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Abstract

In this paper, a comprehensive description of a finite-volume method for the simulation of time-dependent
viscoelastic flows is given. It is applied to simulate the flow of a particular type of elastic fluid, having constant
viscosity, but shear-thinning relaxation time, as it passes around a circular cylinder, forming and shedding vortices
along its wake. Careful attention is given to the accuracy of the method, which is second-order in both the spatial and
the temporal discretisation. Frequency of vortex shedding is shown to be attenuated by elasticity of the fluid, while the
size of the formation zone behind the cylinder is elongated. These results are in agreement with recent experimental
observations, as are further results showing a reduction in the root mean square (rms) fluctuating velocities compared
with Newtonian flow. Consideration is also given to the effects of Reynolds number, extensibility parameter in the
constitutive model, and Deborah number. In all cases, an increase on those two latter parameters leads to a delay,
or a strong hindrance, of shedding formation. The mean drag coefficient decays with the Reynolds number, but it is
smaller for the viscoelastic fluid. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many apparently steady two-dimensional flows of viscoelastic fluids are prone to instabilities which
manifest themselves as transition to either three-dimensional flows or time-dependent, chaotic or pe-
riodic, flows [1,2]. This occurs in many of the flow problems often used as test cases in developing
numerical methods for computational rheology, such as flows through contractions, flows around spheres
or cylinders, etc. For example, Oliveira and Pinho [3] were able to obtain steady solutions up to a Deborah
number of≈10 for the flow of an upper-convected Maxwell fluid through a four to one planar contrac-
tion, but surprisingly, similar simulations (same method, grid, etc. [4]) with a PTT fluid revealed the
flow to be unsteady atDe ≈ 5, with periodic formation and detachment of lip vortices at the entrance
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to the small channel. Although the simulations in [4] are still under investigation, it is clear that there is
a need to derive an accurate method to simulating time-dependent flows of viscoelastic fluids obeying
constitutive equations of the differential type. Ideally, that method should be such that it gives the steady
solution, if it exists, as the asymptotic result following a time marching approach, otherwise, it captures
the time-dependent behaviour of the solution, for an intrinsically unsteady flow.

Although there are a number of FEM-based methods reported in the literature especially designed for
the simulation of time-dependent viscoelastic flows they are, most often, applied to obtain the transient be-
haviour of the numerical solution of a flow which is ultimately steady. Since that transient behaviour is very
sensitive to the exact initial conditions, it is very difficult to compare the predicted transient with experi-
mental results and hence assessment of the method is hindered. An interesting split Lagragian–Eulerian
method for such transient flows was developed by Harlen et al. [5]; it was applied to study the transient
part of the solution for the well-known problem of a sphere falling along a tube, with a blockage ratio
of 2. This method is decoupled, with the velocity–pressure problem solved with a finite element method
(FEM), and the constitutive equation (Oldroyd-B or FENE-CR) solved in a Lagrangian fashion after being
transformed into a co-rotating frame. An important drawback is that the method is only first-order both in
space and, more important, in time. That method has recently been applied to solve the transient start-up
flow of the “pom–pom” fluid model through a planar contraction [6]. The idea of decomposing a flow
problem into Eulerian/Lagrangian sub-problems has been followed by others, for example, Wapperom
et al. [7] developed a backward-tracking Lagrangian particle method which was subsequently applied to
study the transient flow of the “pom–pom” fluid in a constriction [8]. For integral constitutive equations,
Rasmussen and Hassager have developed the Lagrangian integral method, for both two-dimensional [9]
and three-dimensional [10] flows, which appears to be one of the few FEM schemes offering second-order
accuracy in time, as demonstrated in the (numerical) start-up sphere-in-cylinder flow problem.

In the context of finite volume methods (FVM), there have been a few attempts to extend time-marching
procedures, typically used to obtain steady-state solutions, to the calculation of really time-dependent
flows, e.g. [11,12]. In both of these papers, the methods are only first-order in time, and in [12], it is also
first-order in space. No applications to intrinsically time-dependent flows were reported in those works.
Mixed FEM/FVM of the time-marching type have also been developed, mainly by Wapperom and Webster
(see e.g. [13] and references therein), but have not been applied to actual time-dependent flow situations.
So, it appears that numerical simulation of time-dependent viscoelastic flows with the finite volume
method is still at an incipient stage, and one of the purposes of the present work is to describe and apply
such a method. As a suitable test case we have chosen the flow around a circular cylinder, which is known to
produce a time-dependent pattern of shedding vortices, both for Newtonian and viscoelastic fluids. In the
latter case a number of interesting features, to be discussed below, is known to occur. A second purpose of
the work is to investigate numerically the effects of fluid elasticity on the characteristics of vortex shedding,
in order to assess whether the experimentally observed features can be reproduced by the simulations.

In this respect, there has been quite a few recent papers in which marked differences between vortex
shedding resulting from Newtonian fluids or polymer solutions have been reported, mostly based on
experimental observations. The choice of the problem of vortex shedding formation with dilute polymer
solutions as a suitable test case for time-dependent numerical schemes was prompted by the reading of a
very recent (2001) paper by Cadot [14] which shows, based on visualisation and velocity measurements
(PIV), the remarkable effects induced by fluid elasticity. Coloured streaklines give a visual indication
of those effects; the wavelength of the vortex street behind the cylinder becomes longer (so shedding
frequency and Strouhal number are reduced); the concentration of vorticity is weaker (partial roll-up;
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vortex inhibition); the braids between vortices are strengthened; the formation region behind the cylinder is
elongated (elasticity suppresses shear instability). Such effects are confirmed by other recent experimental
sources [15–17] and, in fact, some were known for some time [18].

As far as we are aware there is no published systematic study of numerical predictions of vortex
shedding with viscoelastic fluids, in the range of Reynolds numbers at which the wake remains basically
two-dimensional and laminar (sayRe = 50–150), and so we aimed the application of the proposed
time-dependent numerical method to this problem. For lowerRe, the flow remains steady (except for
possible purely elastic instabilities at very lowRe[1]), with a growing recirculation zone attached to the
back of the cylinder, and a few numerical studies were devoted to this case ([19] with FEM; [20] with
FVM). In these studies, the upper-convected Maxwell model was employed and the motivation was to
explain the early experimental observations of James and Acosta [21], who found that beyond a critical
Rethe Nusselt number and drag coefficientCD became independent of the approaching fluid velocity. It is
interesting to note, in advance to presenting our results, thatCD in this situation of steady flow (Re< 50)
is higher for the viscoelastic fluid (the elastic stretching of streamlines away from the cylinder makes this
appear as if it had a larger diameter), but when the two-dimensional instability sets in and the flow becomes
unsteady (Re� 50),CD for the viscoelastic fluid falls below the corresponding value for the Newtonian
fluid at the sameRe. We have, thus, a manifestation of “drag reducing” characteristic brought about by
fluid elasticity. In conclusion, it may be considered that the present numerical results extend the results
for the flow around a cylinder of Hu and Joseph [20] to higherRe, in the range where the flow becomes
time periodic with vortex shedding. It is a challenge to see if simple differential constitutive models,
appropriate for dilute polymer solutions and based on kinetic theory for finite-extensible dumbbell units,
are able to qualitatively predict the experimental observations alluded above.

2. Equations

In this work, we will be concerned with polymer solutions obtained by dissolving a high-molecular
polymer in a liquid solvent and, for the relatively low velocities and pressure found in vortex shedding
experiments, the flow is incompressible, so the governing equations are

� · u = 0, (1)

∂ρu
∂t

+ � · (ρuu) = −�p + � · τs + � · τ, (2)

expressing conservation of mass and momentum. In these equations,ρ, u andp are the fluid density,
velocity and pressure,τs the solvent stress given by a Newtonian lawτs = 2ηsD whereηs is the constant
solvent viscosity andD = (�u + �uT)/2, and finally the polymer stressτ must be obtained from an
additional constitutive equation. At this point we could have chosen the well-known Oldroyd-B model,
since one objective of the work is to develop the numerical method, but that model is known to be
inadequate to represent dilute polymer solutions as it cannot predict the shear-thinning in the primary
normal stress found in most of these fluids. For this reason we prefer to consider the molecular-based
FENE family of models, developed from kinetic theory by Bird et al. [22], in which the stress is related
to a conformation tensorA by

τ = ηpf (A)
λ

(A − g(A)I) (3)
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andA evolves according to the hyperbolic equation:

∇
A = −f (A)

λ
(A − g(A)I), (4)

where∇ denotes the upper convected derivative,λ is the relaxation time (constant) andηp the polymer-
related viscosity (constant). The functionsf(A) andg(A) in Eq. (3) depend on invariants ofA and represent,
respectively, the strength of the spring in the molecular model and the effect of shear-thinning in viscosity.
For a constant viscosity fluid with infinite spring extensibility we havef = g = 1 and it is easy to show
that the usual equation for the Oldroyd-B model is recovered. For a fluid with finite spring extensibility
the Peterlin approximation forf is often called for, givingf = L2/(L2 − Tr(A)), and in this case the
condition of constant viscosity (g = 1) yields the FENE-CR model [23]. If in addition, and for a question
of simplicity, we make a further simplification:

Df (A)
Dt

≈ 0, (5)

then we obtain an implicit equation forτ :

τ + λ

f (τ)

∇
τ = 2ηp D, with f (τ) = L2 + (λ/ηp)Tr(τ)

L2 − 3
, (6)

which allows us to work directly withτ, without resorting to the tensorA. This model was used by
Coates et al. [24] who referred to it as the modified Chilcott–Rallison model and have also presented its
viscometric and elongational properties. In simple steady flows, the rheology is identical to that of the
original Chilcott–Rallison fluid model, and therefore, we expect the present results to represent closely
the flow of such a fluid. Clearly, if an effective relaxation time is defined asλ(γ̇ ) ≡ λ/f (Tr(τ)), we
see thatλ(γ̇ ) decreases with Tr(τ) increasing, thus, the model will be shear-thinning in the first normal
stress difference. When the extensibility parameterL2 (representing the ratio of the fully extended to the
equilibrium size of the molecule) tends to infinity,λ(γ̇ ) → λ and the Oldroyd-B model reappears.

Eq. (6) is the rheological constitutive equation used in the present study. It is straightforward to show
(see also [24]) that the material functions in simple shear are identical to those of the original FENE-CR
[23] and so studies with this latter model, and with the related FENE-P model, can be used as a guide in
choosing the material parameterL2. While early works tended to use high values, of the order∼103–104

([24], see discussion in [25]), there are arguments for using much lower values (∼10) for Boger fluids
[25,26], especially when the polymer concentration is high. Following the recent numerical study of
Remmelgas et al. [27], we have decided to takeL2 = 100 as a base value, and later check its effect upon
the calculations within the range 102 to 103 (100–1200), which covers most of theL2 values used in the
literature. For the flow around and past a cylinder, natural length and velocity scales are given by the
cylinder diameterd and the unperturbed far-away velocityU. Time is then scaled withd/U and Reynolds
and Deborah numbers are defined in the usual way,Re= ρUd/η andDe = λU/d, where the viscosity
of the solution is given byη ≡ ηs + ηp. The only parameter left to define is the ratio between polymer
and solvent viscosities. In studies with the FENE-CR this is usually given as a concentration parameter
c ≡ ηp/ηs which typically takes values of 0.1 for dilute solutions (e.g. [27]). Of course this value should
be chosen according to the fluid that one intends to model, but it is important to realise that low values
of c are to be expected when the concentration of the polymer in the solution is of a few 10–100 ppm. If
we denote this volumetric concentration byx, then, we haveη = xη′

p + (1 − x)η′
s = ηp + ηs whereη′
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represents intrinsic viscosities. Withx ∼ 10−5, we haveη′
s ≈ ηs andxη′

p = ηp, and soηp will be small
compared withηs. The retardation ratioβ ≡ ηs/η can be related toc by β = 1/(1 + c), and a value of
c = 0.1 gives a proportion of 9.1% for the polymer contribution to the total viscosity.

3. Numerical method

A fully implicit FVM is used, with non-orthogonal meshes (in general) and the collocated variable
arrangement [28]. The governing equations (Eqs. (2) and (6)) are integrated in space over the control
volumes (cells) forming the computational mesh, and in time over a time step (δt), so that sets of linearised
algebraic equations are obtained, having the general form:

aPuP =
6∑

F=1

aFuF + Su, (7)

to be solved for the velocity components, and

aτP τP =
6∑

F=1

aτF τF + Sτ, (8)

to be solved for the stress components. In these equationsaF are coefficients, accounting for convection
and diffusion influences,Sare source terms encompassing all terms not included in the coefficients, the
indexP denotes the cell in question andF its neighbour cells. The mesh is structured by blocks and the
cells are hexahedral, so in a general three-dimensional applicationF varies from 1 to 6; the dependent
variables (u, pandτ) are stored at the centre of the cells (collocated arrangement). The continuity Eq. (1) is
also discretised resulting in a net balance of convection fluxes through the cell faces, and this constraint is
used to obtain a pressure correction equation. Eqs. (7) and (8) can be viewed under the matrix formAx = b

for linear equation systems, and are solved by a bi-conjugate gradient solver. Details of all this were given
in a previous work [28] and so we can concentrate here on the changes introduced by the time-dependent
nature of the present method. Two relevant modifications are in order: (1) the time-dependent terms in
the governing equations need to be represented by a second-order scheme; and (2) the solution algorithm
needs adjustment (iteration within a time step is required). These issues are discussed below.

Amongst the different options to achieve second-order accuracy in time (see e.g. [29]) we decided to
use a second-order backward difference scheme (2BS) for the time derivatives (Φ is any variable):

∂Φ

∂t
≈ (1 + κ)Φn+1 − (1 + 2κ)Φn + κΦn−1

δt
, (9)

where the parameterκ controls the scheme. Ifκ = 0.5, we have the 2BS with error O(δt2); with κ = 0,
we have the implicit Euler scheme with error O(δt). The 2BS is of straightforward implementation in the
existing “time-marching” method; it has the drawback of requiring additional storage of the dependent
variables at the previous time levelsΦn andΦn−1. That extra storage is the same as that required by,
for example, a Crank–Nicolson scheme, which is also second-order (with better error constant), but is of
more complex implementation into the existing method. A minor drawback of the 2BS is that the cell
face fluxes cannot be formulated, without introducing too much complexity, in such a way that they will
be independent of the time step used in the calculations. For time-dependent flows this is not problematic
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and the error introduced can be viewed as a truncation error in time; the results to be presented show that
this error is negligible.

A description of the algorithm is facilitated by using a semi-discrete form of the equations. In this way, it
becomes clearer at which level the different variables and terms are updated. We assume that the solution
is known at time leveltn and we want to advance it totn+1. The algorithm is conveniently subdivided
into two steps: the objective of the first is to obtain a velocity field which satisfies simultaneously a form
of the momentum equations and the continuity equation; in the second, the stress is calculated, based on
existing kinematics. We start then with the momentum Eq. (2). As mentioned above, the net efflux from
cell P of convection and diffusion fluxes is represented with the coefficients, thus,

� · (ρuu − η� · u) ≈
∑
F

aF (uP − uF ) = a0uP −
∑
F

aFuF (10)

with a0 ≡ ∑
aF . The semi-discrete forms of the momentum and continuity equations to be solved are then(

a0 + (1 + κ)
ρV

δt

)
u∗∗
P −

∑
F

aFu∗∗
F = −�p∗ + � · τ∗ + S ′

u(u
∗)+ ρV

δt
((1 + 2κ)un − κun−1),

(11)

� · un+1 = 0, (12)

whereV is the cell volume andS ′
u represents additional source terms. Intermediate calculation levels within

a time step are marked with asterisks. Thus, in Eq. (11), the convection and diffusion terms represented by
the coefficients are treated implicitly when the equation is solved as a matrix equation foru∗∗ by means
of a biconjugate-gradient solver. Pressure is treated in a semi-implicit way, as described below, and the
stress divergence is evaluated explicitly (in the first iteration within a time step,p∗ andτ∗ are assigned
previous time-level values,pn andτn ). The equation set (11) and (12) represents the pressure–velocity
problem, which results in a Poisson equation for the pressure correction (p′ ≡ pn+1 − p∗) after writing
a factorised-step momentum equation as

a0u∗∗
P + (1 + κ)

ρV

δt
un+1
P −

∑
F

aFu∗∗
F

= −�pn+1 + � · τ∗ + S ′
u(u

∗)+ ρV

δt
((1 + 2κ)un − κun−1), (13)

and subtracting it from Eq. (11) to obtain

(1 + κ)
ρV

δt
(un+1

P − u∗∗
P ) = −�(pn+1 − p∗) = −�p′. (14)

Sinceun+1 is forced to satisfy continuity (cf. Eq. (12)), application of the divergence operator to this last
equation yields the pressure correction equation:

� · u∗∗ = � · 1

(1 + κ)(ρV/δt)
�p′. (15)

The matrix equation representing (15) is positive definite and is solved forp′ with a symmetric conjugate
gradient method as explained in [28]. Oncep′ is obtained, new time level values of pressure and velocity
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are calculated from

pn+1 = p∗ + p′, (16)

un+1 = u∗∗ − 1

(1 + κ)(ρV/δt)
�p′, (17)

where the last relation results from Eq. (14). We note that there is no need for any under-relaxation factor
in this updating process.

At this stage the pressure–velocity problem within the present time step is solved, and we can proceed
to the constitutive equation. Again, the time-dependent term in Eq. (6) is represented by the second-order
2BS scheme and the implicit equation to be solved forτ is

τn+1 + λ

f (τ∗)

[
(1 + κ)τn+1 − (1 + 2κ)τn + κτn−1

δt
+ � · un+1τn+1

]

= ηp(�un+1 + �uTn+1)+ λ

f (τ∗)
(τ∗ · �un+1 + �uTn+1 · τ∗). (18)

Careful attention must be paid to the discretisation of the convective term as a straightforward repre-
sentation with the upwind scheme simply leads to too much numerical diffusion, but some degree of
upwinding is required to retain the hyperbolic nature of the equation.

In this study, a special version of the second-order accurate, high resolution, SMART scheme [30] was
applied; details of this will be given in a forthcoming publication [31]. A demonstration of the benefits
brought about by high-resolution schemes (HRS) into viscoelastic flow computations can be found in
[32] which also explains the deferred correction procedure used to incorporate HRS in standard FVM.
Basically, the convection term is written as

λ

f (τ∗)
� · un+1τn+1 ≈

∑
F

aτF (τ
n+1
P − τn+1

F ) ≡ aτ0τn+1
P −

∑
F

aτF τn+1
F ,

where the coefficientsaτF contain convection fluxes calculated with the upwind scheme, and a corrective
term accounting for the HRS is introduced as a source term. The matrix form of the constitutive equation
is then[

V + aτ0 + (1 + κ)
λV

f (τ∗)δt

]
τn+1
P −

∑
F

aτF τn+1
F

= Sτ(un+1, τ∗)+ Sτ-HRS + λV

f (τ∗)δt
((1 + 2κ)τn − κτn−1), (19)

whereS�(u, τ) includes the terms on the RHS of Eq. (18), andSτ -HRS includes the HRS-related terms
(see [32]).

At this stage we have both the velocity and the stress at the new time level,un+1 and τn+1. This
algorithm, however, would be only first-order accurate (in time) because of the two following points:

1. In the pressure–velocity problem, we have introduced the approximated momentum Eq. (13) in order
to be able to derive a manageable form for the pressure correction equation (this is equivalent to
neglecting the convection/diffusion effects during the pressure update stage of the algorithm).
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2. Stress and velocity have been decoupled, that is,un+1 was based on the old-time level stress
(τ∗ = τn).

An effective way to overcome these problems is to iterate through Eqs. (11), (15)–(17) and (19); that
is,un+1 andτn+1 are viewed only as approximated values to the new time fields, are written asu∗ andτ∗,
and the algorithm is repeated until a convergence criterion is achieved. In most of the calculations to be
reported, the maximum normalised residuals of all equations (evaluated as theL1 norm) had to fall below
1% for iterative convergence within a time step. Depending on the value of the time step, the number of
iterations typically varied between 3 and 5; when the flow conditions were not fully developed in time, for
example in the first time steps when restarting from a field at a lowerDenumber, the number of iterations
tended to increase but, quickly after, would fall to constant values of the order given above.

In the present implementation, the coefficients and source terms (aF , S) were recalculated at every
iteration, so that the scheme faithfully represents a fully implicit scheme. We believe, guided by the
analysis given by Issa [33], that this is not a necessary requirement to guarantee second-order accuracy,
and important computer time savings can be gained if the coefficients are stored and re-used. Of course,
such time savings are realised at the expense of some additional storage memory. If this strategy is followed
(a matter for future research), then at each time step we are faced with an “explicitly” linear problem, with
algebraic linear equations to be solved for velocity and stress, and the stability of the procedure should
be enhanced. In fact, it becomes similar to the application of a factored or operator-splitting procedure,
such as PISO [33], when the number of correction stages is not fixed a priori, but is left to vary in order
to meet a convergence criterion.

We want to emphasise the point that the algorithm just described is not standard, even for Newtonian
calculations, in that it dispenses with the need to under-relax the equations at each time step. In a recent
study, Barton [34] proposed a different approach for time-dependent problems with Newtonian fluids,
where the under-relaxation factors varied within the time step in such a way that they became equal
to one at the last iteration, so that the solution at the new time would not depend on the value used
for those factors. We found that dispensing altogether with under-relaxation factors, by employing the
present algorithm based on the corrector momentum Eq. (13), yields very significant gains: Newtonian
runs starting from a rest state (t = 0), up to a fully developed shedding state (att = 200), took twice as
long in CPU time when the standard SIMPLE algorithm was used with under-relaxation factors of 0.8,
as compared with the present algorithm. In absolute terms this represents a gain of a few hours of CPU.
We note that all computations to be reported have been carried out in a portable PC running at 433 MHz.

4. Results

Results from application of the method described in Section 3 to the problem of vortex shedding from a
circular cylinder are presented and discussed. The discussion is divided into two main parts, one dealing
with the important question of accuracy of the temporal and spatial discretisation, and the other with the
physical effects of elasticity on the flow. As a base case we take the Newtonian flow at a Reynolds number
of 100, and then the relaxation time is gradually increased up to a Deborah number of 80, at a constant
value of the extensibility parameter,L2 = 100. The polymer concentration is assumed to bec = 0.1. At
a later stage, we study the effect of varying the Reynolds number (from 50 to 120) and the extensibility
parameter (from 100 to 1200).
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Table 1
Characteristics of the various computational meshes

Grids NC Nθ δrmin δrmax δsmin LH LV fr

Mesh-1 9600 160 0.02 2.3 0.02 60 60 1.0838
Mesh-2 38400 320 0.01 1.17 0.01 60 60 1.0410
Mesh-3 19860 180 0.02 0.477 0.02/0.0081a 30+ 15 30 1.0326b

a On rear of cylinder (wake region).
b Also usesfθ = 1.0309.

It will be shown that the second-order accuracy of both the temporal and the spatial discretisation
schemes is an essential requirement to making realistic predictions. Furthermore, the present calculations
exhibit many of the “elastic” effects observed in experiments: attenuation of vortex shedding frequency,
reduction of the lift coefficient and delay of vortex formation.

4.1. Accuracy

4.1.1. Effect of mesh refinement
Three non-orthogonal computational meshes have been employed to discretise the flow domain around

the cylinder, and their main characteristics are given in Table 1: total number of cells (NC); number of
cells around cylinder (Nθ ); minimum and maximum cell spacing along the radial (δrmin, δrmax) and the
tangential (δsmin) directions (values are normalised with cylinder diameterd); size of the computation
domain, in the main flow direction (horizontal,LH) and the cross-stream direction (vertical,LV); and
finally, the geometrical expansion factor user to concentrate the mesh around the cylinder surface (fr).
This latter factor is important because it indicates the rate of increase of the cell size, for two adjacent
cells, and it is necessary to keep it as low as possible to avoid degradation of the order of accuracy of the
spatial discretisation schemes. A Cartesian frame of reference is centred at the cylinder axis (see Fig. 1),
with x aligned with the undisturbed fluid velocityU. The two first meshes in Table 1 were designed to
assess the effect of consistent mesh refinement, and Mesh-2 was obtained from Mesh-1 after doubling the
number of cells in both directions, and using the square root of the expansion factors [35]. Mesh-3 was
then designed so as to have identical resolution near the cylinder as Mesh-1, but providing much better
resolution on the rear and the far wake regions of the cylinder (cf. the values ofδrmax); a portion of this
mesh is shown in Fig. 1.

On the two first meshes the inlet plane is placed atx = −30d, the outlet plane atx = +30d, and two
symmetry planes aty = ±30d. On Mesh-3, the lateral distance to the two symmetry planes was reduced
to y = ±15d, as well as the distance to inlet,x = −15d, but the wake extended up to the same distance
x = +30d. At the inlet plane a uniform streamwise velocityU was imposed and the stresses set to zero.
At the outlet plane, streamwise gradients (∂/∂x) for all variables, including the pressure gradient, were set
to zero. It has been checked that the position of both symmetry and outlet planes relatively to the cylinder
did not introduced any appreciable distortion of the flow field.

The size of the computational domain was designed so that the simulations would represent the un-
bounded flow around a cylinder. When the lateral distance from the cylinder to the symmetry planes is
too small, a blockage effect induces higher lift and drag coefficients, as compared to the unbounded case.
The values±15d were found adequate by Lilek et al. [29] for Newtonian calculations, who quote an error
<0.5% compared with simulations where the domain extended laterally to±25d.
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Fig. 1. Zoomed view of Mesh-3 (region,x/d = −1 to+10;y/d = −3 to−3) and sketch of flow domain (not to scale; in reality,
LV/d = 60 or 30).

For the base Newtonian case (De = 0, Re = 100) we obtained the values for the Strouhal number
(St≡ f Sd/U , f S = shedding frequency), and magnitude of lift and drag coefficients given in Table 2.
The time-dependent drag and lift coefficients are defined byCD ≡ Fx/0.5ρU2d andCL ≡ Fy/0.5ρU2d,
whereFx andFy are the components of the force on the cylinder, and the lift amplitude and mean drag
are then calculated as$CL = (CLmax − CLmin)/2 andC̄D = 0.5(CDmax + CDmin), respectively. In these
runs the second-order spatial and temporal schemes have been employed, and the dimensionless time

Table 2
Mesh refinement results (De= 0, Re= 100)

TL St $CL CDmax CDmin C̄D

Mesh-1 5.9986 0.1667 0.3489 1.3704 1.3491 1.3598
Mesh-2 6.0303 0.1658 0.3321 1.3568 1.3376 1.3472
Mesh-3 5.9886 0.1670 0.3425 1.3800 1.3603 1.3701
Our extrapolationa 6.0409 0.1655 0.3265 1.3523 1.3338 1.3430
[29] 5.9916 0.1669 0.3400 1.3663 1.3469 1.3566

a From Mesh-1 and -2.
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step value wasδt = 0.05 (recall the time units,d/U) which corresponds to 120 time steps for a period
of the fluctuating lift force on the cylinder. Initial conditions for these runs were completely symmetric,
basically corresponding to the situation of the fluid at rest, and the oscillatory flow was found to establish
itself naturally, after an initial set-up time of aboutt = 200, after which the variation with time ofCL

andCD was seen to be perfectly sinusoidal (that will be seen in later figures). So it was an easy matter
to extract from the graphCL versust the period of the oscillation, given in dimensionless terms byTL,
and the frequency of vortex shedding,St = 1/T L. Those values, obtained on the three meshes, are
given in Table 2 where the data from [29] are also given for comparison. That data were obtained from
Richardson’s extrapolation of the results of calculations on three consistently refined meshes, and so
serves well the purpose of assessing the present results. It is seen thatSton Mesh-1 or Mesh-3 is within
0.7% of the value on the fine mesh (this is a measurement of the accuracy of the present results). Values of
$CL andC̄D agree to within 0.7 and 1%, respectively, with those of [29]. The averageC̄D of [29] is higher
than ours on Mesh-2 and that might be an indication of the blockage induced error (Lilek et al., used
LV = 32). The same trend occurs for ourC̄D on Mesh-3, but the difference is still rather small (<1.7%).

We may, thus, conclude that the estimated accuracy of our results for the shedding frequency is<1%
on Mesh-3 and so we shall use that mesh for the remaining calculations. The effect of the time step and
discretisation scheme is now studied, with both Newtonian and viscoelastic flow cases.

4.1.2. Time discretisation
For the above Newtonian results the time step wasδt = 0.05 and the second-order backward scheme

was utilised to represent the time derivative terms. When the time step is halved toδt = 0.025, and then to
δt = 0.0125, the results in terms ofCL andCD are virtually unchanged, as shown in Fig. 2 and Table 3, for
the base viscoelastic case (De = 80,L2 = 100,Re= 100). Particularly in the figure the differences are
so small that cannot be distinguished, a sign that the second-order scheme provides good time resolution
even with a time step as large as 0.05, and so the discretisation errors are basically controlled by the
spatial discretisation. However, when the first-order Euler scheme is used instead, as in many other works
(e.g. [5–8,11,12]), the results in Fig. 2 and Table 3 show a considerable deterioration in precision. The
numerical diffusion-like effect of the first-order Euler scheme produces a generalised reduction on the
amplitude of the oscillations for bothCL andCD, and that effect is felt even for a time step as low as
δt = 0.00625 (reason why similarly lowδt are used in other works, e.g. [34]). By allowing a time step as
large as 0.05 (which, it is noted, corresponds to a maximum local Courant number of about≈3–6), but
yet retaining good temporal accuracy, the 2BS scheme and the present fully implicit method provide an
effective way of computing time-dependent flows in reasonable times.

Table 3
Effect of time-step with the second-order backward scheme (2BS) and the first-order Euler scheme

δt 2BS Euler

$CL C̄D $CL (×10−2) $CL C̄D $CL (×10−2)

0.05 0.1500 1.2962 0.17 0.0964 1.2592 0.145
0.025 0.1500 1.2966 0.175 0.1175 1.2746 0.075
0.0125 0.1501 1.2975 0.17 0.1311 1.2848 0.115
0.00625 – – – 0.1391 1.2910 0.135
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Fig. 2. Effect of time step size on the variation of (a)CL and (b)CD, using two time discretisation schemes: second-order
backward (2BS) and Euler schemes (viscoelastic case,De = 80,L2 = 100,Re = 100). Note that with 2BS, curves for the
variousδt coincide.

When the time step is too large, and when first-order time discretisation is coupled with first-order
spatial discretisation, damping of the amplitude of the oscillations, and of the mean value ofCD as well,
can be such that vortex shedding is suppressed altogether. This will be seen in the next results.

4.1.3. Spatial discretisation of convective terms
While the diffusive terms in the momentum equation, and the part of the Oldroyd derivative terms

in the constitutive equation which is put into the source term of the corresponding algebraic equa-
tion, can be easily evaluated by means of second-order schemes simply by using linear interpolation
in approximating the required cell face values, the same is not so simple for the convective terms. As
base second-order schemes we have implemented the central-difference scheme (CDS), via deferred
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correction, to represent the convective terms in the momentum equation, and the high-resolution also
second-order accurate (at least) scheme, CUBISTA [31], to represent the convective terms in the con-
stitutive equation. It is important to realise that accuracy higher than first-order is required in the mo-
mentum equation because the Reynolds number is high (Re = 100, in the base case), and in the con-
stitutive equation when the Deborah number is also high (De = 80 in the base case, withL2 = 100).
When the upwind scheme (UDS) is employed for the convective terms in both equations, the results
for the evolution ofCL and CD are as represented in Fig. 3. Numerical diffusion becomes so strong
that CL is dampened from limiting values of±0.1500 to±0.0626,CD becomes higher, but without
oscillations, and vortex shedding simply vanishes. These results, together with those of the previous
subsection, provide clear and ineluctable evidence for the need to using high-order schemes (at least

Fig. 3. Effect of spatial discretisation on the time variation of (a)CL and (b)CD (viscoelastic case,De = 80,L2 = 100,Re= 100,
δt = 0.05).
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second-order) if accurate solutions are to be expected in viscoelastic flow simulations. In this particular
flow case, it has been checked that vortex shedding behind the cylinder was again obtained when the
convection terms in the momentum equation were discretised with central-differences, but those in the
constitutive equation were still discretised with upwinding. Amplitude ofCL was however reduced by a
large amount.

4.2. Physical results

4.2.1. Influence of elasticity (atL2 = 100)
Experimental evidence has revealed [14–18] that even small amounts of a dissolved polymer, compared

to the purely Newtonian solvent, lead to a reduction in frequency of vortex shedding, larger wavelength
of the Karman street, increased length of the formation region just behind the cylinder, and alteration of
the form of the relative vorticity patterns. These observations have been correlated with (or explained
by) higher elongational viscosity of an elastic liquid and suppression of velocity fluctuations [17]. It is
interesting to see if the numerical simulations are able to reproduce these trends, in spite of the simplicity
of the constitutive model here employed.

Table 4 gives a summary of the main results obtained when elasticity is increased, by increasingDe
at a constantRe= 100 andL2 = 100. We see that for this base case, asDe goes from 0 to 80, the lift
oscillation period is increased by 5.8% while the frequency measured by the Strouhal number is reduced
in the same proportion. This effect is made clearer in Fig. 4, which shows the variation with time of
the lift coefficient for the Newtonian case (curve with solid line) and the viscoelastic case,De = 80
(curve with dashed line). The time origin was chosen arbitrarily at a moment within the fully-developed
oscillatory regime in whichCL reaches a minimum; both curves exhibit a perfectly sinusoidal behaviour,
maintaining the period and amplitude. Not only is the frequency of the shedding in the viscoelastic flow
case markedly lower compared with the Newtonian case, but also the amplitude of the lift coefficient. In
fact, damping of maximum values of lift and drag by elasticity is stronger than damping in frequency,
as shown by the plot of$CL and$CD versusDe in Fig. 5. For a Deborah number larger than around

Table 4
Results for increasing Deborah number (Re= 100,L2 = 100)

De St $CL C̄D $CD (×10−2) CDmax CDmin u′a υ ′a

0 0.1670 0.3425 1.3701 0.985 1.3800 1.3603 0.0499 0.316
0.5 0.1659 0.3234 1.3795 0.900 1.3885 1.3705 0.0469 0.300
1.0 0.1644 0.2901 1.3732 0.735 1.3806 1.3659 0.0402 0.282
2.0 0.1620 0.2404 1.3527 0.510 1.3578 1.3476 0.0287 0.237
3.0 0.1605 0.2133 1.3386 0.400 1.3426 1.3346 0.0231 0.215
4.0 0.1597 0.1977 1.3296 0.345 1.3330 1.3261 0.0201 0.201
5.0 0.1591 0.1878 1.3235 0.310 1.3266 1.3204 0.0186 0.191

10 0.1579 0.1669 1.3098 0.235 1.3121 1.3074 0.0161 0.172
20 0.1575 0.1565 1.3022 0.195 13041 1.3002 0.0151 0.161
40 0.1576 0.1521 1.2983 0.180 1.3001 1.2965 0.0147 0.155
60 0.1577 0.1507 1.2970 0.175 1.2987 1.2952 0.0147 0.156
80 0.1578 0.1500 1.2962 0.170 1.2979 1.2945 0.0147 0.157

a At 1d behind cylinder (y = 0); lateral velocity rmsυ ′ = ((υ − ῡ)2)1/2/U (similarly for axial rmsυ) .
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Fig. 4. Comparison of Newtonian (solid line) and viscoelastic (De = 80, dashed line) lift coefficient.

De ≈ 20–30, no further reduction in the lift and drag coefficients is observed. This may be explained by
noting that the relaxation time of the fluid is then larger than the period of vortex shedding (T L ≈ 6.35)
and the controlling time scale becomes the latter.

The relative difference between the Newtonian Strouhal number (StN) and the viscoelastic Strouhal
number (StV) is shown in a log–log plot, as a function of elasticity (De), in Fig. 6. For comparison,
the line expressing the average rate of decay passing through the experimental data of Usui et al. [18]
(StN − StV ∼ De0.32) is also plotted. It should be recalled that the present predictions in Fig. 6 are
for the modified FENE-CR model with a constant extensibility parameterL2 = 100, whereas the data

Fig. 5. Reduction of the amplitude of the drag and lift coefficients with elasticity (L2 = 100).



128 P.J. Oliveira / J. Non-Newtonian Fluid Mech. 101 (2001) 113–137

Fig. 6. Predicted difference between Newtonian and viscoelastic Strouhal numbers as a function of Deborah number (L2 = 100).
Comparison with rate-of-decrease curveDe0.32 given by Usui et al. [18].

given in Fig. 4 of Usui et al. [18] and fitted by the above curve correspond to a polyethylene oxide
solution under different concentrations, and the relaxation time used to defineDe in that work was
estimated in a rather arbitrary way. In any case it is interesting to see that the experimental rate of
decay of the Strouhal number withDe found by Usui et al. is very approximately followed by the
present predictions in a decade or so ofDe. Considering that the experimental results of Usui et al. show
some spread around the line fit they proposed, the comparison in Fig. 6 is encouraging, and in fact the
deviation of the predictions from the fitted rate of decay is also seen in the experimental data (see Fig. 4
in [18]).

Streaklines for the base Newtonian and viscoelastic cases (De = 0 and 80) are shown in Fig. 7.
These were obtained by tracking massless particles released every time step (here,δt = 0.05) from
four positions very close to the upper side of the cylinder and four positions on the lower side. It
is already apparent that the low-velocity formation region behind the cylinder is longer for the vis-
coelastic fluid and that, on the other hand, the vorticity of the Newtonian eddies detached from the
cylinder is stronger (these vortices are more rolled-up). With increased elongational viscosity (by in-
creasingL2), those aspects of the vortical pattern are accentuated and will be further discussed below
(Section 4.2.3).

4.2.2. Effect of Reynolds number
The Reynolds number was varied in the rangeRe = 50–120, for both the Newtonian and the base

viscoelastic cases (De = 80,L2 = 100), and the resulting predictions in terms ofSt, CL, CD andX̄r

(time average length of recirculation zone) are summarised in Table 5 and plotted in Figs. 8 and 9. In
Fig. 8, our prediction of Strouhal number versusRe for the Newtonian case are compared with curve
fits to experimental data proposed by Williamson [36] (St= 0.1816− 3.3265/Re+ 1.6 × 10−4Re) and
by Roshko [37] (St= 0.212− 4.5/Re), and also with the finite-volume numerical results of Lilek et al.
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Fig. 7. Streaklines for the base Newtonian (a) and viscoelastic (b) cases.

[29]. Very good agreement is found with the predictions of [29] and the agreement is also good with
Roshko fit. This quantitative agreement gives confidence on the correctness of the present method and
its computer implementation. The viscoelastic data lie below the Newtonian, reflecting the tendency for
vortex suppression induced by the elastic stresses, and of course in this case we do not have experimental
or other data for comparison.

It is not only the frequency of vortex shedding which is reduced by elasticity effects, but even more
strongly so the amplitude of the lift coefficient, as shown in Fig. 9a where we see a reduction to half
of theCLmax at Re= 120. The average drag accompanies that tendency and falls withRe(Fig. 9b), for
both the Newtonian and viscoelastic cases, while being lower for the viscoelastic case, on account of the
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Table 5
Results for increasing Reynolds number

Re St X̄r $CL CDmax CDmin C̄D

Newtonian
50 0.1261 2.393 0.0602 1.4764 1.4761 1.4762
60 0.1380 2.076 0.1360 1.4403 1.4382 1.4392
80 0.1552 1.644 0.2516 1.3998 1.3905 1.3952

100 0.1670 1.402 0.3425 1.3800 1.3603 1.3701
120 0.1757 1.229 0.4256 1.3741 1.3415 1.3578

Viscoelastic (De= 80,L2 = 100)
50 0.1217 2.826 ≈0.0 1.4783 1.4783 1.4783
60 0.1288 2.969 0.0252 1.4010 1.4010 1.4010
80 0.1459 2.478 0.0901 1.3328 1.3317 1.3322

100 0.1578 2.065 0.1500 1.2979 1.2945 1.2962
120 0.1684 1.742 0.2106 1.2833 1.2756 1.2794

fact that the forming vortices remain attached for longer periods at the rear of the cylinder. For lower
Rewhen the flow is steady, that trend is reversed: drag is higher for the viscoelastic fluid, as found by
[19–21]. Numerical results not shown here confirm this trend which is already apparent from theCD

variation in Fig. 9b. A point worth noting in Fig. 9a is that, atRe= 50 vortex shedding is completely
suppressed for the viscoelastic fluid ($CL ≈ 0), while for the Newtonian fluid it is known that the
vortex street is initiated at aboutRe= 46. This feature is reflected on the sudden variation of the average
recirculation length (̄Xr) behind the cylinder shown in Fig. 10.X̄r was computed as the time average over
many shedding cycles of thex value along the centreline behind the cylinder (y = 0) at whichu was
zero. It is an interesting quantity in that it reveals how viscoelasticity tends to delay vortex formation by

Fig. 8. Strouhal number vs. Reynolds number for the Newtonian and viscoelastic case (De = 80,L2 = 100). Comparison with
other sources.
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Fig. 9. Effect of Reynolds number on the (a) amplitude of lift, and (b) mean drag, for the Newtonian and viscoelastic case
(De = 80,L2 = 100).

extending the length of the formation zone behind the cylinder. Further evidence for this will be given
in the next subsection where the formation zone is illustrated by means of streaklines. In Fig. 10,X̄r

predictions of Kim and Choi [38] are also plotted for the purpose of comparison; they used an unstruc-
tured finite-volume method and, once more, our Newtonian results follow very well these independent
data.

4.2.3. Effect of model parameter L2

When the extensibility parameterL2 is raised, the FENE model here employed predicts higher elon-
gational viscosity in a uniaxial flow; ifL2 tends to infinity, then the model becomes the Oldroyd-B with
a well-known singularity in the elongational viscosity at a finite stretch rate. It is common in the lit-
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Fig. 10. Variation of the time mean length of the recirculation zone behind the cylinder with the Reynolds number, for the
Newtonian and viscoelastic case (De = 80,L2 = 100). Comparison with other sources.

erature to find applications of the FENE-CR withL2 = 100 (or lower), e.g. [25], but values as high
as ≈1200 are also found (e.g. [27]). The results of varyingL2 from 100 to 1200 at constant values
of De = 1 andRe = 100 are given in Table 6. At this relatively low Deborah number, the trends
are similar to those resulting from increased elasticity: the shedding period increases very slightly (by
about 1.9%), so frequency is reduced as are the amplitude of the lift coefficient and the velocity fluc-
tuations. A zoomed view of the instantaneous streamlines is shown in Fig. 11 where it is apparent
that L2 tends to increase and distort the formation zone behind the cylinder, features that may ex-
plain the slight rise ofCD seen in Table 6 as a consequence of a distorted pressure field around the
cylinder.

What is more interesting is the effect of increasedL2 coupled with higher elasticity, as measured by
De. For the highest tested value ofL2 = 1200, Table 7 gives a summary of the results obtained for
De = 1, 2 and 3. ForDe = 3.5, we were not able to obtain converged results, even after lowering the
time step toδt = 0.00625, and then to 0.003125. The shedding period is seen to increase by 11% (and
the Strouhal number to decrease by the same margin), whenDerises from 1 to 3, and this is accompanied

Table 6
Results for varying extensibility parameterL2 (De= 1, Re= 100)

L2 δt TL St $CL CDmax CDmin υ ′

100 0.05 6.0816 0.1644 0.2901 1.3806 1.3659 0.282
200 0.05 6.1150 0.1635 0.2790 1.3858 1.3721 0.267
300 0.05 6.1334 0.1630 0.2746 1.3903 1.3771 0.267
600 0.025 6.1643 0.1622 0.2673 1.4025 1.3897 0.263
900 0.025 6.1810 0.1618 0.2663 1.4133 1.4005 0.261

1200 0.025 6.1961 0.1614 0.2662 1.4221 1.4092 0.260



P.J. Oliveira / J. Non-Newtonian Fluid Mech. 101 (2001) 113–137 133

Fig. 11. Instantaneous streamlines around the cylinder atDe = 1 andRe= 100, for: (a)L2 = 100; (b)L2 = 1200.

by a strong damping in lift and velocity fluctuations. The time history ofCD andCL is shown in Fig. 12;
while for De = 1 the variation is perfectly sinusoidal, asDe is raised the variation becomes more erratic,
with the maxima inCL andCD varying with time and no longer retaining constant magnitudes. Close
inspection of Fig. 12a even shows thatCD at De = 3 does not follow anylonger a sinusoidal variation,
though the period remains approximately constant, without the need to apply fast-Fourier-transform
analysis in order to extract the predominant frequency. Streaklines for the three cases of Table 7 are
shown in Fig. 13; we note that the same number of massless particles are released per unit time for
the three cases, even if the time step used in the computations was smaller for the casesDe = 2 and
3 (see Table 7). This figure is very elucidative and closely mimics the photos of flow visualisation in

Table 7
Results for varyingDeat fixedL2 = 1200

De δt TL St $CL CDmax CDmin υ ′

1 0.025 6.1961 0.1614 0.2662 1.4221 1.4092 0.260
2 0.0125 6.6235 0.1510 0.09594 1.4042 1.3832 0.117
3 0.0125 6.875 0.1454 0.041a 1.413a 1.387a 0.0626

a Varies.
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Fig. 12. Effect of elasticity at highL2 (L2 = 1200;Re= 100) on: (a)CD; (b) CL . De = 1 (solid line);De = 2 (small dash);
De = 3 (long dash).

[14] (his Fig. 1), [15] (their Fig. 3), and [17] (their Fig. 1). In these experiments, more elastic fluids
were obtained by varying the polymer (typically polyethylene oxide) concentration or its molecular
weight. The fluid with larger relaxation time in [15] showed an extended transition or formation zone
behind the cylinder, where the motion is much slower, exactly as our predictions show in Fig. 13, going
from De = 1 to 3. The inhibition of vortex formation and increase in the vortex street wavelength are
also clearly seen in Fig. 13. Our predictions with highL2, and consequently with increased elongation
viscosity of the model fluid, are also in agreement with comments made by Cressman et al. [17] who
related the effect introduced by the polymer to an “elongational viscosity term” in the Navier–Stokes
equations.
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Fig. 13. Streaklines for increasing elasticity at constantL2 = 1200: (a)De = 1; (b)De = 2; (c)De = 3.
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5. Conclusions

A finite-volume method for the computation of time-dependent viscoelastic flows is described and is
then applied to simulate vortex shedding behind a circular cylinder, for a type of FENE-CR fluid model.
The benefits, and in fact the necessity, of employing second-order schemes in time and space are amply
demonstrated. In addition, the following conclusions could be drawn from the present results:

1. The formation length behind the cylinder is greatly increased for the elastic fluid. It is about 1.40d
for the Newtonian fluid (Re = 100) and≈2.06d for the case atDe = 80 (L2 = 100). When the
extensibility parameter of the viscoelastic model is raised, thus inducing larger elongational viscosities,
the formation length is extended even farther (being≈2.4d at De = 2 and 3.5d at De = 3, with
L2 = 1200). This effect closely mimics the experimental photographs of [14–17] (compare with our
Fig. 13).

2. The vortex shedding frequency is attenuated by elasticity, with the calculated rate of decrease of the
Strouhal number with the Deborah number, in a decade or more ofDe, closely matching that found
by Usui et al. [18] in their experiments. This point is related to the observed tendency for reduced
aspect ratio of the wake (wavelength divided by lateral separation between vortex centres) reported in
various experimental works of Cadot and coworkers [14–16].

3. Time-averaged rms fluctuations of the lateral velocity component are also much reduced, when small
amounts of a polymer are added to a Newtonian solvent. This fact, experimentally observed by Cress-
man et al. [17], is also corroborated by the present simulations (υ ′ calculated on the centreline at a
distance of 1d behind the cylinder is reduced by a factor of 4.2, whenDe is raised from 1 to 3, with
L2 = 1200), and could be related to the phenomenon of drag reduction.
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