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Abstract 

Segmentation of contrast-enhanced computed tomography (CECT) images enables quantitative 

evaluation of morphology of articular cartilage as well as the significance of the lesions. 

Unfortunately, automatic segmentation methods for CECT images are currently lacking. Here, we 

introduce a semiautomated technique to segment articular cartilage from in vivo CECT images of 

human knee. The segmented cartilage geometries of nine knee joints, imaged using a clinical CT-

scanner with an intra-articular contrast agent, were compared with manual segmentations from CT 

and magnetic resonance (MR) images. The Dice similarity coefficients (DSCs) between 

semiautomatic and manual CT segmentations were 0.79–0.83 and sensitivity and specificity values 

were also high (0.76–0.86). When comparing semiautomatic and manual CT segmentations, mean 

cartilage thicknesses agreed well (intraclass correlation coefficient = 0.85–0.93); the difference in 

thickness (mean ± SD) was 0.27 ± 0.03 mm. Differences in DSC, when MR segmentations were 

compared with manual and semiautomated CT segmentations, were statistically 

insignificant. Similarly, differences in volume were not statistically significant between manual and 

semiautomatic CT segmentations. Semiautomation decreased the segmentation time from 450 ± 190 

to 42 ± 10 min per joint. The results reveal that the proposed technique is fast and reliable for 

segmentation of cartilage. Importantly, this is the first study presenting semiautomated segmentation 

of cartilage from CECT images of human knee joint with minimal user interaction. 
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Introduction 

Osteoarthritis (OA) is a common cause of immobility and pain, thus inducing major socioeconomic 

burden.16 The pathological changes in articular cartilage, subchondral bone, and synovial fluid, 

induced by injury or trauma, may lead to advanced OA.3 The early signs of post-traumatic OA include 

disruption of cartilage collagen network, depletion of glycosaminoglycans (GAGs), and alterations 

in the structure of subchondral bone and the thickness of the subchondral bone plate.4 These 

alterations should be observed early in order to prevent the progression to post-traumatic OA.11,27 

Unfortunately, the alterations are usually diagnosed at a stage when little remains to prevent the 

progress of OA or repair the initial changes. 

A recent study suggested that delayed computed tomography arthrography (dCTa) imaging could 

permit simultaneous detection of changes in articular cartilage and subchondral bone quantitatively 

in vivo.26 In dCTa, contrast agent solution is injected into the joint capsule enabling its diffusion into 

articular cartilage. The diffusion characteristics make it possible to determine the integrity of 

cartilage; i.e., anionic contrast agent diffuses into cartilage inversely proportionally to GAG 

content,24,25,35 and the diffusion is also dependent on the integrity of the collagen network as well 

as the water content of cartilage.14,18 Previously, arthrographic contrast-enhanced computed 

tomography (CECT) images, i.e., images that are taken immediately after contrast agent 

administration, have also been confirmed to detect cartilage lesions14 that are common in joint 

injuries related to post-traumatic OA. Bone mineral density of subchondral bone can also be 

determined with CT,26,42 provided that the hydroxyapatite phantoms are set around the joint for 

density calibration. In contrast to magnetic resonance imaging (MRI), CECT enables simultaneous 

visualization of bone and cartilage with high signal-to-noise ratio and resolution. 

To exploit quantitative dCTa analysis to simultaneously study the morphology and composition of 

articular cartilage, the accurate segmentation of tissues is a prerequisite. Conventionally, 

segmentation has been conducted manually and, therefore, it has been extremely time-consuming, 

decreasing the clinical feasibility of dCTa. An automated segmentation method would be a significant 

advance since it could enable a quantitative analysis of dCTa images in the clinical setting, i.e., if it 

were included as a part of a routine examination, it would improve the diagnostics of knee injuries. 

In particular, the accurate and reproducible evaluation of focal cartilage defects and analysis of 

alterations in cartilage thickness would help to detect initial OA-related changes and acute cartilage 

injuries.7 Furthermore, biomechanical modelling of the knee joint requires segmentation of the joint 
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structures,46 and arthrographic CECT images may be utilized as an input. However, the clinical 

applicability of such techniques suffers critically due to lack of automated segmentation. 

Several semiautomatic or automatic segmentation techniques, based, for instance, 

on statistical modeling,50 active shape modeling,10,30 texture recognition,34 and atlases,28 have 

been developed to segment bones and cartilage from MR images. Tabrizi et al. have introduced a 

method to segment acetabular cartilage from CECT images38 and automatic methods exist to 

segment bone from CT images.4, 5, 6, 30 Nonetheless, automated methods capable of segmenting 

cartilage from arthrographic CECT images of human knee joint are lacking. 

In this study, we introduce a semiautomated technique to segment articular cartilage and subchondral 

bone from in vivo arthrographic CECT images of knee joint, i.e., from distal femur and proximal 

tibia. The accuracy and feasibility of semiautomatic segmentation are evaluated by comparing 

semiautomatic CT segmentations with manual segmentations based on CT and MR images. The aim 

of the present method is to significantly reduce the time needed for segmentation, to minimize user 

interaction, and concurrently achieve an accuracy similar to manual segmentation. 

Materials and Methods 

Patients (n = 9, 2 males and 7 females, age 50–68) with persistent knee pain were enrolled in the study 

after a clinical examination. All these patients had diagnosed cartilage lesions and/or meniscal tears, 

rupture or injury, likely caused by rotational trauma.36 The CECT imaging of the patients’ knees was 

approved by the Ethical Committee of the Northern Ostrobothnia Hospital District (Decision No. 

33/2010). 

Prior to the imaging, an anionic contrast agent, 20 mL of ioxaglate (105 mM, Hexabrix™ 320, 

Guerbet, Roissy, France) diluted in 0.9% saline, was injected into the knee joint capsule. The patients 

flexed and extended their legs for 5 min ensuring an even distribution of the contrast agent in the joint 

space. Subsequently, the knee was imaged using a clinical CT-scanner (Discovery™, PET/CT, 690 

GE Medical Systems, Waukesha, WI, USA) with a tube voltage of 100 kV, the pitch of 0.53, and a 

voxel size of 0.3 × 0.3 × 0.3 mm3. The imaging time was less than 30 s and the built-in filtering of the 

system corresponded to 4.3 mm of aluminium. 

As a reference, the same knees were MR imaged within 2 weeks of CECT imaging. MRI of knees 

was conducted using a 3 T scanner (Siemens Skyra, Siemens Healthcare, Erlangen, Germany) with a 
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15-channel transmit/receive knee coil (Quality Electrodynamics (QED), Mayfield Village, OH, 

USA). A double echo steady state sequence with water excitation (repetition time/time to 

echo = 14.1/5 ms) was performed to image the anatomy of the knee. The field of view was 

150 × 150 mm2, matrix size 256 × 256, and slice thickness 0.6 mm, resulting in an isotropic voxel size 

of 0.6 × 0.6 × 0.6 mm3. 

The overview of the semiautomatic segmentation process is presented in Fig. 1 and in this section. A 

more detailed explanation of the segmentation steps is presented in the following sections. First, the 

surfaces of distal femur and proximal tibia were generated from arthrographic CECT images using 

Stradwin (v. 5.2, Department of Engineering, University of Cambridge, UK). Thereafter, the outer 

surfaces of the bones, i.e., periosteal surfaces, were segmented using Stradwin and, furthermore, the 

outcome was corrected using a custom-made smoothing (MATLAB, R2015a, MathWorks, Inc., 

Natick, MA, USA). A template periosteal surface mesh, from a previous study,46 was registered non-

rigidly to the patient’s periosteal surface using MATLAB, collating information about the anatomical 

location of articular cartilage, i.e., the bone–cartilage interface, to the mesh. Intensity profiles were 

captured along surface normals for each vertex point at the region of cartilage. Contrast-enhancement 

of joint space enabled the localization of the articular surface from the intensity profile; the surface 

was detected from the intensity profiles using a half-maximum-based algorithm written in MATLAB. 

The details of this procedure are explained later in the text. 
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Figure 1. Overview of the segmentation. Periosteal surfaces of the patient’s bone were generated 

using Stradwin software. In MATLAB, these meshes were first affinely and thereafter nonlinearly 

registered to the template mesh in order to localize cartilage anatomically. From the intensity profiles, 

generated along the surface normals, the cartilage surface was defined as a half-maximum of local 

minimum (middle of cartilage) and maximum (synovial fluid, i.e., contrast agent). The 3D cartilage 

mesh was constructed from these points. 
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First, the bone surface was segmented semiautomatically. The 3D meshes for distal femur and 

proximal tibia were generated using Stradwin software. In the initial manual step, 10–15 axial 

contours per bone were manually drawn on bone cortex. Thereafter, the initial bone surface was 

generated from these sparse cross sections using region correspondence.41 This manual step took 

16 ± 4 min (mean ± SD) per bone whereas the latter bone segmentation steps were automatic. 

Stradwin creates a periosteal surface, i.e., the outer surface of cortical bone, based on the intensity 

profiles generated perpendicular to the semiautomatically generated initial bone surface.41 For each 

initial bone mesh, three periosteal surface meshes were generated using different intensity profile 

lengths (femur: 6, 8 and 10 mm, tibia: 8, 10, and 12 mm) and averaging each profile with the width 

of three pixels (1.2 mm). This was done to correct local inaccuracies on the bone surface; the best fit 

for the bone surface was defined subsequently in MATLAB. Each vertex point was analysed 

separately. At each point, the best fitting surface profile was selected based on the mutual 

correspondence of the surfaces and the internal confidence parameter calculated by Stradwin.41 In 

the final smoothing step, a vertex was defined as unsmooth if the two neighbouring vertices disagreed 

by more than 5 mm in the direction of surface normal, i.e., there was a clear error in the preceding 

segmentation. These, 0–32 (< 0.1% of total) points per bone, were further smoothed by setting them 

to the average of their neighbouring vertices to eliminate any spikes and achieve smooth periosteal 

surface. The bone surfaces were assumed to be intact or, at worst, only moderately affected by OA 

and hence smoothing could be conducted reliably. 

After bone segmentation, articular cartilage surfaces were segmented. Cartilage regions were 

determined by registering the template bone mesh to the periosteal surface mesh of patient’s bones, 

gathering information about the anatomy of cartilage to the mesh (Fig. 1). First, the template mesh 

was mirrored in case being in the contralateral side compared with the patient’s periosteal surface 

mesh. Correspondence between the template bones and patient’s bones was defined by setting 

manually 15 landmarks on the femur and 12 on the tibia on the periphery of tibial and femoral 

cartilages and on the metaphysis of bone (Supplementary material, Fig. 1). Typically, positioning of 

these landmarks took 5 ± 2 min (mean ± SD) per bone; the rest of the steps were automatic. The 

landmarks defined a geometric displacement field, generated with thin-plate splines 

algorithm,2,43,44 between the template bones and the patient’s bones. This thin-plate spline field 

was used to warp the template bone to the shape of patient’s bone. The periosteal surfaces of template 

bones were registered affinely on the patient’s bones using an iterative closest point algorithm.17 In 

the final registration step, a non-rigid mesh registration algorithm21 with seven iteration rounds was 

used, decreasing the distance between the meshes to less than 0.1 mm. Finally, the closest 
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counterpartying vertices between the template and patient’s periosteal mesh were determined, thereby 

bringing anatomical localization from the template to the patient’s surface mesh. 

The numbers of cartilage vertices (mean ± SD) were 3017 ± 1054 and 1127 ± 312 for femoral 

cartilage and tibial cartilage, respectively, depending on the patient-specific shape and size of the 

knee. Similarly as in the determination of cortical bone,41 intensity profiles were captured along 

surface normals at the region of cartilage in MATLAB. Ten-millimetre-long intensity profiles were 

captured, averaged orthogonally to the generated normal line with a diameter of 3 pixels, and sampled 

with 0.1 mm intervals resulting in 100 samples (Supplementary material, Fig. 2). The cartilage 

surface was defined from the intensity profiles as a half-maximum at local minimum (middle of 

cartilage) and maximum (contrast agent in the joint space) (Fig. 2). First, the custom-made algorithm 

searched all local minima and maxima from the intensity profile and selected those nearest to bone. 

If the difference in Hounsfield unit (HU) values between the selected extremes (minimum and 

maximum) were less than the threshold value of 50 HU, these minimum and maximum values were 

ignored and the sequential minimum and maximum were selected from the intensity profile. The 

searching was continued until the threshold was exceeded. Based on the selected maximum and 

minimum, the mean HU value was defined and its location on the profile, i.e., the location of the half-

maximum, was determined. These half-maximum points formed vertices of the cartilage surface 

mesh. 

https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR41
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Figure 2. Schematic diagram of the modified half-maximum algorithm for cartilage surface detection 

from contrast-enhanced images. 
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The cartilage surface was modified afterwards. The cartilage vertex point was determined to be 

erroneous if the determined cartilage thickness was 50% more than the mean of the neighbouring 

vertices, higher than 5 mm or less than 0.05 mm. These clearly faulty points were replaced by the 

median of the non-erroneous neighbour vertices. The thickness was set to 0.5 mm in the outermost 

rim of the cartilage based on a previous study.13 Furthermore, to serve also future FE modelling 

purposes, thickness was set to be greater than one pixel size. This rim was excluded from the analysis 

of the thickness results. In the final step, the final 3D cartilage surface mesh enclosing the cartilage 

volume inside was formed by triangulating the cartilage rim between the cartilage and periosteal 

surface meshes. 

As a reference, cartilages were segmented also manually (Seg3D, v2.2.1, University of Utah, UT, 

USA) by two of the authors (KAHM and JTJH) from CT images prior to semiautomatic segmentation. 

Surface meshes were generated from the manual segmentation masks using Mimics software 

(Materialise, v15.0, Leuven, Belgium) and, thereafter, analysed with MATLAB. Moreover, cartilages 

were manually segmented (KAHM) from the MR images using the same protocol as in the manual 

CT segmentations. When studying the impact of the user interaction, i.e., intra-user and inter-user 

agreement of semiautomatic segmentations, manual tasks of semiautomatic segmentation were 

conducted (twice by KAHM and once by JTJH) and compared. The volume and thickness of cartilage 

were determined to evaluate the feasibility of the method to measure these clinically important 

parameters.8,12,29 The cartilage volume was calculated from surface meshes. Thickness values of 

semiautomatically generated cartilage meshes were determined as the length of the normals between 

bone–cartilage interface and cartilage surface, i.e., distance between vertices. The thickness values of 

manually segmented cartilage geometries were calculated as the shortest distance between the nodes 

on periosteal and cartilage surfaces (Euclidean distance). Spatial variation of cartilage thickness was 

visualized as 2D projected surfaces. Thus, prior to this step, the femoral cartilages were fitted to a 

cylinder shape and then projected to a 2D plane.8 

Manual and semiautomatic segmentations were compared using the Dice similarity coefficient 

(DSC) which has been postulated to be suitable when comparing spatial correspondences.51 DSC 

was calculated as  

𝐷𝑆𝐶 =  2 𝐽1 + 𝐽 ,  
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where J is the Jaccard index calculated as 

𝐽 =  𝑉inter𝑉union , 
where Vinter is the intersection between segmentations, and Vunion is the union between segmentations. 

In order to compare segmentations comprehensively, specificity and sensitivity were calculated as 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑉inter𝑉manual  
and 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −  𝑉semiauto − 𝑉inter𝑉manual   . 
Similarly to the volumes, the intersections and unions were calculated from the surface meshes. MR 

and CT images had different coordinate systems and, hence, prior to the analysis, surface meshes 

determined from MR images were co-registered with the surface meshes determined from CT 

images using an open-source software wxRegSurf (v. 16, Department of Engineering, University of 

Cambridge, UK). The significance of differences was studied using Friedman test (IBM® SPSS® 

Statistics, v. 21, 2012, Armonk, NY, USA). Mean thickness values of cartilage were compared using 

a reproducibility coefficient alongside Bland–Altman visualization. Intraclass correlation coefficient 

(ICC) was used to study the statistical repeatability of the segmentation methods (IBM® SPSS® 

Statistics). 

Results 

The values of DSC, sensitivity and specificity between all the semiautomatic segmentations were 

very similar (Table 1) and no significant difference was found in these three parameters between 

semiautomatic segmentations. Furthermore, ICC values showed a good correspondence between the 

segmentations (Table 1). Since the correspondence was similar between all three semiautomatic 

segmentation rounds, one was randomly selected to be compared with the manual segmentations. 
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Table 1. Dice similarity coefficient (DSC), sensitivity, specificity (mean ± SD), and intraclass 

correlation coefficients for volume and thickness between three semiautomatic segmentations of CT 

images by two authors. 

 

  

Femur Tibia 

DSC  Sensitivity Specificity DSC  Sensitivity Specificity 

A1 vs. A2 0.83 ± 0.04 0.85 ± 0.04 0.79 ± 0.07 0.78 ± 0.04 0.80 ± 0.04 0.75 ± 0.09 

A1 vs. B1 0.82 ± 0.05 0.85 ± 0.04 0.77 ± 0.07 0.78 ± 0.03 0.81 ± 0.05 0.73 ± 0.10 

A2 vs. B1 0.82 ± 0.04 0.83 ± 0.04 0.81 ± 0.05 0.78 ± 0.04 0.79 ± 0.07 0.76 ± 0.10 

Intraclass correlation coefficient [CI] 

  A1 vs. A2 A1 vs. B1 A2 vs. B1 A1 vs. A2 vs. B1 

Volume 0.98 [0.94 0.99]* 0.97 [0.91 0.99]* 0.97 [0.97 1.00]* 0.98 [0.95 0.99]* 

Thickness 0.92 [0.81 0.97]* 0.83 [0.60 0.93]* 0.84 [0.62 0.94]* 0.86 [0.73 0.94]* 

A author A, B author B, 1 first segmentation, 2 second segmentation, CI confidence interval 

*Statistical significance p ≤ 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 



Semiautomatic segmentations (Semiautomatic) and two manual segmentations (Manual 1 and 

Manual 2), determined from CT images, were compared with each other. The agreements were high 

between semiautomatic and two manual segmentations, as measured with DSC (0.79–0.83), 

sensitivity (0.78–0.84) and specificity (0.76–0.86), which is also shown in the representative 3D 

image of femoral segmentations (Supplementary material, Fig. 3). The agreements were slightly 

higher in femoral than in tibial cartilage. The best agreement of sensitivity in femoral cartilage was 

found between the semiautomatic segmentation and Manual 1 (0.84) but the overall correspondence 

of all of the parameters was slightly better between the manual segmentations than between the 

semiautomatic and manual ones (Table 2). 
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Table 2. Segmentation parameters calculated from segmentations of CT images: Dice similarity 

coefficient, sensitivity, and specificity for femoral and tibial cartilages. 
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The agreement in cartilage mean thickness (Fig. 3) determined from semiautomatic and manual 

segmentations was high; reproducibility coefficients (0.15–0.18 mm) were very similar for all the 

comparisons. The mean absolute differences between the thickness values were 0.25 and 0.31 mm 

for femoral cartilage and 0.26 and 0.27 mm for tibial cartilage (Semiautomatic vs. Manual 1, and 

Semiautomatic vs. Manual 2, respectively). Cartilage thickness maps revealed that the agreement was 

best in the middle of articular surface and slightly lower in the in regions close to the joint periphery 

(Fig. 4). ICCs between femoral cartilage thickness values, determined using manual (Manual 1 and 

Manual 2) and semiautomatic segmentations, were 0.93 [95% confidence interval (CI) = 0.71–0.98] 

and 0.85 (95% CI = 0.47–0.96), respectively. When comparing tibial cartilage thicknesses, ICC was 

0.93 (95% CI = 0.73–0.89) between semiautomatic and Manual 1 segmentations, and 0.93 (95% 

CI = 0.71–0.98) between semiautomatic and Manual 2 segmentations. 

https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#Fig3
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Figure 3. Mean values of cartilage thickness; manual segmentations (Manual 1 and Manual 2) 

compared with the semiautomatic segmentations (Semiautomatic) and manual segmentations 

compared with each other. The Bland–Altman plots show that the segmentation techniques agree 

well. 

https://media.springernature.com/original/springer-static/image/art%3A10.1007%2Fs10439-018-2081-z/MediaObjects/10439_2018_2081_Fig3_HTML.png


  

Figure 4. Thicknesses of femoral (first column) and tibial (second column) cartilages for one 

representative patient and the difference between the thicknesses based on manual and semiautomatic 

segmentations. Minor differences in determined cartilage thickness can be seen but the overall 

correspondence is good; the differences are close to zero and the spatial distribution of thickness is 

similar between all the segmentations. 

https://media.springernature.com/original/springer-static/image/art%3A10.1007%2Fs10439-018-2081-z/MediaObjects/10439_2018_2081_Fig4_HTML.png


The volumes (mean ± SD) of femoral cartilage, determined from CT segmentations, were 7.81 ± 1.30, 

7.64 ± 1.30, and 8.42 ± 1.08 cm3 when determined using Semiautomatic, Manual 1, and Manual 2 

segmentations, respectively. The corresponding values for tibial cartilage were 3.42 ± 0.44, 

3.29 ± 0.62, and 3.43 ± 0.55 cm3. When comparing the volumes of femoral cartilage, the difference 

was statistically significant only between the two manual segmentations (p =0.003). No significant 

differences were found in volume of tibial cartilage between the segmentations. 

Manual segmentations based on MR images were compared with the segmentations based on CT 

images (Table 3). The only statistically significant difference (p = 0.020) was found in the sensitivity 

of segmentations of femoral cartilage. Otherwise, no significant difference was found between DSC, 

sensitivity or specificity values, either in femoral or tibial cartilage; manually and semiautomatically 

segmented cartilages from CT images corresponded equally well with manual segmentations based 

on MR images. However, DSC values between MR and CT segmentations (0.67–0.70) were 

significantly lower (p < 0.029) than those between the manual and semiautomatic CT segmentations 

(0.79–0.83; Table 2). 
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Table 3. Manual segmentation from MR images are compared with semiautomatic and manual 

segmentation from CT images: Dice similarity coefficients, sensitivity and specificity are determined. 
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No significant difference in tibial cartilage volume was found between semiautomatic CT and manual 

MR segmentation. On the contrary, tibial cartilage volumes determined from manual segmentations 

of CT images (Manuals 1 and 2) differed statistically significantly (p = 0.001 and 0.037, respectively) 

from the volumes of manually segmented MR images. Femoral cartilage volumes differed statistically 

significantly when comparing Manual 1 and Semiautomatic CT segmentations with MR 

segmentations (p < 0.001 and 0.002, respectively) but no significant difference was detected between 

Manual 2 and MR segmentations. 

The time needed for segmentation was considerably lower when using the semiautomatic method 

(Supplementary material, Table 1). With femoral cartilage, the average time for manual work was 

reduced from 290 to 20 min and with tibial cartilage from 160 to 20 min. The time required for 

computer processing was only a few minutes. 

Discussion 

In this study, a semiautomatic segmentation method for CECT imaging of knee joint was introduced. 

The correspondence between the reference manual segmentations and segmentations conducted by 

the proposed method was shown to be good. The method was found feasible to segment both femoral 

and tibial articular cartilages. Segmenting and analysing trabecular and cortical bone are also feasible 

since the techniques used are originally developed for this purpose.41 

The DSC, sensitivity, and specificity values were high between semiautomatic and manual CT 

segmentations. However, the agreement between manual segmentations was slightly better than that 

between the semiautomatic and manual ones. A partial volume effect limits the accuracy in voxel-

based manual segmentations. This might be one of the reasons behind the difference in DSC values 

between manual and semiautomatic segmentations. In femoral cartilage, the sensitivity between 

semiautomatic segmentation and one of the manual segmentations was found to be higher than that 

between the manual ones. The values of these parameters representing the correspondence between 

segmentations were only slightly, although statistically significantly, different. Currently, the novel, 

advanced methods29 for segmenting cartilage from MR images have DSC indices of approximately 

0.84–0.87 being very similar to our results. 

The mean cartilage thicknesses and volumes determined using manual and semiautomatic CT 

segmentations correlated well (Fig. 3). Even though the differences in segmented cartilage thickness 

were higher at the joint periphery than in the contact area (Fig. 4), the mean absolute differences of 
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thickness were around or less than one pixel. Spatial correspondence was good between the 

segmentation methods. However, some discrepancies were revealed. In the future, these variations 

could possibly be reduced by using a multi-atlas approach5,48 or statistical shape models44 to enable 

a more accurate determination of the cartilage region during the segmentation. Furthermore, the half-

maximum algorithm could be improved; the position of cartilage surface could be determined from 

the intensity profile, i.e., using nonlinear least squares estimation previously presented for cortical 

surface estimation.41 However, this point spread function-based cortex estimation is not directly 

applicable for the estimation of cartilage surface from CECT images due to the diffusion of the 

contrast agent. Therefore, we decided to use a half-maximum approach where fewer assumptions are 

needed. Despite the use of only one template, the results are very promising for further development. 

Furthermore, the number of vertices (0.6/mm2) was found to be adequate for the semiautomatic 

segmentation. 

Manual MR segmentation, as compared with CT segmentations, either manual or semiautomatic, had 

lower DSC values than when comparing manual CT segmentations with semiautomatic CT 

segmentations. This may be due to difference in cartilage volumes; volumes based on MR images 

were systematically higher than those based on CT images. The size of a voxel is eight times greater 

in MR images compared with CT images, which, unavoidably, increases the partial volume effect 

leading to greater volumes of segmented cartilage in MR images. Due to its higher resolution, CT 

images are suggested to allow segmentation of cartilage defects in more detail15 leading possibly to 

a smaller volume of the defective areas. On the other hand, slightly poorer contrast at the periphery 

of cartilage might have caused an underestimation of cartilage volume in CT images. 

Methods to segment articular cartilage of knee joint have evolved from texture-based methods and 

now rely on more sophisticated machine learning, atlas-based, and model-based approaches.29 Fripp 

et al. presented a method to segment cartilages of the knee joint from MR images in which, similarly 

to the present method, the bones are segmented before the cartilages.10 Both studies indicate that this 

segmentation strategy seems to achieve a high accuracy. However, the method by Fripp et al. was 

tested only with cartilages that were intact, i.e., had no pathological changes, whereas our proposed 

method has been demonstrated to work also with damaged cartilage. Indeed, all of the analysed knees 

used in this study had clinically diagnosed pathological changes; the knees displayed lesions of ICRS 

I–III of a severity graded by a clinician (International Cartilage Repair Society grading system). 

Tabrizi et al. introduced a method for segmenting acetabular cartilage from CECT images,39 

however, due to more the complex shape of the knee joint, the present results are not directly 
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comparable with those of Tabrizi et al. Machine learning is also a promising approach for knee 

cartilage segmentation,9,22,49 however, it usually requires a large training set. Generally, previous 

segmentation methods rely on voxel-based segmentation, possibly leading to inadequate accuracy 

due to relatively large voxel size or slice thickness with relation to, in some places, very thin cartilage. 

Despite the different spatial resolutions between imaging modalities, we compared the CT 

segmentations with those of MRI. As the MRI is the most widely applied method for clinical imaging 

of cartilage, and traditionally relies on manual segmentation, it serves well as a reference for the novel 

method. CT differs from MRI—both methods have their advantages and disadvantages in the 

diagnostics of OA.20,23,33,40,47 Although MRI is the gold standard for visualizing soft tissues it 

lacks a clinically acceptable imaging time when very high resolution is needed and, thus, usually has 

a poorer isotropic resolution than CT in clinical setups. Moreover, the current and conventionally 

used clinical MRI protocols have a lower contrast in bone, as compared with CT, resulting in a lower 

sensitivity in detecting bone alterations. As an advantage, CT enables the detection of subtle, OA-

related changes in bone.41 However, imaging without contrast enhancement makes it unable to define 

the morphology of articular cartilage layer. Recently, CECT was shown to enable simultaneous 

quantitative determination of changes in cartilage and bone in knee joints in vivo.15,26 Utilization of 

ionizing radiation and the need for an intra-articular injection are drawbacks of CECT; nonetheless, 

in vivo imaging of knee requires only a small radiation dose,45 i.e., equal to about 2 weeks’ 

background radiation, and the risk of infection due to contrast agent injection is very small. 

In contrast-enhanced imaging, the arthrographic CECT images are used for segmentation and dCTa 

images for analysing the composition of cartilage. In order to analyse the composition of cartilage 

from dCTa images, co-registering of segmented arthrographic CECT images with dCTa images is 

required. Thus, the only additional part needed in the analysis is the generation of 3D bone meshes 

from dCTa images for instance, using Stradwin—the rest of the steps would be automatic. In the 

future, automated segmentation may be possible directly from dCTa images by utilizing a dual 

contrast agent technique,32 enabling to omit the acquisition of the arthrographic CECT image. The 

diffusion of anionic and cationic CT contrast agents has been shown to be related to the tissue’s GAG 

contents,1,24,25,35,37 thus providing information about the composition of the cartilage. This study 

utilized an anionic contrast agent; however, cationic agents display a higher sensitivity for GAG 

content,1,19 suggesting that these could be a good alternative. Furthermore, diffusion is depth-

dependent, i.e., diffusion is slower in the deep cartilage possibly due to, for instance, the denser 

collagen network.35 Possibly, in situations where the quality of the cartilage would be very poor, the 
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diffusion of contrast agent may already occur during arthrographic CECT and, further, be detected as 

a thinning of cartilage tissue. In addition, previous in vivo dCTa studies have reported that the 

diffusion of the contrast agent is higher close to cartilage lesions.15,26 

One advantage of the present study is that the novel method was evaluated using images of patients 

having knee symptoms, as confirmed by a clinician. However, this imposes a limitation that manual 

segmentations were the only option for reference since the images were acquired in vivo and, 

therefore, high-resolution imaging, i.e., μCT, or extracting tissue samples to determine exact 

morphology of the joint, was not possible. Two of the authors segmented all of the knees to minimize 

this limitation and to make the validation more comprehensive. The mean cartilage thickness contains 

no information specifically related to lesion detection, but provides information on overall agreement 

of the segmentation methods. Instead, cartilage thickness maps indicate specifically regions with 

locally low cartilage thicknesses. Although the present method detects decrease in cartilage thickness, 

the determination of very sharp-edged or fissure-shaped lesions will need to be further evaluated in 

the future. Furthermore, even though the present results suggest that the introduced technique is 

functional, the current number of the patients is relatively low and hence, variations of knee shape 

and size in general population could not be fully covered. 

As another limitation, the presented segmentation method is not fully automatic but requires some 

user interaction. The semiautomatic segmentations showed statistically insignificant differences 

between the intra-user and inter-user values for DSC, sensitivity and specificity, indicating good 

repeatability. Furthermore, ICC values for thickness and volume were high. However, the DSC, 

sensitivity, and specificity values between semiautomatic segmentations were good instead of 

excellent, indicating that user interaction exert some effect on the segmentation results. The 

semiautomated bone surface generation was chosen since Stradwin software has been shown to 

perform adequately for bone cortical surface construction and further enables a quantitative 

evaluation of both cortical thickness and density in sub-pixel accuracy.41 Since the thickness of both 

cortical bone and articular cartilage could be very small, the method has a major advantage in 

accuracy. Furthermore, the geometries of cartilages were determined at the subpixel level conferring 

a distinct advantage compared with other existing segmentation methods which almost invariably 

have voxel-based approaches. Additionally, the time for user interaction (~ 40 min) is more 

reasonable whereas the time (~ 450 min) needed for fully manual segmentation is unfeasible for 

clinical use. Furthermore, the computer-aided segmentation part is computationally relatively light 

and can be undertaken by any regular computer. In contrast, when using some atlas-based methods, 
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the algorithms and toolkits seem to rely on excessive computations, thus being unsuitable for real-

time applications or requiring GPU calculation.29 

In the future, the proposed approach could be used for quantitative analysis of the knee joint,15,26 

especially for the diagnostics of post-traumatic OA, cartilage injuries or to define the stage of OA. 

When combined with subchondral bone thickness and density analysis,41 the technique could enable 

comprehensive and advanced evaluation at an early stage of the disease. Moreover, since the template 

bone is registered with every segmentation, the presented segmentation method could be used to 

generate the isotopological mesh needed in statistical shape modelling.44 This could be advantageous 

in constructing the biomechanical finite element model of the knee31,46 since the boundary 

conditions and material properties could be introduced from the template for each corresponding 

element. The postulated approach would make possible a more rapid implementation of these models 

since the segmentation is readily in the mesh form that could be used to generate biomechanical 

models of the knee. Since the accuracy of the semiautomatic segmentations falls between the 

variability of manual segmentations, which are usually used to generate the models, the devised 

method can be considered as accurate enough for finite element analysis, a proposal that should be 

studied in the future. In general, automatic segmentation would be advantageous in several fields in 

orthopaedics. 

As a summary, of our best knowledge, this is the first study to introduce segmentation of knee joint 

structures from CECT images with minimal user interactions. The contrast enhancement enabled the 

segmentation of the whole articular cartilage with a time and resource input that is clinically feasible. 

Furthermore, the segmentations using the proposed method displayed a good correspondence with 

results gathered by manual segmentation. 

Acknowledgments 

The authors acknowledge the Research Committee of the Kuopio University Hospital Catchment 

Area for the State Research Funding (Projects 5041746, 5041757, and 5203101). Study is also 

supported by Doctoral Program in Science, Technology and Computing (SCITECO, University of 

Eastern Finland), Finnish Cultural Foundation, and Academy of Finland (Projects 269315 and 

307932). 

 

https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR29
https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR15
https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR26
https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR41
https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR44
https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR31
https://link.springer.com/article/10.1007%2Fs10439-018-2081-z#CR46


Conflict of interest 

Authors declare no conflicts of interest. 

 

Supplementary material 

Supplementary material 1  

 

References 

1. 

Bansal, P. N., N. S. Joshi, V. Entezari, B. C. Malone, R. C. Stewart, B. D. Snyder, and M. 

W. Grinstaff. Cationic contrast agents improve quantification of glycosaminoglycan 

(GAG) content by contrast enhanced CT imaging of cartilage. J. Orthop. Res. 29:704–

709, 2011. 

2. 

Bookstein, F. L. Principal warps: thin-plate splines and the decomposition of 

deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11:567–585, 1989.  

3. 

Buckwalter, J. A., J. L. Marsh, T. Brown, A. Amendola, and J. A. Martin. Articular 

cartilage injury. In: Principles of Tissue Engineering, edited by R. Lanza, R. Langer, and 

J. P. Vacanti. Elsevier, 2014, pp. 1253–1266.  

4. 

Burr, D. B., and M. A. Gallant. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 

8:665–673, 2012.  



5. 

Chu, C., J. Bai, X. Wu, and G. Zheng. MASCG: Multi-Atlas Segmentation Constrained 

Graph method for accurate segmentation of hip CT images. Med. Image Anal. 26:173–

184, 2015.  

6. 

Chu, C., C. Chen, L. Liu, and G. Zheng. FACTS: fully automatic CT segmentation of a 

hip joint. Ann. Biomed. Eng. 43:1247–1259, 2015.  

7. 

Favre, J., S. F. Scanlan, J. C. Erhart-Hledik, K. Blazek, and T. P. Andriacchi. Patterns of 

femoral cartilage thickness are different in asymptomatic and osteoarthritic knees and can 

be used to detect disease-related differences between samples. J. Biomech. Eng. 

135:101002, 2013.  

8. 

Favre, J., J. C. Erhart-Hledik, K. Blazek, B. Fasel, G. E. Gold, and T. P. Andriacchi. 

Anatomically-standardized maps reveal distinct patterns of cartilage thickness with 

increasing severity of medial compartment knee osteoarthritis. J. Orthop. Res. 35:2442–

2451, 2017.  

9. 

Folkesson, J., E. B. Dam, O. F. Olsen, P. C. Pettersen, and C. Christiansen. Segmenting 

articular cartilage automatically using a voxel classification approach. IEEE Trans. Med. 

Imaging 26:106–115, 2007.  

10. 

Fripp, J., S. Crozier, S. K. Warfield, and S. Ourselin. Automatic segmentation of articular 

cartilage in magnetic resonance images of the knee. IEEE Trans. Med. Imaging 29:55–64, 

2010.  

11. 



Goldring, S. R., and M. B. Goldring. Changes in the osteochondral unit during 

osteoarthritis: structure, function and cartilage–bone crosstalk. Nat. Rev. Rheumatol. 

12:632–644, 2016.  

12. 

Guermazi, A., D. Hayashi, F. W. Roemer, J. Niu, E. K. Quinn, M. D. Crema, M. C. Nevitt, 

J. Torner, C. E. Lewis, and D. T. Felson. Partial- and full-thickness focal cartilage defects 

equally contribute to development of new cartilage damage in knee osteoarthritis—the 

Multicenter Osteoarthritis Study. Arthritis Rheumatol. 69:560–564, 2016.  

13. 

Kladny, B., P. Martus, K.-H. Schiwy-Bochat, G. Weseloh, and B. Swoboda. Measurement 

of cartilage thickness in the human knee-joint by magnetic resonance imaging using a 

three-dimensional gradient-echo sequence. Int. Orthop. 23:264–267, 1999.  

14. 

Kokkonen, H. T., J. Mäkelä, K. A. M. Kulmala, L. Rieppo, J. S. Jurvelin, V. Tiitu, H. M. 

Karjalainen, R. K. Korhonen, V. Kovanen, and J. Töyräs. Computed tomography detects 

changes in contrast agent diffusion after collagen cross-linking typical to natural aging of 

articular cartilage. Osteoarthr. Cartil. 19:1190–1198, 2011.  

15. 

Kokkonen, H. T., J. Suomalainen, A. Joukainen, H. Kröger, J. Sirola, J. Jurvelin, J. Salo, 

and J. Töyräs. In vivo diagnostics of human knee cartilage lesions using delayed CBCT 

arthrography. J. Orthop. Res. 32:403–412, 2014.  

16. 

Kotlarz, H., C. L. Gunnarsson, H. Fang, and J. A. Rizzo. Insurer and out-of-pocket costs 

of osteoarthritis in the US: evidence from national survey data. Arthritis Rheumatol. 

60:3546–3553, 2009.  

17. 



Kroon, D. J. Finite Iterative Closest Point. Natick: Mathworks, 2009.  

18. 

Kulmala, K. A. M., H. M. Karjalainen, H. T. Kokkonen, V. Tiitu, V. Kovanen, M. J. 

Lammi, J. S. Jurvelin, R. K. Korhonen, and J. Töyräs. Diffusion of ionic and non-ionic 

contrast agents in articular cartilage with increased cross-linking-contribution of steric and 

electrostatic effects. Med. Eng. Phys. 35:1415–1420, 2013.  

19. 

Lakin, B. A., H. Patel, C. Holland, J. D. Freedman, J. S. Shelofsky, B. D. Snyder, K. S. 

Stok, and M. W. Grinstaff. Contrast-enhanced CT using a cationic contrast agent enables 

non-destructive assessment of the biochemical and biomechanical properties of mouse 

tibial plateau cartilage. J. Orthop. Res. 34:1130–1138, 2016.  

20. 

Lakin, B. A., B. D. Snyder, and M. W. Grinstaff. Assessing cartilage biomechanical 

properties: techniques for evaluating the functional performance of cartilage in health and 

disease. Annu. Rev. Biomed. Eng. 19:27–55, 2017.  

21. 

Li, H., R. W. Sumner, and M. Pauly. Global correspondence optimization for non-rigid 

registration of depth scans. Eurograph. Symp. Geom. Process. 27:1421–1430, 2008.  

22. 

Liu, F., Z. Zhou, H. Jang, A. Samsonov, G. Zhao, and R. Kijowski. Deep convolutional 

neural network and 3D deformable approach for tissue segmentation in musculoskeletal 

magnetic resonance imaging. Magn. Reson. Med. 79:2379–2391, 2018.  

23. 

Matzat, S. J., F. Kogan, G. W. Fong, and G. E. Gold. Imaging strategies for assessing 

cartilage composition in osteoarthritis. Curr. Rheumatol. Rep. 16:462, 2015.  



24. 

Mittelstaedt, D., and Y. Xia. Depth-dependent glycosaminoglycan concentration in 

articular cartilage by quantitative contrast-enhanced micro-computed tomography. 

Cartilage 6:216–225, 2015.  

25. 

Moshtagh, P. R. R., B. Pouran, J. van Tiel, J. Rauker, M. R. R. Zuiddam, V. Arbabi, N. 

M. M. Korthagen, H. Weinans, and A. A. A. Zadpoor. Micro- and nano-mechanics of 

osteoarthritic cartilage: the effects of tonicity and disease severity. J. Mech. Behav. 

Biomed. Mater. 59:561–571, 2016.  

26. 

Myller, K. A. H., M. J. Turunen, J. T. J. Honkanen, S. P. Väänänen, J. T. Iivarinen, J. Salo, 

J. S. Jurvelin, and J. Töyräs. In vivo contrast-enhanced cone beam CT provides 

quantitative information on articular cartilage and subchondral bone. Ann. Biomed. Eng. 

45:811–818, 2017.  

27. 

Olson, S. A., B. D. Furman, V. B. Kraus, J. L. Huebner, and F. Guilak. Therapeutic 

opportunities to prevent post-traumatic arthritis: lessons from the natural history of 

arthritis after articular fracture. J. Orthop. Res. 33:1266–1277, 2015.  

28. 

Pedoia, V., X. Li, F. Su, N. Calixto, and S. Majumdar. Fully automatic analysis of the 

knee articular cartilage T1p relaxation time using voxel-based relaxometry. J. Magn. 

Reson. Imaging 43:970–980, 2016.  

29. 

Pedoia, V., S. Majumdar, and T. M. Link. Segmentation of joint and musculoskeletal 

tissue in the study of arthritis. Magn. Reson. Mater. Phys. 29:207–221, 2016.  

30. 



Pereanez, M., K. Lekadir, I. Castro-Mateos, J. M. Pozo, A. Lazary, and A. F. Frangi. 

Accurate segmentation of vertebral bodies and processes using statistical shape 

decomposition and conditional models. IEEE Trans. Med. Imaging 34:1627–1639, 2015.  

31. 

Pierce, D. M., W. Trobin, S. Trattnig, H. Bischof, and G. A. Holzapfel. A 

phenomenological approach toward patient-specific computational modeling of articular 

cartilage including collagen fiber tracking. J. Biomech. Eng. 131:91006, 2009.  

32. 

Saukko, A. E. A., J. T. J. Honkanen, W. Xu, S. P. Väänänen, J. S. Jurvelin, V.-P. Lehto, 

and J. Töyräs. Dual contrast CT method enables diagnostics of cartilage injuries and 

degeneration using a single CT image. Ann. Biomed. Eng. 45:2857–2866, 2017.  

33. 

Shafieyan, Y., N. Khosravi, M. Moeini, and T. M. Quinn. Diffusion of MRI and CT 

contrast agents in articular cartilage under static compression. Biophys. J. 107:485–492, 

2014.  

34. 

Shim, H., S. Chang, C. Tao, J.-H. Wang, C. Kent Kwoh, and K. T. Bae. Knee cartilage: 

efficient and reproducible segmentation on high-spatial-resolution MR images with the 

semiautomated graph-cut algorithm method. Radiology 251:548–556, 2009.  

35. 

Silvast, T. S., J. S. Jurvelin, M. J. Lammi, and J. Töyräs. pQCT study on diffusion and 

equilibrium distribution of iodinated anionic contrast agent in human articular cartilage—

associations to matrix composition and integrity. Osteoarthr. Cartil. 17:26–32, 2009.  

36. 

Sölveborn, S. A. Trauma. In: Emergency Orthopedics: A Manual on Acute Conditions of 

the Locomotor System, edited by S. A. Sölveborn. Berlin: Springer, 2014, pp. 67–70.  



37. 

Stewart, R. C., J. T. J. Honkanen, H. T. Kokkonen, V. Tiitu, S. Saarakkala, A. Joukainen, 

B. D. Snyder, J. S. Jurvelin, M. W. Grinstaff, and J. Töyräs. Contrast-enhanced computed 

tomography enables quantitative evaluation of tissue properties at intrajoint regions in 

cadaveric knee cartilage. Cartilage 8:391–399, 2017.  

38. 

Tabrizi, P. R., R. A. Zoroofi, F. Yokota, S. Tamura, T. Nishii, and Y. Sato. Acetabular 

cartilage segmentation in CT arthrography based on a bone-normalized probabilistic atlas. 

Int. J. Comput. Assist. Radiol. Surg. 10:433–446, 2015.  

39. 

Tabrizi, P. R., R. A. Zoroofi, F. Yokota, T. Nishii, and Y. Sato. Shape-based acetabular 

cartilage segmentation: application to CT and MRI datasets. Int. J. Comput. Assist. Radiol. 

Surg. 11:1–19, 2016.  

40. 

Taylor, C., J. Carballido-Gamio, S. Majumdar, and X. Li. Comparison of quantitative 

imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC and contrast-enhanced 

computed tomography. Magn. Reson. Imaging 27:779–784, 2009.  

41. 

Treece, G. M. M., and A. H. H. Gee. Independent measurement of femoral cortical 

thickness and cortical bone density using clinical CT. Med. Image Anal. 20:249–264, 

2015.  

42. 

Turunen, M. J., J. Töyräs, H. T. Kokkonen, and J. S. Jurvelin. Quantitative evaluation of 

knee subchondral bone mineral density using cone beam computed tomography. IEEE 

Trans. Med. Imaging 34:2186–2190, 2015.  

43. 



Väänänen, S. P., J. S. Jurvelin, and H. Isaksson. Estimation of 3-D shape, internal density 

and mechanics of proximal femur by combining bone mineral density images with shape 

and density templates. Biomech. Model. Mechanobiol. 11:791–800, 2012.  

44. 

Väänänen, S. P., L. Grassi, G. Flivik, J. S. Jurvelin, and H. Isaksson. Generation of 3D 

shape, density, cortical thickness and finite element mesh of proximal femur from a DXA 

image. Med. Image Anal. 24:125–134, 2015.  

45. 

van Tiel, J., M. Siebelt, J. H. Waarsing, T. M. Piscaer, M. van Straten, R. Booij, M. L. 

Dijkshoorn, G. J. Kleinrensink, J. A. N. Verhaar, G. P. Krestin, H. Weinans, and E. H. G. 

Oei. CT arthrography of the human knee to measure cartilage quality with low radiation 

dose. Osteoarthr. Cartil. 20:678–685, 2012.  

46. 

Venäläinen, M. S., M. E. Mononen, J. Salo, L. P. Räsänen, J. S. Jurvelin, J. Töyräs, T. 

Virén, and R. K. Korhonen. Quantitative evaluation of the mechanical risks caused by 

focal cartilage defects in the knee. Sci. Rep. 6:37538, 2016.  

47. 

Wang, Y., A. J. Teichtahl, and F. M. Cicuttini. Osteoarthritis year in review 2015: 

imaging. Osteoarthr. Cartil. 24:49–57, 2016.  

48. 

Xia, Y., J. Fripp, S. S. Chandra, R. Schwarz, C. Engstrom, and S. Crozier. Automated 

bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. 

Biol. 58:7375–7390, 2013.  

49. 



Yin, Y., X. Zhang, R. Williams, X. Wu, D. D. Anderson, and M. Sonka. LOGISMOS-

layered optimal graph image segmentation of multiple objects and surfaces: cartilage 

segmentation in the knee joint. IEEE Trans. Med. Imaging 29:2023–2037, 2010.  

50. 

Zhang, K., W. Lu, and P. Marziliano. Automatic knee cartilage segmentation from multi-

contrast MR images using support vector machine classification with spatial 

dependencies. Magn. Reson. Imaging 31:1731–1743, 2013.  

51. 

Zou, K. H., S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. 

M. Wells, F. A. Jolesz, and R. Kikinis. Statistical validation of image segmentation quality 

based on a spatial overlap index. Acad. Radiol. 11:178–189, 2004.  

 




