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.e detection results need to be analyzed and distinguished by professional technicians in the fault detection methods for
induction motors based on signal processing and it is difficult to realize the automatic identification of stator and rotor faults. A
method for identifying stator and rotor faults of induction motors based on machine vision is proposed to solve this problem.
Firstly, Park’s vector approach (PVA) is used to analyze the three-phase currents of the motor to obtain Park’s vector ring (PVR).
.en, the local binary patterns (LBP) and gray level cooccurrence matrix (GLCM) are combined to extract the image features of
PVR. Finally, the vectors of image features are used as input and the types of inductionmotor faults are identified with the help of a
random forest (RF) classifier. .e proposed method has achieved high identification accuracy in both the Maxwell simulation
experiment and the actual motor experiment, which are 100% and 95.83%, respectively.

1. Introduction

Induction motors (IMs) are currently one of the motors with
the largest usage and widest application range [1, 2]. As the
main power unit of the industrial system, the health of IM
will affect the normal operation of the entire system directly
and even threaten personal safety. .erefore, it is very
important to study motor control [3–5] and fault detection
and identification methods. .is paper mainly studies fault
diagnosis methods, which have important theoretical sig-
nificance and economic value for preventing major acci-
dents, reducing excess maintenance, and improving
production efficiency [6].

At present, the fault diagnosis methods of IM can be
divided into three categories roughly, which are process
modeling, signal processing, and artificial intelligence. .e
method based on process modeling usually establishes a
mathematical model of faulty motor and converts the fault
detection problem into the identification problem of cor-
responding parameters. For broken rotor bar (BRB) fault,

the finite element method was used to establish IMmodels in
[7–11] and the fault detection was realized by analyzing and
comparing the changes of various physical quantities in the
motor. .e detection of BRB fault was realized by analyzing
the changes of motor currents and gap flux density in [7].
.e actual data and model data were compared to detect the
BRB fault in [8, 9]. .e BRB fault detection was realized by
monitoring the change of the external magnetic flux in [10].
.e simulation results of motor models with stable and
variable speed were compared and the speed oscillation was
used for fault detection in [11]. A faulty IM model was
established based on multiloop theory and the currents were
analyzed to detect the BRB fault in [12]. For stator fault, a
model with interturn short-circuit fault was established
based on reference frame transformation theory and the
fault detection was realized by analyzing the changes of
currents, speed, and torque in [13, 14]. .e influence of the
harmonics of the supply voltage was considered to establish
a dynamic model with interturn short-circuit fault and the
instantaneous power of the motor was used to detect the
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stator fault in [15]. .e location parameters of interturn
short-circuit fault were considered to establish a faulty
model with any short-circuit coil and the fault was detected
by analyzing the negative sequence components of the
currents in [16].

.e above fault detection methods of IM based on
process modeling is relatively mature in theory, but it is
difficult to obtain an accurate model of IM in practical
applications, which affects the effect of fault detection.
.erefore, the detection methods of stator and rotor faults
based on signal processing have been proposed successively
[17, 18] and the detection methods based on stator currents
can be designed to be noninvasive, which have been widely
studied and applied. .e BRB fault of IM can make addi-
tional harmonic components at the frequencies of (1± 2ks)f1
induce stator currents, where k is the positive integer, s is the
slip of the motor, and f1 is the supply frequency. .ese
additional current components can be used as an indicator
of BRB fault. .e Kalman filter was used to eliminate the
fundamental component of the current and the fault
characteristics were highlighted to detect BRB fault in [19].
.e Hilbert transform was used to convert the fundamental
component of the current to a direct current component and
the fault components were converted to the low-frequency
components, which highlighted the characteristics of BRB
fault in [20]. .e multiple signal classification method was
combined with the improved back-bone particle swarm
optimization algorithm and empirical mode decomposition,
respectively, to extract the characteristics of BRB fault ac-
curately in [21, 22]. .e min-norm and least square methods
were used to extract the frequencies and amplitudes of the
fault components respectively and the online detection of
BRB fault was realized in [23]. Park’s vector approach (PVA)
was used to display the fault components of the currents via
graphics to detect BRB fault in [24] and PVA can also detect
the interturn short-circuit fault. Park’s vector modulus was
combined with the Hilbert transform to extract the spectrum
information of the currents and the detection of interturn
short-circuit fault was realized in [25]. .e square de-
modulation method of the stator currents was used to
suppress the leakage of the fundamental component and the
components of interturn short-circuit fault were highlighted
to realize fault detection in [26]. .e characteristics of the
interturn short-circuit fault in the instantaneous active and
reactive power were analyzed and the spectrum of instan-
taneous power was applied to the fault detection in [27]. .e
fast Fourier transform (FFT) was used to extract the spec-
trums of the three-phase currents and the standard deviation
between the spectrums was calculated to eliminate the in-
fluence of the supply voltage imbalance in [28], which
improved the detection accuracy of the interturn short-
circuit fault.

Although the above methods of fault detection based on
signal processing have achieved excellent results, its detec-
tion results need to be analyzed and judged by humans,
which requires high requirements for technicians on-site. In
recent years, a variety of intelligent classification algorithms

have been successfully used to identify motor faults auto-
matically because of the rapid development of artificial
intelligence. .ese methods usually use the way of data-
driven to establish a diagnostic model, which can realize the
classification and severity assessment of the motor faults.
.e stator voltages and currents were used as input vectors
and the recognition of motor faults was realized by an ar-
tificial neural network in [29]. But the disadvantage is that
the dimension of input vectors is too large and only the
simulation experiment is completed. .en, in order to re-
duce the dimension of the feature vectors and improve the
recognition rate of the motor faults, a large number of
methods of feature extraction combined with intelligent
classification algorithms were proposed. .e envelopes of
the stator currents were obtained by Hilbert transform and
the fault frequencies and amplitudes in the envelopes were
extracted by FFT, which were used as the input vectors of the
multilayer perceptron to identify BRB fault at various op-
erating states in [30]. .e continuous wavelet transform was
used to process the currents of interturn short-circuit fault
with different degrees and the motor fault was recognized by
feedback neural network based on dynamic learning rules in
[31]. .e wavelet transform was used to obtain the high-
frequency energy layers of the stator currents and the stator
fault was identified through Elman neural network in [32].
.emultiple parameters such as the peak value and standard
deviation of the currents were calculated as the input vectors
of the support vector machine to identify multiple faults in
[33]. .e important information of the stator currents was
extracted through information entropy and the fuzzy logic
inference was used to recognize multiple faults in [34].

It can be seen from the principles of the above methods
for fault identification based on artificial intelligence that
such methods rely too much on measured data, especially
fault data, which is difficult to satisfy in practical engineering
applications. Based on the fault detection method by signal
processing, this paper introduces machine vision to analyze
and recognize the detection results to identify the interturn
short-circuit and BRB faults of IM automatically.

.is paper is organized as follows. Section 2 introduces
the theoretical basis of PVA and discusses the difference of
PVR, when the motor is healthy, with interturn short-circuit
fault and BRB fault. Section 3 proposes a fault identification
method of IM based on machine vision. Section 4 uses
simulation and measured data to verify the effectiveness of
the proposed fault identification method. Section 5 presents
conclusions.

2. Park’s Vector Ring

2.1. PVR of Healthy Motor. .e PVA transforms the stator
currents of the motor from the (a, b, c) stationary coordinate
system to the (d, q) stationary coordinate system, and the
current components id, iq in dq coordinate constitute Park’s
vector components. As time goes by, PVR is formed in the
dq coordinate. .e conversion relationship between (id, iq)
and the three-phase currents (ia, ib, ic) is as follows:
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Under ideal conditions, the three-phase currents are
balanced with each other and have the following forms:

ia � Im cos 2πf1t + φ( ),
ib � Im cos 2πf1t + φ − 2π

3
( ),

ic � Im cos 2πf1t + φ + 2π

3
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(2)

Park’s vector components at this time can be simplified
as
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(3)

.e following formula can be easily derived from
equation (3):

i2d + i
2
q �

3I2m
2
, (4)

where t is the time variable and Im, f1, and φ are the am-
plitude, fundamental frequency, and initial phase of the
stator currents, respectively.

From equation (4), it can be seen that the PVR of the
stator currents in the (d, q) coordinate system under ideal
conditions is a circle centered on the origin of the coordinate
system, as shown in Figure 1. When the faults occur in IM,
the three-phase currents are unbalanced, the currents
contain harmonics caused by the faults, and the PVR will be
no longer a circle. Based on this principle, the stator and
rotor faults of IM can be detected. .erefore, the PVA is a
graphical analysis method, which can show the character-
istics of various motor faults in visual effects and has a good
degree of discrimination.

2.2. PVR of Motor with Interturn Short-Circuit Fault.
When the interturn short-circuit fault occurs in the stator
winding of IM, the symmetry of the stator winding is
destroyed and the gap flux generated by the stator winding
becomes an ellipse, which can be decomposed into a forward
rotation component and a reverse rotation component. .e
forward rotation component induces an alternating electric
field at the frequency of f1 in the stator winding; then, the
positive sequence components are generated in the three-
phase currents..e reverse rotation component also induces
an alternating electric field at frequency of f1 in the stator

winding, but the phase sequence is opposite to the previous
one, so the negative sequence components are generated in
the three-phase currents. .erefore, the expression of the
stator currents of IM with interturn short-circuit fault is as
follows:

ia � I
+
mcos 2πf1t + φ+( ) + I−mcos 2πf1t + φ−( ),

ib � I
+
mcos 2πf1t + φ+ − 2π

3
( ) + I−mcos 2πf1t + φ− − 2π

3
( ),

ic � I
+
mcos 2πf1t + φ+ + 2π

3
( ) + I−mcos 2πf1t + φ− + 2π

3
( ),


(5)

where I+m, I
−
m, φ+, and φ− are the amplitudes and initial

phases of the three-phase positive and negative sequence
currents, respectively. Park’s vector components at this time
are as follows:
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√
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(6)

From equation (6), it can be seen that when the interturn
short-circuit fault occurs in the stator winding of IM, the
amplitudes of Park’s vector components are not equal due to
the negative sequence components of the three-phase cur-
rents, which makes the PVR become an ellipse, as shown in
Figure 2.

2.3. PVR of Motor with BRB Fault. When the BRB fault
occurs in IM, a current component at the frequency of
(1− 2s)f1 is generated in the stator winding firstly. .is
current component works with the gap flux field to produce
a torque that fluctuates at the frequency of 2sf1, which
generates the frequency components of (1± 2s)f1 in the gap

90

60

30

0

330

300

270

240

210

180

150

120
6

4

2

0

Figure 1: PVR of healthy IM.
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flux field, so the (1± 2s)f1 components will also be induced in
the three-phase currents. At the same time, the (1 + 2s)f1
components in the three-phase currents will generate new
torque fluctuation and then generate new current compo-
nents, so the additional (1± 2ks)f1 components will appear in
three-phase currents when the rotor bar is broken. When

k� 1, the amplitudes of the fault components are the largest.
When the fault components of k as other values are
neglected, the expression of the three-phase currents of IM
with BRB fault can be simplified as

ia � Im cos 2πf1t + φ( ) + Il cos 2π(1 − 2s)f1t + φl( ) + Ir cos 2π(1 + 2s)f1t + φr( ),
ib � Im cos 2πf1t −

2π

3
+ φ − 2π

3
( ) + Il cos 2π(1 − 2s)f1t + φl −

2π

3
( ) + Ir cos 2π(1 + 2s)f1t + φr −

2π

3
( ),

ic � Im cos 2πf1t +
2π

3
+ φ + 2π

3
( ) + Il cos 2π(1 − 2s)f1t + φl +

2π

3
( ) + Ir cos 2π(1 + 2s)f1t + φr +

2π

3
( ),


(7)

where Il, Ir, φl, and φr are the amplitudes and initial phases of
the BRB fault left sideband and right sideband components,

respectively. Park’s vector components at this time are as
follows:
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(8)

From equation (8), it can be seen that when the BRB fault
occurs in IM, the amplitudes of Park’s vector components are
modulated by the harmonic components in the three-phase
currents and the radius of the PVR fluctuates periodically,
which makes the PVR become a ring, as shown in Figure 3.

3. The Proposed Fault Identification Method

In order to realize the intelligent diagnosis of the motor
faults, this section proposes a fault identification method of

IM based on machine vision to solve the problem of manual
analysis and identification of the detection results in the fault
detection method based on signal processing. .e specific
process is shown in Figure 4.

Firstly, the three-phase currents of IM under various
operating loads are collected and analyzed by PVA to form
multiple sets of PVR. .en, the local binary patterns (LBP)
and gray level cooccurrence matrix (GLCM) are used to
extract the image features of PVR to reduce the data di-
mension and get feature vectors. Finally, part of the feature
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Figure 2: PVR of IM with interturn short-circuit fault.
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Figure 3: PVR of IM with BRB fault.
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vectors of the PVR are selected as training data and the rest
are used as test data and the motor fault types can be
classified and identified automatically with the help of
random forest (RF) intelligent classification algorithm.

3.1. Extraction of Image Features. Pictures in machine
learning are usually stored in the form of ordered multiple
dimensional matrices. If the storage matrices of the pictures
are used as image features for various operations directly, the
matrices will take up a lot of storage and computing re-
sources, so it is necessary to extract the image features. .e
extracted image features can not only reduce the data di-
mension but also remove redundant information of the
pictures and store important information of the pictures to
improve the performance of intelligent classification.

3.1.1. Local Binary Patterns. LBP can describe the local
texture features of an image and its advantages are rotation
invariance and grayscale invariance. .e calculation process
of the LBP operator is shown in Figure 5(a): the gray value of
the window center is used as the threshold value in a 3× 3
window and the gray values of adjacent pixels are compared
with it. .e gray values of adjacent pixels are marked as 1
when it is greater than or equal to the threshold value;
otherwise, it is 0. .en, an 8-bit binary number is obtained
clockwise and converted into a decimal number to obtain the
LBP value of the window center pixel, and this LBP value can
reflect the texture information of the area. .e original LBP
operator can only cover small areas with a fixed radius. In
order to extract the texture features of different areas, the
3× 3 window can be extended to any size and the square
window can be replaced by a circular window. Figure 5(b)
shows a 5× 5 circular window and an LBP operator with 8
pixels in a circular area with a radius of 2 can be obtained
[35]. T is defined as the joint distribution of the gray levels of
image pixels:

T � t gc, g0, g1, ..., gp( ), (9)

where gc is the gray value of the central blank point and gp is
the gray value of the black point on the circumference. If the
coordinates of gc are (0, 0), then the coordinates of gp are
[−Rsin(2π/p), Rcos(2π/p)], where R is the radius and p is a
constant. .e gray value of the point in the neighborhood
that does not directly fall in the center of the pixel grid will be
completed by linear interpolation. .e gray value of the
window point gc is set as the threshold and other pixels in
the window are processed. .e formula is defined as follows:

T � t s g0 − gc( ), s g1 − gc( ), ..., s gp − gc( )[ ],
s(x) �

1, x> 0,
0, x≤ 0.

{ (10)

For the binary number obtained by formula (10), the LBP
value of the window is obtained by calculating the weighted
sum of pixels at different positions by formula (11):

LBP � ∑p−1
p�0
s gp − gc( )2p. (11)

However, the data dimension of LBP features extracted
by this way is too large to be used as the input vectors of the
intelligent classification algorithms directly, so the LBP
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histogram is counted to be used as the input feature vectors.
.e LBP histogram divides the image into several regions
and counts the number of occurrences of the LBP value in
each region to form a composite vector.

3.1.2. Gray Level Cooccurrence Matrix. Although the im-
proved LBP algorithm can describe the texture features of
various regions, the lack of relevant calculation of the
grayscale corresponding to the central pixel will bring dif-
ficulties to the subsequent fault classification. .erefore, the
GLCM is used to extract the global texture features of the
image to make up for the defects of the LBP algorithm. .e
GLCM not only contains the information such as direction,
amplitude, and adjacent interval but also describes the
statistical information of the grayscale, which can reflect the
texture features of the image.

Any pixel (x1, y1) in an image f(x, y) is taken, then any
other pixel (x2, y2) is taken, and the expression for calcu-
lating the GLCM of various distances and angles is as follows
[36]:

Q(i, j,d,θ) � x1,y1( ), x2,y2( ) f x1,y1( )∣∣∣∣ � i,f x2y2( )� j{ },
(12)

where i and j are the pixels of the image, d is the distance
between two pixels, and θ is the direction of the generation of
GLCM. .e texture features of the image are obtained by
calculating the texture feature values of the GLCM, such as
contrast, correlation, energy, and homogeneity.

3.2. Random Forest. RF is a classifier composed of many
decision trees, but these decision trees are not related to each
other. Random attribute is introduced in the training pro-
cess of the decision trees, which makes the decision trees
have better fault tolerance for the data samples. .erefore,
RF has a good tolerance for outliers and is not prone to
overfitting.

.e principle of the RF classifier is shown in Figure 6.
Firstly, after preprocessing the training samples, the training
sets S1, . . ., Si, . . ., Sn are generated randomly by the
Bootstrap method. Next, the corresponding decision trees
T1, . . ., Ti, . . ., Tn are generated through each training set.
.en each decision tree is used to test the sample X to obtain

the corresponding category T1(X), . . ., Ti(X), . . ., Tn(X).
Finally, the most output category of decision trees is chosen
as the category of test sample X by voting.

4. Experimental Testing

4.1. Simulation Data Testing. In order to verify the effec-
tiveness of the proposed method, this section uses Maxwell
software to model the Y90S-4 motor and collects simulation
data for the simulation experiment.

4.1.1. PVR of Healthy Motor. .e finite element model of the
motor is shown in Figure 7 and its parameters are shown in
Table 1. .en, the actual working conditions of the motor
were simulated and the simulation experiment was carried
out.

.e three-phase currents under the rated load of the
healthy motor model are shown in Figure 8(a). In order to
show the three-phase currents clearly, only 200 milliseconds
of data is intercepted in the figure. .e waveform of the
three-phase currents of the healthy motor is symmetrical,
the amplitude is equal, and the phase difference is 120° in
turn. .e PVA is used to analyze the three-phase currents
under the rated load (the sampling frequency of the signal is
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1 kHz and the data length is 1000); the result is plotted in the
polar coordinate, as shown in Figure 8(b). When the motor
is healthy, the PVR of the currents is a standard circle.

4.1.2. PVR of Motor with Interturn Short-Circuit Fault.
.e interturn short-circuit fault of the stator winding is
caused by the destruction of the insulation between two or
several adjacent turns in the winding. In order to simulate
the interturn short-circuit fault in Maxwell software, an
external circuit with a 10-turn interturn short-circuit fault of
A-phase was built to provide control and excitation to the
finite element model and the simulation experiment was
carried out.

.e waveform of the currents with a 10-turn interturn
short-circuit fault of A-phase is shown in Figure 9(a).
Compared with Figure 8(a), the three-phase currents are not
balanced because of the interturn short-circuit fault in the
A-phase winding and the amplitude of A-phase current is

obviously larger than the other two phases [37]. .e PVR of
the currents with interturn short-circuit fault is shown in
Figure 9(b). Compared with Figure 8(b), when the interturn
short-circuit fault occurs in the motor, the negative sequence
components of the three-phase currents lead to the unequal
amplitudes of Park’s vector components, which makes the
PVR become an ellipse.

4.1.3. PVR of Motor with BRB Fault. .e fractures of the
rotor bars and the end ring are called the BRB fault col-
lectively. When the BRB fault occurs in the motor, the
current at the fracture cannot pass through normally.
However, the broken part is not isolated from the whole
rotor completely and there are other current paths between
the rotor bars. .erefore, the current can be considered as
not zero when establishing the BRB model, but its resistance
is very large. So the conductivity of the broken bar was
reduced greatly to establish the BRB model and the simu-
lation experiment was carried out.

.e waveform of the currents with 2 broken bars is
shown in Figure 10(a). Compared with Figure 8(a), the BRB
fault causes harmonic components at the frequencies of
(1± 2s)f1 in the currents and the frequency interval between
the harmonic components and the fundamental component
is very small. So the amplitude of the fundamental com-
ponent is modulated and the currents have periodic fluc-
tuations [38]. .e PVR of the currents with two broken bars
is shown in Figure 10(b). Compared with Figure 8(b), when
the BRB fault occurs in the motor, the radius of the PVR
fluctuates periodically because the harmonic components in
the currents modulate the amplitudes of Park’s vector
components and a circular ring is formed.

4.1.4. Simulation Experiment Verification. According to the
above modeling methods, healthy motor models, motor
models with two broken bars’ fault and 10-turn short-circuit
fault of A-phase were built in Maxwell. .e three-phase
currents were obtained by simulating the motor models
from 0.04 times of rated load to 1.2 times of rated load (0.04
times of rated load was increased each time). .e PVA was
used to analyze the three-phase currents and the results were
plotted on the polar coordinates to form 30× 3 groups of
image samples (the size of each picture was unified to
256× 256 pixels).

.e LBP algorithmwas used to extract the image features
of 30× 3 groups of PVRs. In the extraction process, the
window size was 5× 5, the radius was 2, the pixel was 8, the
area size was 4× 4, and the dimension of the LBP histogram
of each region was 59. .erefore, 4× 4× 59� 944-dimen-
sional feature vectors of LBP histogram in an image were
obtained. For GLCM features, d was taken from 1 to 10 and
the four texture feature values of contrast, correlation, en-
ergy, and homogeneity were taken from the GLCM of 0°, 45°,
90°, and 135°, respectively. .e mean value and mean square
deviation of the same eigenvalue of 4 angles were taken as
feature vectors, a total of 8-dimensional vectors. .e data
dimension of the two features is 1024 in total; although this

Figure 7: Finite element model of healthy motor.

Table 1: Some design parameters of Y90S-4 IM.

Type Parameter

Power 1.1 kW
Frequency 50Hz
Voltage 380V
Stator 24
Rotor 22
Length 90mm
Stator outer diameter 130mm
Stacking factor 0.95
Winding layers 1
Rotor outer diameter 79.5mm
Pole 4
Phase 3
Current 2.8 A
Rated speed 1400 rpm
Skew width 1
Steel type D23_50
Stator inner diameter 80mm
Lamination sectors 1
Parallel branches 1
Rotor inner diameter 30mm

Mathematical Problems in Engineering 7



dimension is not small, it is 64 times smaller than the 65536
dimensions of the original image.

.e LBP features of the PVRs with the rated load are
shown in Figure 11. It can be seen from the figure that the
LBP features show the texture features of the PVRs accu-
rately. .e gray values of the blank part inside and outside
the ring are all the same, so the LBP features extracted from
this part are also the same and remain blank. While the gray
values around the ring are different and the extracted LBP
features are also different. .e LBP features of the healthy
motor are shown in Figure 11(a), the distribution of the
texture features at this time is consistent with the PVR,

which has circular regularity. .e LBP features of two
broken bars are shown in Figure 11(b), the distribution of
the texture features also has a circular regularity, but the
thickness of the distribution is increased significantly
compared with Figure 11(a). .e LBP features of 10-turn
short-circuit fault of A-phase are shown in Figure 11(c); the
distribution of the texture features under this fault is ob-
viously different from that in Figures 11(a) and 11(b) and has
an elliptical regularity. When the motor is healthy, the
thickness and diameter of the PVR are 8 pixels and 151
pixels, respectively. .e thickness of the PVR of two broken
bars is 31 pixels and the long axis of the PVR is 167 pixels
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Figure 8: Healthy motor model: (a) current; (b) PVR.
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Figure 9: Motor model with interturn short-circuit fault: (a) current; (b) PVR.
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Figure 10: Motor model with BRB fault: (a) current; (b) PVR.
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when the motor has interturn short-circuit fault. .e
thickness, diameter, and major axis of the LBP feature in the
three states are all 5 pixels more than the original image,
which is due to the characteristics of the LBP algorithm.

20× 3 groups of images in the image samples were se-
lected as training samples and the remaining 10× 3 groups of
images were used as test samples. .e LBP and GLCM
features of the training samples were used as the input
vectors of RF to train the classificationmodel of motor faults.
When a test sample was classified, the voting method with
decision trees was adopted and the category with the largest
number of votes was taken as the category of the test sample.
.e trained RF fault classifier was used to identify the test
samples and the results are shown in Figure 12.

It can be seen from Figure 12 that the fault identification
method of the motor based on machine vision can identify
the fault types of all test samples accurately. .e accuracy
rate is as high as 100%, which verifies the feasibility and
superiority of the proposed method definitely.

4.2. Actual Data Testing. .e physical experiment was
carried out to further analyze the performance of the pro-
posed method. .e experimental platform is shown in
Figure 13.

.e experimental motor is Y90S-4 IM and the load is
FZ25 J magnetic powder brake. .e torque can be adjusted
by changing the excitation current linearly to meet the needs
of different working conditions. At the same time, in order
to carry out the fault motor experiment, a rotor with 2
broken bars and a multitap stator winding are equipped, as
shown in Figures 14(a) and 14(b), respectively. .e multitap
terminals of the A-phase winding can simulate different
degrees of interturn short-circuit faults through different
wiring methods.

.e physical experiment is similar to the simulation
experiment, mainly for the healthy motor, the motor with
two broken bars, and a 10-turn interturn short-circuit fault
of A-phase. .e three-phase currents of three kinds of
motors under different loads are collected and the sampling
frequency and data length are consistent with the simulation
experiment.

.e PVA was used to analyze the three-phase currents
and the results were plotted on the polar coordinates to form
24× 3 groups of image samples (the size of each picture was

unified to 256× 256 pixels). .e PVRs of the motor currents
under rated load are shown in Figure 15. .ese PVRs show
different shapes at different faults, which are consistent with

(a) (b) (c)

Figure 11: LBP features of the PVRs: (a) healthy motor, (b) two broken bars, and (c) 10-turn short-circuit fault of A-phase.
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Figure 12: Fault identification results of simulation motor.
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the conclusions of the simulation experiment. However, the
PVRs of the actual motor are not round enough and can only
be close to circles or ellipses because the manufacturing
process of the motor is not perfect and the supply voltage is
not a standard sine wave.

.e LBP algorithmwas used to extract the image features
of 24× 3 groups of PVRs and the parameters were consistent
with Section 4.1.4. .e LBP features of PVRs of the actual
motor under rated load are shown in Figure 16. .e texture

features distribution of the healthy motor is shown in
Figure 16(a), which is close to circle. .e texture feature
distribution of two broken bars is shown in Figure 16(b),
which is close to circle too, but the thickness of the dis-
tribution is increased compared with the healthy motor. .e
LBP features of 10-turn short-circuit fault of A-phase are
shown in Figure 16(c); the distribution of the texture fea-
tures under this fault is close to ellipse. When the motor is
healthy, the thickness and diameter of the PVR are 7 pixels
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Figure 14: Sator and rotor faults: (a) two broken bars; (b) 10-turn interturn short-circuit fault.
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Figure 15: PVRs of actual motor: (a) healthy motor, (b) two broken bars, and (c) 10-turn short-circuit fault of A-phase.
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Figure 16: LBP features of the PVRs: (a) healthy motor, (b) two broken bars, and (c) 10-turn short-circuit fault of A-phase.
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and 156 pixels, respectively. .e thickness of the PVR of two
broken bars is 16 pixels and the long axis of the PVR is 167
pixels when the motor has interturn short-circuit fault. .e
thickness, diameter, and major axis of the LBP feature in the
three states are all 5 pixels more than the original image,
which is due to the characteristics of the LBP algorithm.
However, the LBP features of PVRs are similar to each other
because the discrimination of PVRs of three kinds of motors
is not obvious enough, which increases the difficulty of
subsequent RF classification.

16× 3 groups of LBP and GLCM features of the image
samples were selected as training samples and the remaining
8× 3 groups were used as test samples. .e training samples
were used to train the RF classifier to obtain the classification
model of motor faults and the test samples were used to test
the performance of the classification model. .e test results
are shown in Figure 17.

It can be seen from Figure 17 that the fault identification
method of IM based on machine vision still has a high
accuracy rate for the actual motor. .e amplitudes of the
three-phase stator currents and slip rate of the motor are
small when the motor is under light load and the modulation
effect on the amplitudes of Park’s vector components is not
obvious. So the PVRs of intact and broken bars are relatively
close, the extracted image features are also similar, and the
samples are insufficient, which leads to a classification error
of the test samples. But the overall accuracy rate is still as
high as 95.83%, which further verifies the effectiveness of the
proposed method.

5. Conclusions

.is paper proposes a fault identification method of IMs
based on machine vision by combining signal processing
with artificial intelligence, which solves the problem of
manual analysis and identification of detection results in the
fault detection method based on signal processing. .e
results of the simulation and physical experiments show that

the proposed method can identify the broken bars and
interturn short-circuit fault of IMs effectively. Although the
number of samples is small, the accuracy is still as high as
100% (simulation experiment) and 95.83% (physical ex-
periment), which provides a new method for automatic
identification of induction motor faults. However, the
drawback is that the proposed method has the same limi-
tations as the data-driven methods. .e fault data is not easy
to obtain, which leads to a decrease in the accuracy of the
proposed method. .e future work is going to realize fault
classification and identification based on the combination of
data-driven methods and logical reasoning methods.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare no conflicts of interest.

Acknowledgments

.is work was supported by China Coal Technology En-
gineering Group (Grant no. 2020-TD-QN002).

References

[1] J. Lu, P. Wang, S. Duan, L. Shi, and L. Han, “Detection of
broken rotor bars fault in induction motors by using an
improved MUSIC and least-squares amplitude estimation,”
Mathematical Problems in Engineering, vol. 2018, Article ID
5942890, 12 pages, 2018.

[2] Y. H. Liu, J. W. Qiao, D. Y. Huo et al., “Development of mine-
used flameproof three-phase asynchronous motor with high
voltage and high efficiency,” Industry and Mine Automation,
vol. 43, no. 7, pp. 32–36, 2017.

[3] X. Sun, M. Wu, G. Lei, Y. Guo, and J. Zhu, “An improved
model predictive current control for PMSM drives based on
current track circle,” IEEE Transactions on Industrial Elec-
tronics, p. 1, 2020.

[4] X. Sun, L. Chen, Z. Yang, and H. Zhu, “Speed-sensorless
vector control of a bearingless induction motor with artificial
neural network inverse speed observer,” IEEE/ASME Trans-
actions on Mechatronics, vol. 18, no. 4, pp. 1357–1366, 2013.

[5] X. Sun, C. Hu, G. Lei, Y. Guo, and J. Zhu, “State feedback
control for a PM hub motor based on gray wolf optimization
algorithm,” IEEE Transactions on Power Electronics, vol. 35,
no. 1, pp. 1136–1146, 2020.

[6] G. D. Cheng, H. P. Wang, and J. J. Xia, “Study on rotor-side
frequency conversion speed regulation technology for high
voltage wound-rotor motor,” Industry and Mine Automation,
vol. 44, no. 8, pp. 81–86, 2018.

[7] Y. Xie, X. T. Shan, J. P. Guo et al., “.e relationship study
between field changes and faulty condition in squirrel-cage
induction motor with broken bars fault,” in Proceedings of the
CSEE, vol. 37, no. 14, pp. 4222–4231, 2017.

[8] C. J. Aileen, S. Nagarajan, and S. R. Reddy, “Detection of
broken bars in three phase squirrel cage induction motor
using finite element method,” in Proceedings of the Interna-
tional Conference on Emerging Trends in Electrical and

3

2

1

0

C
at

eg
o

ry
 la

b
el

0 5 10 15 20

Test sample

Healthy

BRB fault

Interturn fault

Actual classification

Forecast classification

Figure 17: Fault identification results of actual motor.

Mathematical Problems in Engineering 11



Computer Technology, pp. 249–254, Nagercoil, India, March
2011.

[9] V. Climente-Alarcon, A. Arkkio, and J. Antonino-Daviu, “2-
D magnetomechanical transient study of a motor suffering a
bar breakage,” IEEE Transactions on Industry Applications,
vol. 54, no. 3, pp. 2097–2104, 2018.

[10] P. A. Panagiotou, I. Arvanitakis, N. Lophitis, J. A. Antonino-
Daviu, and K. N. Gyftakis, “FEM approach for diagnosis of
induction machines’ non-adjacent broken rotor bars by short-
time Fourier transform spectrogram,” >e Journal of Engi-
neering, vol. 2019, no. 17, pp. 4566–4570, 2019.

[11] Y. G. Lv, W. Y. Zhang, and J. C. Liu, “Analysis and diagnosis
of broken rotor bars in induction motors based on Maxwell,”
in Proceedings of the 33rd Chinese Control Conference,
pp. 3065–3069, Nanjing, China, July 2014.

[12] N. Lahouasnia, M. F. Rachedi, and T. Deghboudj, “Detection
of broken rotor bar defect in squirrel cage induction ma-
chine,” in Proceedings of the 2019 International Conference on
Advanced Electrical Engineering, pp. 1–5, Algiers, Algeria,
November 2019.

[13] A. V. J. S. Praneeth, N. V. Anand, K. S. Sandhu et al., “Analysis
and modeling of three winding stator interturn fault on in-
duction machine for electric vehicle application,” in Pro-
ceedings of the 2018 IEEE International Conference on Power
Electronics, Drives and Energy Systems, pp. 1–6, Chennai,
India, December 2018.

[14] S. Duvvuri, “Modeling and simulation of slip-ring induction
motors with stator and rotor inter-turn faults for diagnostics,”
in Proceedings of the 2018 8th IEEE India International
Conference on Power Electronics, pp. 1–5, Jaipur, India, De-
cember 2018.

[15] G. D. Yuchechen, M. A. Mazzoletti, and G. R. Bossio, “Effects
of stator winding interturn short-circuit faults of the IM by
using intantaneous power theory,” in Proceedings of the 2018
Argentine Conference on Automatic Control, pp. 1–6, Buenos
Aires, Argentina, November 2018.

[16] D. C. Patel and M. C. Chandorkar, “Modeling and analysis of
stator interturn fault location effects on induction machines,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 9,
pp. 4552–4564, 2014.

[17] W. Sun, R. Zhao, R. Yan, S. Shao, and X. Chen, “Convolu-
tional discriminative feature learning for induction motor
fault diagnosis,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 3, pp. 1350–1359, 2017.

[18] M. R. Barusu, U. Sethurajan, and M. Deivasigamani, “Non-
invasive method for rotor bar fault diagnosis in three-phase
squirrel cage induction motor with advanced signal pro-
cessing technique,” >e Journal of Engineering, vol. 2019,
no. 17, pp. 4415–4419, 2019.

[19] A. Naha, A. K. Samanta, A. Routray, and A. K. Deb, “A
method for detecting half-broken rotor bar in lightly loaded
induction motors using current,” IEEE Transactions on In-
strumentation and Measurement, vol. 65, no. 7, pp. 1614–1625,
2016.

[20] J. R. Magdaleno, H. P. Barreto, J. R. Cortes et al., “Hilbert
spectrum analysis of induction motors for the detection of
incipient broken rotor bars,” Measurement, vol. 109,
pp. 247–255, 2017.

[21] P. P.Wang, X. X. Chen, Y. Zhang et al., “IBPSO-basedMUSIC
algorithm for broken rotor bars fault detection of induction
motors,” Chinese Journal of Mechanical Engineering, vol. 31,
no. 1, pp. 41–50, 2018.

[22] D. C. Martinez, R. O. Rios, R. J. R. Troncoso et al., “Fused
empirical mode decomposition and MUSIC algorithms for

detecting multiple combined faults in induction motors,”
Journal of Applied Research and Technology, vol. 10, no. 1,
pp. 160–167, 2015.

[23] P.-P. Wang, Q. Yu, Y.-J. Hu, and C.-X. Miao, “Online de-
tection of broken rotor bar fault in induction motors by
combining estimation of signal parameters via min-norm
algorithm and least square method,” Chinese Journal of
Mechanical Engineering, vol. 30, no. 6, pp. 1285–1295, 2017.

[24] K. N. Gyftakis, A. J. Marques Cardoso, and J. A. Antonino-
Daviu, “Introducing the filtered Park’s and filtered extended
Park’s vector approach to detect broken rotor bars in in-
duction motors independently from the rotor slots number,”
Mechanical Systems and Signal Processing, vol. 93, pp. 30–50,
2017.

[25] M. Sahraoui, A. Ghoggal, S. Guedidi, and S. E. Zouzou,
“Detection of inter-turn short-circuit in induction motors
using Park-Hilbert method,” International Journal of System
Assurance Engineering and Management, vol. 5, no. 3,
pp. 337–351, 2014.

[26] V. F. Pires, D. Foito, J. Martins et al., “Detection of stator
winding fault in induction motors using a motor square
current signature analysis (MSCSA),” in Proceedings of the
IEEE International Conference on Power Engineering Energy
and Electrical Drives, pp. 507–512, Riga, Latvia, May 2015.

[27] M. h. Drif and A. J. M. Cardoso, “stator fault diagnostics in
squirrel cage three-phase induction motor drives using the
instantaneous active and reactive power signature analyses,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 2,
pp. 1348–1360, 2014.

[28] R. Sharifi and M. Ebrahimi, “Detection of stator winding
faults in induction motors using three-phase current moni-
toring,” ISA Transactions, vol. 50, no. 1, pp. 14–20, 2011.

[29] E. M. T. Eldin, H. R. Emara, E. M. Aboul-Zahab, and
S. S. Refaat, “Monitoring and diagnosis of external faults in
three phase induction motors using artificial neural network,”
in Proceedings of the IEEE Power Engineering Society General
Meeting, pp. 1–7, Tampa, FL, USA, June 2007.

[30] B. Bessam, A. Menacer, M. Boumehraz, and H. Cherif,
“Detection of broken rotor bar faults in induction motor at
low load using neural network,” ISA Transactions, vol. 64,
pp. 241–246, 2016.

[31] A. Jawadekar, S. Paraskar, S. Jadhav, and G. Dhole, “Artificial
neural network-based induction motor fault classifier using
continuous wavelet transform,” Systems Science & Control
Engineering, vol. 2, no. 1, pp. 684–690, 2014.

[32] D. A. Asfani, A. K. Muhammad, M. H. Syafaruddin,
M. H. Purnomo, and T. Hiyama, “Temporary short circuit
detection in induction motor winding using combination of
wavelet transform and neural network,” Expert Systems with
Applications, vol. 39, no. 5, pp. 5367–5375, 2012.

[33] P. Gangsar and R. Tiwari, “A support vector machine based
fault diagnostics of Induction motors for practical situation of
multi-sensor limited data case,” Measurement, vol. 135,
pp. 694–711, 2019.

[34] R. J. Romero, R. Saucedo, E. Cabal et al., “FPGA-based online
detection of multiple combined faults in induction motors
through information entropy and fuzzy inference,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 11,
pp. 5263–5270, 2011.

[35] Z. Guo, X. Wang, J. Zhou, and J. You, “Robust texture image
representation by scale selective local binary patterns,” IEEE
Transactions on Image Processing, vol. 25, no. 2, pp. 687–699,
2016.

12 Mathematical Problems in Engineering



[36] G. Zheng, X. Li, L. Zhou et al., “Development of a gray-level
Co-occurrence matrix-based texture orientation estimation
method and its application in sea surface wind direction
retrieval from SAR imagery,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 56, no. 9, pp. 5244–5260, 2018.

[37] N. P. Kumar and T. B. Isha, “FEM based electromagnetic
signature analysis of winding inter-turn short-circuit fault in
inverter fed induction motor,” CES Transactions on Electrical
Machines and Systems, vol. 3, no. 3, pp. 309–315, 2019.

[38] P. Wang, J. Lu, L. Shi, Y. Zhang, Z. Tong, and N. Wang,
“Method for extracting current envelope for broken rotor bar
fault detection of induction motors at time-varying loads,”
IET Electric Power Applications, vol. 14, no. 6, pp. 1067–1077,
2020.

Mathematical Problems in Engineering 13


