this time adding pseudorandom 
Gaussian noise. The resulting histograms are analyzed, 
and new values of length, width, and intersection are 
recorded in the lookup table. These measurements re- 
flect the changes in the overall histogram shape caused 
by the presence of noisy pixel values. (Ref. 13 discusses 
these changes in more detail.) 

Furthermore, when measuring the histograms, we use 
local smoothing. Each pixel from the simulated image is 
averaged with its four nearest neighbors before it is plot- 
ted in the histogram. For pixels that fall in the high- 
light or a t  its edge, this procedure will have the effect of 
smoothing out the highlight somewhat but will also tend 
to average out the noise. The effect of highlight smooth- 
ing on the measurements of length, width, and intersec- 
tion will also be recorded in the lookup table. 

B. Camera Clipping 
Like noise, clipping is an inherent property of real cam- 
eras because all real cameras have some maximum value 
that they can measure. Many real images with high- 
lights suffer from clipping because highlights are often 
very bright. When taking real pictures, researchers can 
often adjust the aperture, the light level, or the exposure 
time so that the brightest point in the image is within the 
dynamic range of the camera. However, highlights on 
shiny objects can be an order of magnitude brighter than 
surrounding nonhighlight areas, so that, if the camera is 
adjusted to measure highlights properly, the nonhighlight 
areas will be so dim as to be lost in the camera noise. 

Therefore any algorithm that is meant to work on real 
pictures with highlights should take clipping into account. 
The effect of clipping on the color histogram is easy to 
model. Any pixels that would have exceeded the maxi- 
mum value (255 for an 8-bit camera) will be held to that 
value. As a result, the highlight cluster will not be so 
long as it otherwise would have been. Clipping usually 
occurs when the surface roughness has a standard devia- 
tion of facet angles of 3" or less. 

In analyzing color histograms, clipping is easy to de- 
tect. If a pixel has the maximum value in any band, it 
was almost certainly clipped. However, dealing with the 
clipping presents a greater problem because the effect on 
the length measurement may be dramatic. The length 
measurement is an important parameter in calculat- 
ing the scene parameters, along with the width and the 
intersection measurements. For calculating the three 
unknown values of surface roughness, phase angle, 
and illumination intensity, three known histogram 
measurements are required. If we cannot trust the 
length measurement, we need to replace it with some 
other measurement. 
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When clipping occurs, we replace the length measure- 
ment with another measurement of the cluster shape. 
The width measurement and the length measurement are 
a way of characterizing the shape of the highlight cluster. 
We want to capture this shape because it is related to the 
relative distributions of body and surface reflection, which 
in turn are determined by the scene parameters that we 
want to estimate. 

When the length measurement is untrustworthy be- 
cause of clipping, we use a second width measurement. 
The first width measurement indicates how wide the high- 
light cluster is at the threshold distance T from the body- 
reflection cluster. The second width measurement shows 
how wide the highlight cluster is a t  a distance of 3T from 
the body-reflection cluster. 

When the lookup tables are calculated, we record both 
the length and whether i t  is clipped. We also record the 
second width measurement, as well as the first width and 
intersection measurements previously described. After 
the lookup table is generated two sets of polynomial func- 
tions are fitted: one set for analyzing histograms that  
are not clipped, and one set for histograms that are. If 
the second width measurement is referred to as w2 then 
the scene parameters may be calculated with 

if histogram is not clipped, (20) 

if histogram is clipped. (21) 

(J = f l ( l ,  w ,  i) 
e p  = g1(l, w ,  i) 
B, = h l ( l ,  w ,  i J  

B,q = hdwz ,  w ,  i) 

The second width measurement does not provide quite so 
much predictive power as the length measurement, so we 
use the first set of equations whenever possible. 

C. Nonlinearity and Color Imbalance 
The real images used in this paper were obtained in the 
Calibrated Imaging Laboratory (CIL) at Carnegie Mel- 
Ion University. The CIL provides a controlled setting 
for taking high-quality images. It  also permits a care- 
ful analysis of camera issues that may cause problems for 
vision algorithms. The equipment and capabilities are 
described in Ref. 19. 

The methods that we have developed for analyzing his- 
tograms require that the camera have a linear response. 
This is because these methods measure specific distances 
in the color space and assume that these distances are 
proportional to the amounts of body reflection and sur- 
face reflection observed on the object. Fortunately, lin- 
ear CCD cameras are commonly available. In fact, CCD 
cameras are inherently linear because they produce a volt- 
age that is proportional to the number of photons; the 
problem is that some models are designed to drive dis- 
plays and have added circuitry that makes them nonlin- 
ear. In this case the nonlinearity may be measured with 
a standard reference chart and may be corrected with a 
lookup The camera used to obtain the real im- 
ages used in this paper already has a linear response, so 
no correction is necessary. 

Another common problem with CCD cameras is color 
imbalance. CCD’s are typically much less sensitive to 

blue wavelengths than they are to green or red wave- 
lengths. In addition, incandescent lights are often used 
for taking pictures. Incandescent lights are also strong 
in the long wavelengths and weak in the short wave- 
lengths. Therefore, when incandescent lights are used 
with CCD cameras, the blue response is extremely poor. 
If color pictures are taken without some form of color cor- 
rection, blue objects will be extremely dark, and white 
objects will appear yellowish. 

In the CIL, color pictures are obtained with a gray- 
scale camera and a filter wheel to produce the red, the 
green, and the blue bands. This allows adjustments to  
be made individually for each band. A white test card is 
used to determine camera exposure times for each band. 
In the CIL the exposure time for the blue band is typi- 
cally approximately ten times longer than the red or the 
green exposures. 

D. Chromatic Aberration 
Another common problem in real images is chromatic 
aberration. This is an inherent property of lenses be- 
cause the index of refraction of optical components varies 
as a function of wavelength. Chromatic aberration can 
be partially compensated for during manufacturing; how- 
ever, experience in the CIL has shown that even high- 
quality lenses suffer from chromatic aberration that is 
readily apparent in histogram analysis. 

Chromatic aberration is most pronounced where there 
are sharp edges in the image. For smoother surfaces the 
transition between highlight and nonhighlight areas will 
be more sudden, and thus the chromatic aberration will 
be more pronounced. The effect of chromatic aberration 
on the histogram is that pixels are displaced from their 
expected values, causing a scattering effect. The degree 
of this scattering depends not only on the sharpness of 
the transition but also on the characteristics of the lens, 
the color of the object, and the location of the highlight in 
the image. (Chromatic aberration is most pronounced in 
the periphery of the image.) This makes it very difficult 
to model in a general way. 

In our research we attack the problem of chromatic 
aberration in two ways. The first step is to eliminate 
as much of the chromatic aberration as possible at the 
time the image is obtained. This is done by active lens 
compensation. Because the CIL permits fine control of 
the lens position and because the color bands are imaged 
separately, the lens is refocused, rezoomed, and reposi- 
tioned for each of the red, the green, and the blue color 
bands. This approach typically reduces the chromatic 
aberration by an order of magnitude.zo~21 

Unfortunately this method does not eliminate all chro- 
matic aberration in images with highlights. Also, this 
method is time consuming to calibrate and is not gener- 
ally applicable to camera setups that do not have a finely 
controlled lens. Therefore the second approach is to take 
some chromatic aberration into account when measuring 
the dimensions of the color histogram. 

Figure 19 shows a histogram for a very shiny red pail. 
The original image is shown in the upper right-hand cor- 
ner of the figure. The top of the highlight cluster is 
fanned out, which makes i t  wider than the bottom of the 
highlight cluster. 

This fanning of the highlight cluster is particularly 
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Fig. 19. Histogram for a very shiny pail. 

troublesome because it runs counter to the model of his- 
togram behavior. The model says that  there will be more 
variation of body-reflection amounts a t  the base of the 
highlight cluster than at the upper end. A highlight clus- 
ter that is wider at the top implies that  there are very 
bright highlight pixels occurring at several different re- 
flection angles but that, for some reason, pixels with lesser 
amounts of highlight occur a t  only a few reflection angles. 
If the histogram is to be believed, then the amount of high- 
light does not fall off as the off-specular angle is increased. 
This effect would indicate a rather unusual distribution of 
facet angles. A more plausible explanation of the fan-out 
of the highlight cluster is that the chromatic aberration 
causes large hue shifts a t  points where the highlight is 
increasing very rapidly. 

Because the chromatic aberration makes the highlight 
cluster wider in regions in which the highlight increases 
rapidly, this would imply that  the width measurement 
is not very trustworthy at the top end of the highlight 
cluster. A program analyzing the histogram shown in 
Fig. 19 will measure a very wide highlight cluster, even 
though it corresponds to a very shiny object. This is be- 
cause the original algorithm examines the amount of body 
reflection present in all highlight pixels to compute the 
width measurement. A pixel is classified as a highlight 
if the amount of surface reflection exceeds the thresh- 
old 4u,. The surface-reflection model predicts that  the 
widest part of the highlight cluster is a t  the base, but this 
property is not explicitly tested by the program described 
in Section 3. 

Although the highlight cluster is plagued by chromatic 
aberration at the top end, the base of the cluster is still 
well behaved. Now that chromatic aberration is known 
to be a problem, the algorithm measures width over all the 
highlight pixels near the threshold point instead of over 
all the pixels that exceed the threshold. Equation (E), 
which gives the width measurement in terms of the com- 
puted amounts of body reflection r n h  and surface reflection 
m,, is modified to 

w = [max(nh) - min(mh)]/b 

over all p for which T < mg < T + oc . (22) 
Similarly, the second width measurement, used when the 
highlight cluster is clipped, becomes 

w2 = [max(mh) - min(rnh)]/b 

over all p for which 3T < m, < 3T + vC. (23) 
The process for measuring length and intersection remain 
unchanged. 

In the previous section we described some modifications 
made to the analysis method along with some techniques 
for obtaining high-quality images. Taken together, they 
allow the algorithm to work on real images. The next 
few subsections describe the performance of the algorithm 
in estimating phase angle, illumination intensity, and 
roughness from real images. 

A. Estimating Phase Angle 
An experiment was set up in the CIL to test the his- 
togram analysis algorithm at estimating phase angle from 
real images. A series of images was taken for which the 
camera and the light source were separated by different 
phase angles. The angle was measured with a large pro- 
tractor and strings to indicate the direction of the camera 
and the light source. A diagram of the setup is shown 
in Fig. 20. The angles measured by this method were 
estimated to be accurate to within 5". The light was a 
250-W spotlight; it was estimated to appear a few degrees 
across at the distance used in the experiment [approxi- 
mately 5 ft (1.5 m)]. Therefore it is only a crude approxi- 
mation of a point source. 

The first image in the sequence is shown in Plate 17. 
This picture was taken when the camera and the light 
source were approximately 10" apart. The phase angle 
was then increased by 10" between each picture. The last 
image in the sequence is shown in Plate 18. This picture 
was taken when the phase angle between the camera and 
the light source was 90". 

The program automatically split the color histograms 
of the objects into two clusters, fitted lines to those vec- 
tors, and calculated the values of length, width, and inter- 
section. The color histogram of the image in Plate 18 is 
shown in Plate 19. The superimposed white lines show 
the lines fitted by the program. 

This process was repeated for each image in the se- 
quence. Figure 21 shows the measured intersection 
value for each image, plotted against the phase angle 
that  was in effect at the time the image was taken. A 
comparison of Fig. 21 with Fig. 10 in Section 2 shows 
that, as predicted, the intersection decreases with in- 
creasing phase angle. The sole exception is a t  @, = 90". 
A slight error in setting up the light could explain this 
problem: if the phase angle were actually slightly larger 
than go", the brightest point on the object would be out 
of view of the camera, throwing off the intersection ratio. 

The program described in Sections 3 and 4 was used to 
calculate the phase angle from the length, the width, and 
the intersection measurements obtained from each image. 
The results are shown in Fig. 22. The dotted line shows 

Camera 
Fig. 20. Experiment for estimating phase angle. 
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Fig. 21. Plot of intersection versus phase angle. 
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Results for calculating phase angle from real images. Fig. 22. 

the correct answer, with the phase angle being measured 
by the protractor as ground truth. The average error in 
estimating the angle is 9.96". 

As the light was moved around, the distance from the 
object did not remain constant because of the layout of the 
laboratory. Therefore the intensity of the illumination 
was not assumed to be constant. For two of the images in 
the sequence, the illumination was close enough that the 
highlight saturated the camera, and clipping occurred. 
This effect was seen at 8, = 60" and 8, = 80". In these 
two cases the second set of equations [see Eqs. (21)] for 
clipping was used. Although this technique produced a 
reasonable answer for the case in which 8, = 80", it did 
not do so well for 8, = 60". If this data point is elimi- 
nated from consideration, the average error in estimating 
phase angle is 7.04". 

Overall, the method developed for estimating phase 
angle from analyzing color histograms works fairly well, 
especially considering that the ground-truth measure- 
ment of the phase angle is fairly crude. Also, the lookup 
tables in Section 4 were calculated without calibrating 
the simulated images to the conditions in the CIL. In 
particular, the noise of the camera was not measured pre- 
cisely, and the light source used in the experiments was 
not a point source, as was the case in the simulations. 
Moreover, the Torrance- Sparrow roughness model is an  
idealized model that assumes isotropic, Gaussian scatter- 
ing and may not effectively describe the roughness of the 
real object used in these experiments. 

B. Estimating Illumination Intensity 
A second experiment was performed in the CIL to test 
the performance of the algorithm at estimating illumi- 
nation intensity. The spotlight was plugged into a vari- 
able voltage supply with a manually operated dial. A 
sequence of images was taken under increasing levels 
of illumination while the imaging geometry and the tar- 
get object were kept constant. (Varying voltage will also 
cause some change in the illumination color, as discussed 

below.) Altogether six images were taken. The illumi- 
nation level was measured with a luminance spot meter 
aimed at a white card. The spot measurements were es- 
timated to be repeatable to within 5%. 

Again the program analyzed the histograms to produce 
measurements of length, width, and intersection for each 
image. The polynomial equation for calculation of illumi- 
nation intensity was then applied to these measurements. 
The results are shown in Fig. 23. The horizontal axis 
shows the luminance (candles/square meter) measured 
by the spot meter, whereas the vertical axis shows the in- 
tensity estimated by the histogram analysis. The gain of 
the camera has not been calibrated, so the program gives 
a relative estimate of intensity. The dotted line shows 
the best linear fit to the data. If the slope of this line is 
considered to be the gain of the camera, then the average 
error in estimating illumination intensity is 5.07%. 

We computed the results shown in Fig. 23 by using 
only the length, the width, and the intersection mea- 
surements of the highlight cluster. The graph in Fig. 24 
shows the roughness estimate for each image in the se- 
quence, computed at the same time as the intensity es- 
timates. These measurements are fairly stable across 
the sequence, as would be expected, because the imaging 
geometry and the target object were the same in every 
case. This result is particularly important because both 
increasing smoothness and increasing illumination inten- 
sity will lengthen the highlight cluster. We also found 
that the estimates of the phase angle made at the same 
time were reasonably consistent. This result shows that, 
for the most part, the algorithm does not confuse changes 
in the histogram shape that are due to increasing inten- 
sity levels with the effects of roughness and phase angle. 

The ground-truth measurements for this experiment 
came from a luminance meter and were compared with 
estimates of intensity. Unfortunately, these measure- 
ments are somewhat different. A luminance meter inte- 
grates with the human luminous efficiency function V( A). 
A luminance meter shows how bright a spot will appear 

0.20 - 
3 m 4 w s w 6 M ) m ~  

measured Intensity 

Fig. 23. 
images. 

Results for calculating illumination intensity from real 
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Fig. 24. Calculating roughness when intensity changes. 
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Table 7. Results for Estimating Roughness 
Calculated Roughness 

Object (degrees I 

Alligator 10.07 
Pumpkin 8.93 
Terra-cotta ball 3.61 
Red ball 0.40 
Red pail 0.10 

to humans, but not necessarily how bright i t  will appear 
to a color camera. A narrow-band red illumination will 
have a much lower luminance than a narrow-band green 
one, yet both may have the same intensity as measured 
by a color camera. 

The difference between luminance and intensity is rele- 
vant to the results presented here because, as the volt- 
age fed to the spotlight is decreased, the light becomes 
not only dimmer but also noticeably redder in hue. This 
effect indicates that luminance may not correlate well 
with the intensity in this experiment. Although the his- 
togram analysis did correctly calculate increasing illumi- 
nation intensities as the light level was increased, the 
calculated values do not appear as  linear as one might 
hope. The use of a luminance meter might be causing 
some of the problems. 

C. Estimating Roughness 
A third experiment was performed to show how the sys- 
tem estimates surface roughness from color histograms. 
Plate 20 shows a composite of five images of different 
objects. The objects are a green plastic pool toy in the 
shape of an  alligator, an orange plastic pumpkin for trick- 
or-treating, a terra-cotta ball (also shown in Plate 17), 
a red plastic ball, and a red plastic pail (also shown in 
Fig. 19). 

Table 7 shows the roughness calculated by the system 
for each of these objects. The objects are listed in order 
of decreasing roughness, as  estimated by human observa- 
tion. The calculated roughness number is an estimate of 
the standard deviation of facet angles, in degrees. There 
is no error measure for these results because there are no 
ground-truth data far the actual roughness values. Nev- 
ertheless, the roughness ranking from the program agrees 
with that produced by a human observer. 

The results presented in this section demonstrate that 
the method developed here can be applied to real im- 
ages. The algorithm produces reasonable estimates of 
phase angle, illumination intensity, and surface rough- 
ness by analyzing the dimensions of color histograms. 
The method is able to succeed even with such camera 
problems as  noise, clipping, and chromatic aberration. 
I t  is likely that the method would perform even better 
if the lookup tables used measurements from real his- 
tograms rather than from simulated ones. Nevertheless, 
the method works reasonably well, even without prior ref- 
erence to real data. 

6. CONCLUSIONS 
The color histogram of an  image is a rich source of in- 
formation, but in the past it has not been fully exploited. 
We have shown that the color histogram of a dielectric 
object may be characterized by a small number of mea- 

surements, which relate directly to many scene properties. 
We have shown how these histogram measurements may 
be used to recover estimates of surface roughness, imaging 
geometry, illumination intensity, and illumination color. 
These estimates may in turn be used to estimate object 
color and albedo. 

We have shown that the resulting algorithm can be 
applied to real images and produces good estimates of 
phase angle, illumination intensity, and surface rough- 
ness. The method is independent of the shape of the 
object and works on shapes ranging from that of a pump- 
kin to that of an  alligator. The model used to develop the 
lookup tables is fairly general and was not calibrated to 
match the actual imaging conditions such as light-source 
extent or camera noise characteristics. This kind of 
analysis may be applied to such varied tasks as surface 
inspection and object recognition 
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Plate 5. 
illumination. 

Intensity image of a ceramic cup under extended Plate 6. Polarization image produced by a ttvo-CCD polariza- 
tion camera with a polarizing beam splitter and a TN liquid 
crystal. 

Plate 7. Intensity image of a circuit board with metal solder, 
plastic diclectnc substrate, and translucent dielectric coating on 
solder mrtal. 

Plate 8. Material segmentation produced by a two-CCD po- 
larization camera with a polarizing beam splitter. Blue cor- 
responds to dielectric. red corresponds to metal. and yellow 
corresponds to translucent dielectric coating on solder metal. 
Some red shows where translucent dielectric coating on solder 
is crinkled. 
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Plate 12. Dragon. 
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Plate 13. Lemur. 

Plate 14. Tiger 
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Plate 18. Real image with phase angle of 90" 

Vol 11. N o  11 'No~emhcr 1993/J Opt Soc Am A 

Plate 19. Histogram for phasc angle of 90" 

Plate 20. Real objects used to  estimate roughness 




