
I.J. Intelligent Systems and Applications, 2019, 1, 1-12
Published Online January 2019 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijisa.2019.01.01

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

Method for Unit Self-Diagnosis at System Level

Viktor Mashkov
Jan Evangelista Purkyně University in Ustí nad Labem, Ustí nad Labem, Czech Republic

E-mail: viktor.mashkov@ujep.cz

Volodymyr Lytvynenko

Kherson National Technical University, 73008 Kherson, Ukraine
E-mail: immun56@gmail.com

Received: 06 August 2018; Accepted: 25 October 2018; Published: 08 January 2019

Abstract—This paper suggests unconventional approach to
system level self-diagnosis. Traditionally, system level
self-diagnosis focuses on determining the state of the units
which are tested by other system units. In contrast, the
suggested approach utilizes the results of tests performed
by a system unit to determine its own state. Such
diagnosis is in many respects close to self-testing, since a
unit evaluates its own state, which is inherent in self-
testing. However, as distinct from self-testing, in the
suggested approach a unit evaluates it on the basis of tests
that it does not performs on itself, but on other system units.
The paper considers different diagnosis models with
various testing assignments and different faulty
assumptions including permanent and intermittent faults,
and hybrid- fault situations. The diagnosis algorithm for
identifying the unit’s state has been developed, and
correctness of the algorithm has been verified by computer
simulation experiments.

Index Terms—System-level diagnosis, self-diagnosis,
intermittent fault, hybrid-fault situations, computer
simulation.

I. INTRODUCTION

System level self-diagnosis was introduced by Preparata
et al. [1] and since then it has been deeply investigated in
a number of researches [2,3]. It aims at diagnosing
systems composed of units, with the requirement that they
are able to test each other by exchanging data through
available links. At this level of diagnosis, each particular
test is considered as atomic, which means that the details
of test are abstracted (i.e., not considered), and only the
result of test is taken into consideration.

As a rule, decision about the state of a system unit is
made on the basis of the results of tests performed on it
by other system units. In view of this, testing assignment
and the number of testing units are very important for
system diagnosis [4].

The decision about the state of a system unit can also be
made on the basis of comparison of the outcomes
produced by one unit with the outcomes produced by other
units [5]. It is worth noting that comparing testing, as a
self-diagnosis tool, was developed only for homogeneous

systems. In case of comparing testing, a test is a
comparison of the outputs between paired units
performing the same task. Comparing the outputs from
two units, it allows only to detect, but not to diagnose a
failure. Comparing the outputs from more than two units,
it allows to diagnose certain number of faulty units (resp.
fault-free units) depending on the chosen diagnosis
technique.

Recently, a comparison-based diagnostic model has
been widely used in mobile ad-hoc networks [6,7] and
swarm systems. Swarm systems can be found in nature
and engineering areas. Examples of engineering swarm
systems are systems such as unmanned vehicle formation
systems, multi-robot systems, sensor networks [8,9]. A
swarm system consists of nodes and the topology of
nodes. The nodes are intelligent which means that they
can process data by themselves. Nodes can communicate
by exchanging of messages. Nodes of swarm system are
prone to failure due to energy depletion and to their
possible deployment in a harsh or hostile environment.
Faults of nodes and faults related to the topology have
significant influences on the operation of a swarm system
and may have serious consequences. In view of this, the
task of fault diagnosis is very important and still requires
developing of more effective diagnosis methods and
algorithms.

Generally, fault diagnosis in the swarm systems can be
performed either by external diagnostor or by inner
system resources. Although the external diagnostor can
perform more effective fault detection by comparing to
the system nodes, communication between the nodes and
the external diagnostor can be problematic [5]. That is
why much attention should be given to the fault detection
based on the testing performed by system nodes (i.e.,
system self-diagnosis). Such self-diagnosis employs one
of the following three architectures: centralized,
hierarchical and distributed architecture [8]. Centralized
architecture uses one of the system nodes as an embedded
diagnostor (or central node). Other nodes are not capable
to perform diagnosis and they only send necessary
messages to the diagnostor [10-12]. The main drawbacks
of the centralized architecture are: strong dependence on
reliability of embedded diagnostor; dependence on the
state of communication between embedded diagnostor and
system nodes; both communication load and computation

mailto:viktor.mashkov@ujep.cz
mailto:immun56@gmail.com

2 Method for Unit Self-Diagnosis at System Level

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

load are increasing rapidly as the number of nodes
increases. A hierarchical architecture was introduced in
order to improve the scalability and reliability of the
centralized fault diagnosis. In the given case, local
diagnosis information is sent to the next layer of
architecture for further diagnosis [13,14]. This
architecture also depends considerably on reliability of
system nodes. Apparently, a lesser is more extent than the
centralized architecture. Distributed architecture was
proposed to improve both centralized and hierarchical
architectures. In this architecture, all nodes are equipped
with fault diagnosis algorithm. Fault diagnosis for a node is
achieved in a collaborative way and the results of the
algorithms in the neighbors of the monitored node are all
needed [15,16]. It is worth noting that distributed
architecture is much more reliable than the centralized one
and the hierarchical one. As a limitation of this
architecture, we can consider the fact that each node may
use incorrect information received from other nodes (i.e.,
this architecture depends considerably on reliability of
information which a node receives from its neighbors).

System units can be subject to sophisticated attacks
which attempt to manipulate the outputs of each unit [17].
In case, when system units are deployed in a hash or
hostile environment, probability of fault of each unit is
generally expected to be high [5]. Therefore, related or
multiple faults of units are very probable. At present,
some problems of fault diagnosis in swarm systems still
remain. First, this concerns the topologies that may fail or
change dynamically and the heterogeneous units [8]. In
this paper, we propose the new method of system self-
diagnosis which can cope with all these situations (i.e.,
related or multiple faults of system nodes, changing
topology and heterogeneity of nodes). Our method
utilizes the results of series of tests performed by a node on
other system nodes. The proposed self- diagnosis can deal
with arbitrary topology (in the given case, it is called
testing environment) and can be applied to heterogeneous
systems in which a system node cannot be diagnosed by
other system nodes. The proposed self-diagnosis can also
cope with detecting and identifying the intermittent faults
of nodes. An intermittent fault is a fault that produces
negative effect only part of the time.

The key idea of this self-diagnosis consists in forcing
the faults of a node to exhibit themselves during the
testing which a node performs on other nodes.
Particularly, the node faults could influence the results of
tests. For each particular type of swarm system (e.g.,
multi-robot systems, sensor networks) evaluation of such
influence can be done on the basis of results of special
research. However, this task is beyond the scope of this
paper. In the paper, we assume that a fault of a system
node has effected the test results, and this fact is used for
the fault detection. We also assume that each system node
has a fault-tolerant part which always allows it to
diagnose itself correctly. Similar assumption is made for
self-testing of multiprocessors [18]. For the
implementation of the method, it needs that a unit is
capable to perform tests on its neighbors. The simulation
performed on the basis of the proposed method enable

evaluating the performance of the developed diagnosis
algorithm and showing the efficiency of the suggested
approach in the situations when majority of other
approaches yield unsatisfactory results (e.g., in the
situations when more than half of the system units are
faulty).

The proposed diagnosis procedure is time consuming.
In view of this, the paper focuses on the issue of
determining the time needed for correct diagnosis.
Particularly, we have determined how many times a unit
must test the other system units in order to achieve
highly credible result of diagnosis. The proposed self-
diagnosis was first introduced in previous research work
[19]. In this paper, we have modified and improved the
diagnosis of intermittent faults and performed complete
modeling of unit’s self-diagnosis.

In the following sections, it will describe related works
on the given topic in section 2. It will describe a proposed
unit’s self-diagnosis for different faulty assumptions
section 3. The developed diagnosis algorithm is presented
in section 4. The results of the performed computer
simulation are shown in Section 5.

II. RELATED WORK

Comparison-based system level diagnosis has been
researched in many papers, and it has been analyzed and
structured in many surveys. This diagnosis was
considered for possible implementation in wireless sensor
networks, in multi-robot systems, in many-core
processors and other areas.

In case of wireless sensor networks, researchers take into
account the network topology (changed or fixed), types of
possible node and communication faults (permanent or
transient/soft/intermittent), protocol of communication
among the nodes (one-to-one, one-to-many, one-to-all).
Also, different comparing-based models were proposed
(e.g., generalized, broadcast, probabilistic).

Application of comparison-based model in sensor
networks allows a sensor node to identify its own status
based on the information received from the neighbors [17,
20-22]. Alternatively, node state can be determined by the
other system nodes [23, 24]. In case of multiple or related
faults of sensor nodes, the unit diagnosis may be
incorrect.

The developed comprehensive mutual diagnosis [25] is
built on top of self- tests and presents a combination of
self-testing and comparing approach. This diagnosis
applied to multi-core arrays implies that each core first
executes itself tests and generates a test signature. Then,
it sends this signature to its four neighbors. Each core
compares its own signature with those received from its
neighbors. Comparing of signatures allows the core to
detect faulty neighbors. The proposed in [25] mutual
diagnosis also depends considerably on the state of the
unit neighbors. The majority of comparison-based models
impose an upper bound on the number of faulty units in
the system. Some researchers consider faulty situations in
which multiple and/ or related faults take place. Related
faults or common faults consist of some system units

 Method for Unit Self-Diagnosis at System Level 3

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

simultaneously become faulty due to the same reason. J.
Xu in [26] proposed to combine comparison testing with
t/(n-1) - variant programming. It is worth noting that the
adjudicator (i.e., diagnostor) in this scheme intends to
detect only the correct variant. However, in practice it is
also important to detect the faulty units (variants). In [27],
the adjudicator with extended functionality was presented.
This adjudicator allows to detect not only the correct
units but also all the faulty ones. Both these papers
consider independent and related faults. It is worth noting
that these schemes were designed only for software
systems to provide their fault-tolerance.

Mostly, the self-diagnosis performed on the basis of
comparison-based model is used to detect permanently
faulty system units [28, 22]. S. Chessa and P. Santi [24]
have considered the problem of fault identification in ad-
hoc networks and presented a comparison-based
diagnostic model based on the one-to-many
communication paradigm. In this paper, the authors
showed how both hard and soft faults can be detected. M.
Elhadef et al. [6] have presented distributed comparison-
based self-diagnosis protocol for wireless ad hoc networks.
The proposed protocol identifies hard and soft faults. P.M.
Khilar [29] proposed a distributed fault diagnosis
algorithm for wireless sensor networks to diagnose
intermittently faulty sensor nodes. It is worth noting that
these researches do not consider a model to describe the
behavior of soft/intermittent faults. However, the different
behavior of such faults can have different impact on the
system. A more detailed consideration of system faults
which are different from hard faults will allow to provide a
more effective system recovery.

Using the Bayesian approach for system diagnosis is a
common practice. B. Krishnamahari and S. Iyengar [30]
presented Bayesian fault recognition algorithm to solve
the fault-event disambignation problem in sensor
networks. X. Luo et al. [31] have proposed a fault-
tolerant energy-efficient event detection paradigm for
wireless sensor networks and presented Bayesian
detection method.

In our paper, we also use this well-known approach to
diagnose the state of a system unit. However, in this case,
the event that a fault unit is split into three events.
Explanation of such splitting is given in Section 5.

III. BASICS OF UNIT`S SELF-DIAGNOSIS

Normally, system level self-diagnosis provides unit
diagnosis on the basis of the results of tests performed on
the diagnosed unit. In view of this, the number of fault-free
testing units and, consequently, the system testing
assignment are very important for correct unit diagnosis
[4].

In contrast, we propose to deal with the results of tests
which a unit performs on other system units. It is expected
that test results produced by a fault-free unit will be
different from those produced by a faulty unit. Quality of
such diagnosis depends considerably on the number of
tested units, on the number of tests performed on each
tested unit and also on the states of tested units.

For elucidation of the main parts of the proposed self-
diagnosis, we consider a simple example (Fig.1) with
only one tested unit. It is assumed that unit ui has
performed m identical successive tests on unit uj. It is
also assumed that the states of testing and tested units do
not change while all m tests are performed. We consider
that each test result rij can take the value either 0 or 1,
which depends on the states of tested and testing units
and on the assumptions made in relation to the test
results.

Fig.1. Repeated testing of unit uj .

Assumptions made about test results and their
probabilities can be expressed with the help of Fig.2.

Fig.2. Test results and their probabilities.

In Fig.2, the following denotations are used:
PC is the probability that a fault-free unit will correctly

diagnose a tested fault-free unit. This probability takes
into consideration the fact that connection between units
can fail;

PT is the probability that a fault-free unit will correctly
diagnose a tested faulty unit. This probability reflects the
quality of test (e.g., fault coverage);

PS is the probability that a faulty unit will produce the
test result equal to 1 when a tested unit is fault-free;

PF is the probability that a faulty unit will produce the
test result equal to 1 when a tested unit is faulty.

The assumptions made about test results can be
specified and quantified. For example, PMC model [1]
considers the following assumptions:

 Only permanent fault of a unit is possible;
 A fault-free unit always detects a fault in a tested

unit (i.e., 100% fault coverage);
 Result of the test performed by a faulty unit is

unpredictable not depending on the states of tested

4 Method for Unit Self-Diagnosis at System Level

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

units and can take the values either 0 or 1 with
equal probability.

When the assumptions of PMC model are taken into

consideration, the following specifications of the
probabilities are possible: PC = 1, PT = 1 and PS = PF =
0.5. If the assumptions made in PMC model are applied
to the test results in the considered example, then only
two different tuples are possible (under the condition that
unit ui is fault-free). Each tuple has the length of m and
consists of the results of single tests.

The first tuple T0 = (0, 0, .., 0) will be obtained when
tested unit is fault-free, whereas the second one T1 = (1,

1, .., 1) will be obtained when tested unit is faulty. When
unit ui is faulty, the tuple will be obtained, with great
probability, contain both 0 and 1. It is followed by the
assumptions which made about test results. Thus,
diagnosis algorithm consists in the following. If the
obtained tuple is either T0 or T1, then the testing unit is
fault-free. Otherwise, the testing unit is faulty. It is worth
noting that faulty unit can also produce tuple equal to
either T0 or T1. Probability of such result, Pfn , which can
be determined as

0 1fn T T
P P P (1)

where PT 0 is the probability of obtaining tuple T0, PT 1 is
the probability of obtaining tuple T1.

If it assumes that all units have the same probability of
fault, q, then

 0 1 1 1
m m

T S F
P q P q P (2)

 1 1 m m

T S F
P q P qP ; (3)

1 1 1

1

m m

fn S F

m m

S F

P q P q P

q P qP

 .
 (4)

Probability Pfn reflects Type II errors, and can be used

for evaluating credibility of the performed diagnosis, D.

1`
fn

D P . (5)

Fig. 3 and Fig. 4 give the idea of how parameters m, q,

PS and PF can influence the credibility of diagnosis result.
The proposed diagnosis will slightly change if some of

the assumptions made about test results are different from
those that are accepted in PMC model. For example, we
can accept the assumptions of BGM model [32] according
to which a faulty testing unit will always produce the
result equal to 1 when it tests any faulty unit (i.e., PF = 1).
Thus, one tested unit is used.

Fig.3. Functional dependence D = f (PS).

Fig.4. Functional dependence D = f (m).

Thus, the proposed diagnosis becomes less effective
when only one tested unit is used. The effectiveness of
the proposed diagnosis can be raised by using several
tested units (Fig.5).

Fig.5. Repeated testing of k units.

When k tested units are used, we can expect, with great
probability, that at least one of the tested units will be
fault-free. This probability is equal to 1 − q

k. Since a
faulty testing unit after testing a fault free unit, it will get
great probability (denoted as PE), and produce the tuple
different from T1 and T0, we can use this fact as the basis
for diagnosis algorithm. Probability PE can be computed
as

 1 1
mm

E S S
P P P (6)

 Method for Unit Self-Diagnosis at System Level 5

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

If testing unit is fault-free, all of the obtained tuples
will be equal to either T0 or T1, which depends on the
states of tested units. Thus, diagnosis algorithm is as
follows. If each of the obtained tuples is either T0 or T1,
then testing unit is fault-free. Otherwise, testing unit is
faulty.

Credibility of such diagnosis can be evaluated on the
basis of probability PE. Diagnosis will be incorrect if
testing unit is faulty and event Ai, i ∈ [0, 1, .., k] takes place.
Here Ai is the event when i tested units are fault-free, and
each of the tuples is either of type T0 or T1. Probability of
event Ai is determined as

 1
ik k i i

i i d
P A C q q P

 () (7)

where probability Pd = 1 − PE.

Probability of incorrect diagnosis, PID is equal to:

0

1 1 1

k

k k i i i
i dID

i

D P C q q P

 () (8)

Thus,

0 0

1
k k

k k i i i
ID i i d

i i

P P A C q q P

 () () . (9)

It is worth noting that the probability of incorrect

diagnosis, PID is computed under the condition that
testing unit is faulty. Fig.6 and Fig.7 shows the idea of
how parameters m, q, k and PS influence the credibility of
proposed diagnosis.

Fig.6. Functional dependence D = f (m) for the best case.

Fig.7. Functional dependence D = f (m) for the case of PS = 0.1.

Fig.6 presents the results for the case of PS = 0.5. In the
given case, credibility of diagnosis is greater than the
credibility obtained for PS ≠ 0.5. Fig.7 depicts the
credibility of diagnosis for PS = 0.1. Even for this worse
case, the number of test repetitions doesn’t exceed a few
dozens. For example, for k > 2, it is sufficient to repeat
the tests 14 times to obtain highly credible result of
diagnosis.

IV. DIAGNOSIS OF INTERMITTENT FAULT

Intermittent faults can be defined as the faults whose
presence is bounded in time. More precisely, a unit can
possess an intermittent fault but the effect of this fault is
present only part of time. The amount of time of
diagnosis procedure, td is important for diagnosis of
intermittent faults. Depending on the amount of time td

and on its position on the time axis (Fig. 8), the same fault
may be identified as a permanent fault (case of td

1) and as
an intermittent fault (case of td

2). There is also probability
that the effect of intermittent fault will not be present
during diagnosis procedure (case of td

3).

Fig.8. Diagnosis procedure and effect of intermittent fault.

Many researches have been done on the problem of
diagnosis of intermittent faults. For instance, in [33], S.
Kamal and V. Page considered the problem of the
required number of test repetitions before a decision
about the state of a digital circuit is made. At the
beginning of testing, unit’s state is indefinite. Testing
procedure (i.e., repetition of tests) is terminated either
when a fault is detected, or on the basis of a decision rule.
The authors suggested several decision rules for
termination of testing procedure with the outcome
indicating unit’s fault-free state. According to their
research, the presence of intermittent fault in a unit can
affect its behavior only part of the time. However, if the
effect of an intermittent fault occurs during testing
procedure, then such fault will be detected. Therefore,
they described the behavior of intermittent faults
(particularly, the occurrence of their effects) with the help
of probability P (Si/wi), where Si denotes the state of the
unit when it possesses intermittent fault wi and the effect
of the fault occurs.

Another approach to describe behavior of intermittent
faults is presented in [34]. In this case, an intermittent fault
has two states active (AS) and passive (PS). When an
intermittent fault is in AS, the effect of intermittent fault
is present. Whereas when an intermittent fault is in PS, its
effect is not present. Transfers from one state to the other
one are described with the corresponding intensities λ and
µ (Fig.9).

6 Method for Unit Self-Diagnosis at System Level

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

Fig.9. Model of intermittent fault.

The process of transfers between these two states can
be described as continuous Markov chain, where the time
of the process being in the given state is random value.
This random value has exponential probability
distribution. In our research, we have adopted this model
of intermittent fault because it enables us to model and to
examine a wide range of intermittent faults.

It is assumed that if a testing unit possesses an
intermittent fault which testing is in the AS at the
moment, then the result of the test will be affected by this
fault, and such intermittent fault can be detected. In the
sequel, this fault can be identified on the basis of the
affected test result(s). It is evident that it is possible to
detect different types of intermittent faults depending on
the time allocated to testing procedure. Here, we
introduce two classes of intermittent faults.

To the first class C1, it refers to the intermittent faults
which can frequently (more than once) appear in AS
during testing procedure. To the second class C2, we refer
the intermittent faults which can rarely (not more than
once) appear in AS during testing procedure. The
introduced classification of intermittent faults is relative
and depends considerably on the parameters of testing
procedure. Such classification of intermittent faults is
important for diagnosis based on limited time of testing
procedure.

 2

1

/
/ ,

/

i i

i

i ii

P H P R H
P H R

P H P R H

 (10)

V. DECISION RULE FOR UNIT`S SELF-DIAGNOSIS

As a rule, diagnosis algorithm is executed when
checking procedure detects an error in system. The
proposed unit’s self-diagnosis adopts this approach,
which means that if all test results are equal to 0, which
suggests no diagnosis algorithms are executed. When at
least one test result is equal to 1, diagnosis algorithm
should figure out whether the unit is fault-free or not.
This is done on the basis of the accepted decision rule.

We recommend using Bayes’ rule

2

1

() (/)
(/)

() (/)

i i

i

i ii

P H P R H
P H R

P H P R H

where R is a set of all test results (so-called, syndrome),
H1 is the hypothesis that a unit is fault-free, H2 is the
hypothesis that a unit is faulty.

The prior probabilities of the examined hypotheses can
be determined as P (H1) = ξ and P (H2) = 1 − ξ, where ξ is
the probability that a unit is fault- free.

Decision about unit’s state can be made by using
likelihood ratio

1

2

/

/

P H R

P H R
 (11)

and a chosen threshold ω. The value of ω can be set on
the basis of Bayesian discriminant analysis, so as to
minimize the average misjudgment cost [35].

Thus, if χ ≥ ω, then hypothesis H1 is accepted.
Otherwise, additional measures should be undertaken to
provide correct diagnosis.

The event that a fault unit can be split into three events
P, C1 and C2, where

P is the event that a unit is permanently faulty;
C is the event that a unit possesses an intermittent fault

of class C1;
C is the event that a unit possesses an intermittent fault

of class C2.
For convenience, we denote with A the event that a unit

is fault free, which corresponds to hypothesis H1. With

account of these events, the conditional probabilities P

(A|R), P (P |R), P (C1|R) and P (C2|R) can be expressed as

1 21 2

(/)
(/)

(/) (/) (/) (/)
P C C

P R A
P A R

P R A P P R P P P R C P P R C

 (12)

1 21 2

(/)
(/)

(/) (/) (/) (/)

P

P C C

P P R P
P P R

P R A P P R P P P R C P P R C

 (13)

1

1 2

1

1

1 2

(/)
(/)

(/) (/) (/) (/)

C

P C C

P P R C
P C R

P R A P P R P P P R C P P R C

 (14)

2

1 2

2

2

1 2

(/)
(/)

(/) (/) (/) (/)

C

P C C

P P R C
P C R

P R A P P R P P P R C P P R C

 (15)

where ξ + PP + PC1 + PC2 = 1.

 PP is the probability of the event that a unit is

permanently faulty;
 PC1 is the probability of the event that a unit

possesses an intermittent fault of class C1.
 PC2 is the probability of the event that a unit

possesses an intermittent fault of class C2.

Given PP, PC1 and PC2
, it is possible to compute

conditional probabilities P (A|R), P (P |R), P (C1|R) and P

(C2|R) and then it needs to choose two of them which have
the greatest values.

 Method for Unit Self-Diagnosis at System Level 7

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

VI. CONSIDERATIONS BEHIND THE DIAGNOSIS

ALGORITHM

The situation when only one test result is not equal to 0,
it means that the total number of “1” in the obtained
syndrome R is equal to 1. It denotes such syndrome as R1.
This situation is possible only when performing test τij

either testing or tested unit at the moment, or both of
them possess an intermittent fault in active state. In view
of this, for examining this situation we suggest the
following three hypotheses:

 h1: unit ui possesses an intermittent fault in AS and

unit uj is fault-free;
 h2: unit uj possesses an intermittent fault in AS and

unit ui is fault-free;
 h3: both units ui and uj possess an intermittent fault

in AS.

The probability of hypothesis h3 is much lesser than the

probabilities of hypotheses h1 and h2. In view of this, only
hypotheses h1 and h2 are considered.

According to the Bayes’ rule

1 1

1 2

1

1
1

1

ij

ij

i ij i

i

P h P r h
P h r

P h P r h

() (()/)
(/()

() (()/)

 (16)

and

2 2

2 2

1

1
1

1

ij

ij

i ij i

i

P h P r h
P h r

P h P r h

() (()/)
(/() .

() (()/)

 (17)

Consequently

1 1 1

2 2 2

1 1

1 1

ij ij

ij ij

P h r P h P r h

P h r P h P r h

(/()) () (()/)
.

(/()) () (()/)
 (18)

If information about the current state of unit uj is not

available, then P (h1) = P (h2). If we assume that a unit
possessing an intermittent fault in AS can produce test
result 0 or 1 with equal probability, then P ((rij = 1)|h1) =
0.5. In case when PC = 1 and PT = 1, probability P ((rij =
1)|h2) = 1. Thus,

1

2

1
0 5

1

ij

ij

P h r

P h r

(/ ())
. .

(/ ())
 (19)

If unit uj with certain probability η, it possesses an

intermittent fault, then

1

2

1 1

1 2

ij

ij

P h r

P h r

(/ ())
.

(/ ())
 (20)

The higher the value η is, the greater our confidence is.

unit ui is fault-free. When the obtained syndrome contains
more than one test results not equal to zero, it is
necessary to compute conditional probabilities of
receiving particular syndrome when a unit possesses
certain type of fault (permanent, intermittent of class 1 or
intermittent of class 2). Accurate determination of these
probabilities presented in [4] which requires additional
information about intermittent faults. In practice,
obtaining this information is very difficult.

In view of this, we suggest the approximate method.
This method consists in using approximate assessment of
these conditional probabilities. Particularly, we assess
these probabilities as either “very high” or “very small”.
In the latter case, we consider these probabilities equal to
zero and omit them. This approach bears some
resemblance to the techniques based on fuzzy logic [36,
37], as mentioned in [38] for an example.

Given PC, PT , PS and PF , each tuple Tα, α ∈ [1, .., k]
can be expressed with the help of the table containing the
total number of “1” in the tuple. For PC = 1, PT = 1, PS =
0.5 and PF = 0.5 such table takes the following view.

Table 1. Total number of “1” in the tuple

Total number
of “1” in

the resulting
tuple, s

Tested unit

A P C1 C2

Testing unit

A 0 m 1 ≤ s < m 0 U 1

P Chi{m/2} Chi{m/2} Chi{m/2} Chi{m/2}

C1 0 ≤ s < m 1 ≤ s < m 1 ≤ s <m 0 ≤ s < m

C2 0 U 1 (m-1) U m 1 ≤ s < m -

In the table, the Chebyshev’s inequality for the case

when mp = m/2 is denoted as Chi {m/2}.
When a fault-free unit tests a fault-free unit (suppose m

times), the resulting tuple will contain the total number of
“1” equal to zero (in the table, see the intersection of the
first row and the first column). When a tested unit is
permanently faulty, the resulting tuple will contain the
total number of “1” which is equal to m. When a tested
unit possesses an intermittent fault of class C1, the
resulting tuple will contain “very high” probability, the
total number of “1” satisfies the expression 1 ≤ s < m. If
a tested unit possesses an intermittent fault of class C2,
then the resulting tuple will contain, with “very high”
probability, the total number of “1” is equal to either zero

or one (in Table 1, it is denoted as 0 ∪ 1).
Results produced by a permanently faulty unit are

similar to tossing of fair coin. When a permanently faulty
unit can produce result either 0 or 1 with equal
probability, the total number of “1” in m tests (considered
as Bernoulli trials) will follow the Chebyshev’s inequality

2

s
p s mp

var()
{ } (21)

where var(s) is the variance of s, i.e. var(s) = mp(1 − p).

Let’s set the deviation of s from mp as three or more
standard deviations, i.e.

8 Method for Unit Self-Diagnosis at System Level

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

3 1mp p (). (22)

Thus, Chebyshev’s inequality will be formed as:

 1
3 1

9
P s mp mp p () . (23)

For example, for m=100, it gets:

 8
50 15

9
P s . (24)

In other words, when the probability is greater than or

is equal to 0.888, the total number of “1” in 100 tests
performed by a permanently faulty unit will be in the
range 35 < s < 65.

As distinct from permanently faulty units, a unit
possessing an intermittent fault of class C1 doesn’t have
such consistent pattern in producing tests results as a
permanently faulty unit can produce. This fact allows us
to discriminate between permanent and intermittent faults.
In the given case, achieving correct diagnosis is not very
important. As a rule, incorrect diagnosis results in a
permanently faulty unit is diagnosed as a unit with an
intermittent fault whose behavior is very similar to a
permanently faulty unit.

We assume that the probability that both testing and
tested units possess an intermittent fault of class C2 and
both these intermittent faults are in AS during the same
testing procedure is so small that it can be neglected. In
the Table, this situation is depicted as “-”.

According to the above considerations, the sought
conditional probabilities P (R|A), P (R|P), P (R|C1) and P

(R|C2) can be determined approximately. More accurately
these conditional probabilities can be determined by
taking into account the fact that probability distribution of
random variable s is not discrete uniform distribution.

Then, probabilities P (A|R), P (P |R), P (C1|R) and P

(C2|R) can be determined by using expressions (12) to
(15).

Having computed conditional probabilities P (A|R), P

(P |R), P (C1|R) and P (C2|R), we can choose two most
probable hypotheses and then compute the likelihood
ratio χ.

In case when χ < ω, and testing procedure can be
continued, we increase either m, or k, or both. After
performing additional testing, the value of χ is computed
anew.

VII. DIAGNOSIS ALGORITHM

The diagnosis algorithm summarizes and integrates all
the results of the above considerations. The initial data
for the algorithm are as follows:

- diagnosis model (i.e., assumptions about allowable

faulty model, about the probabilities presented in
Fig.2, about allowable classes of intermittent faults,
about homogeneity of units, etc.);

- unit statistical characteristics (e.g., those related to
reliability and intermittent fault behavior);

- requirements to credibility of diagnosis result;
- time available for diagnosis.

Flowchart of diagnosis procedure is shown in Fig.10.

The value of m (i.e., the number of rounds of testing) can
be set either on the basis of available time or on the basis
of the results of simulation. For the given unit’s reliability
and the given intermittent fault parameters, simulation
allows to determine the value of m which ensures high
credibility of diagnosis result.

When information about possible intermittent faults is
absent, the worst case can be modeled. In the given case,
the “worst” parameters of intermittent faults are used.
Diagnosis of intermittent faults with such “worst”
parameters requires high values of m. In this case, for
calculating the value of χ these worst parameters of
intermittent faults should be used.

When information about possible intermittent faults is
present, the interested party can use the known
parameters and can set the acceptable threshold ω by
taking into account the possible risk.

They can also make decision on possible changes of
diagnosis procedure (e.g., value of m) which will allow to
achieve better diagnosis results.

VIII. COMPUTER SIMULATION

With the aim to verify the correctness of the diagnosis
algorithm, the computer simulation was performed. The
simulation involved the following tasks:

 simulation of changes of units’ states;
 simulation of testing procedure for obtaining

syndrome;
 processing the obtained syndrome (i.e.,

performing diagnosis algorithm).

The first two tasks were solved by using Petri Nets,

and the third one was fulfilled in the web application [14].
The main parts of this web application are shown in
Fig.11.

In Fig.11, z-score means standardized value indicating
the number of standard deviations above or below the
mean. For the case under consideration, the mean is equal
to m/2.

Petri Nets have proved as very efficient tool for
providing modeling and simulation of tests performed by
one unit on other ones [39]. We are going to elucidate
the simulation performed by using Petri Net (PN) with a
simple example. Assume that unit u0 tests two other units,
u1 and u2, in round-robin manner. The Petri net that
depicts the units’ states, tests and test results is shown in
Fig.12.

Modeling of units’ states is depicted at the top of
Fig.12. The figure presents the case when all units
possess intermittent faults.

Unit with intermittent fault has two states, AS and PS,
(Fig.9) which are modeled by places PAS and PPS, and by

 Method for Unit Self-Diagnosis at System Level 9

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

two timed transitions, Tλ and Tµ.

Fig.10. Flowchart of diagnosis procedure.

Fig.11. Main parts of application.

Fig.12. Petri Net used for simulation of testing procedure.

Duration of tests and the pairs of units which are
involved in each test are modeled by timed transitions

Tτ11, Tτ12, Tτ13, Tτ14, Tτ21, Tτ22, Tτ23, Tτ24, and by places
Pτ1, Pτ2, Pτ3, Pτ4 (in the middle of Fig. 12). And finally,
the test results are modeled with the help of immediate
transitions tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8 and by places Pr10,
Pr11, Pr20, Pr21 (at the bottom of Fig. 12). PN has also
additional places Pm, Ptest1 and Ptest2. Place Pm is used for
simulation of m rounds of testing. Places Ptest1 and Ptest2
are used to model the order of tests execution. In the
given case, unit u0 tests units u1 and u2 sequentially, not
concurrently. The whole simulation procedure is presented
on web site [40].

One of the main tasks of the simulation was to choose
among the enabled transitions in each marking that
transition actually fires. The choice is made on the basis
of probability mass functions. Thus, we exploit the
construct which is called a random switch [41].

At the beginning, the initial marking for the places that
model unit’s states is determined. This is done on the
bases of the units’ states which are set by researcher.
When unit’s state is set as having an intermittent fault, the
probabilities of AS and PS for the first initial marking
will be computed according to the following expressions:

PPS = µ/(λ + µ) and PAS = λ/(λ + µ).

Then, by using random switches, the resulting marking
is computed. In the resulting marking, we are interested
in the places that model the test results (for the above
example these places are Pr11 and Pr21).

The simulator clock is updated with the constant value
equal to duration of test, ttest. The time needed for a
testing unit to move the focus to the next unit for testing
is very small and is neglected here. Every time after each
clock update, new initial marking is determined only for
the places modeling the unit states, and then the resulting
marking is updated. As a result, the tokens are
accumulated in the places which model test results.

For each updated initial marking, the probabilities PPS

and PAS are determined as
PAS = 1 − e−λt

 if the previous clock update at the end,
the intermittent fault was in PS.

PPS = 1 − e−µt
 if the previous clock update at the end,

the intermittent fault was in AS, where t = ttest.
In the resulting marking, the places that model test

results will contain the total number of tokens equal to
the total number of “1” in the tuples, and, thus, give the
input data for the diagnosis algorithm.

Hence, algorithm for simulation of testing procedure
can be outlined as follows:

begin

 for i:=1 to (m × k) do

 begin
 compute initial marking;
 initial marking −→ resulting marking;
 end

 calculate the number of tokens in the places that
 model test results;
end

10 Method for Unit Self-Diagnosis at System Level

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

The main elements of diagnosis algorithm are shown in
Fig.10 within the area bounded by dashed line. Diagnosis
algorithm was written in PHP and is used by web
application [40]. By exploiting this web application, a
simulation of various faulty situations is performed to
assess the quality of the developed diagnosis algorithm.

Fig.13 shows the probability of correct diagnosis, Pdet.
During the simulation, the state of the testing unit was

constantly set as permanent fault. For each execution of
testing procedure, the state of each tested unit was
arbitrarily set as either fault-free, or permanently faulty,
or intermittently faulty (C1 or C2). Results of simulation
have shown that reliability of the tested units has minor
impact on diagnosis result. On the average, twelve rounds
are sufficient to obtain Pdet greater than 0.99 regardless of
what faulty sets are allowed, even when all of the system
units are faulty. The required number of rounds, m,
reduces to 8 if the number of faulty units (with permanent
or intermittent faults) is lesser than (k + 1)/2.

Fig.13. Probability of correct diagnosis of permanently faulty unit.

Fig.14. the probability of correct diagnosis of fault-free unit.

Fig.14 shows the probability of correct diagnosis. In
the given case, incorrect diagnosis represents a Type I
error (i.e., false positive). During the simulation, the state
of the testing unit was constantly set as fault-free. The
number of rounds and the reliability of tested units had a
minor impact on diagnosis results. Fig. 14 depicts the
case when m = 2 and ξ = 0.9999. If only faulty sets with
not more than (k + 1)/2 arbitrarily faulty units are allowed,
the probability Pdet becomes greater than 0.99 when k ≥ 5.

Fig.15 depicts possible intermittent faults expressed via
parameters λ and µ . Each intermittent fault is presented as
a point with coordinates (λ, µ). A denotes the subset of
intermittent faults that do not belong to class C1. B

denotes the subset of intermittent faults that produce the
effect similar to the effect produced by a permanent fault.
We examined only intermittent faults that do not belong
to subsets A and B. Basing on the simulation results, we
have determined the subset of intermittent faults, denoted
as C, in which every intermittent fault can be correctly
diagnosed. Specifically, the probability of correct
diagnosis of intermittent fault that belong to subset C is
greater than 0.94 (for k = 4, m = 16 and z-score=0.5).

Fig.15. Subsets of intermittent faults.

The impact of z-score on the probability of correct
diagnosis was investigated for intermittent faults
belonging to subset C, and is shown in Fig.16.

It should be noted that the proposed method allows
increasing the probability of correct diagnosis if statistical
characteristics of possible intermittent faults are taken
into account.

IX. CONCLUSION

The paper presents a novel approach to system level
self-diagnosis. Traditionally, system level self-diagnosis
uses the results of tests performed on a unit for the
diagnosis of its state. Unlike this traditional approach, we
proposed diagnosis which uses a set of test results for
diagnosis of a testing unit. This approach does not impose
strict requirements on testing assignment. Diagnosis can
be performed for different types of faults and different
models of test result interpretation. It enables achieving
the required credibility of diagnosis result by way of
increasing the time of execution of testing procedure.

The distinctive feature of the proposed diagnosis
consists in the fact that correct diagnosis can be obtained
in case of multiple on related faults in the system and in
case of heterogeneous systems. The main deficiency of
the suggested diagnosis is somehow time-consuming,
which may restrict its applicability. When time is crucial
factor, the suggested diagnosis could be used as a
supplementary facility for the traditional system level
diagnosis, and could be performed in background mode
(i.e., as a daemon).

 Method for Unit Self-Diagnosis at System Level 11

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

Simulation results of the proposed unit’s self-diagnosis
give proof of feasibility of this new technique.
Conventionally, for self-testing and self-diagnosis it is
implicitly assumed that a unit includes some fault-free
subsystem capable of executing the diagnosis algorithms
correctly. This limitation can be overcome if a unit sends
its test results to other system units (e.g., to its neighbors
in multi-core arrays). In this case, the diagnosis algorithm
will be executed by these neighbors.

Finally, the proposed diagnosis is intended to be
applicable to complex systems such as, for example
sensor networks, multi-robot system, many-core
processors, multi-agent systems [42, 43], and possibly, in
other fields.

Fig.16. Impact of z-score on the probability of correct diagnosis.

REFERENCES

[1] F. Preparata, G. Metze, R. Chien, “On the connection
assignment problem of diagnosable systems”, IEEE
Transactions on Electronic Computers (EC-16), 6 (Dec.),
pp. 848-854, 1967.

[2] V. Mashkov, O. Barabash, “Self-checking of modular
systems under random performance of elementary checks”,
Engineering Simulation, Vol.12, pp. 433-445, 1995.

[3] V. Mashkov, O. Barabash, “Self-testing of multimodule
systems based on optimal check-connection structures”,
Engineering Simulation, Vol.13, pp. 479-492, 1996.

[4] V. Mashkov, “Selected problems of system level self-
diagnosis”, Lviv, Ukrainian Academic Press, 2011, ISBN
978-966-322-365-0.

[5] M. Malek, “A comparison connection assignment for
diagnosis of multiprocessor systems”, in Proceedings of
the 7th Annual Symposium on Computer Architecture, pp.
31-36, 1980.

[6] M. Ding, D. Chen, K. Xing, X. Cheng, “Localized fault-
tolerant event boundary detection in sensor networks”,
IEEE Infocom, pp. 902-913, 2005.

[7] A. Russoniello, E. Gamess, "Evaluation of Different
Routing Protocols for Mobile AdHoc Networks in
Scenarios with High-Speed Mobility", International
Journal of Computer Network and Information Security
(IJCNIS), Vol.10, No.10, pp.46-52, 2018.

[8] M. N. Riaz, "Clustering Algorithms of Wireless Sensor
Networks: A Survey", International Journal of Wireless
and Microwave Technologies (IJWMT), Vol.8, No.4, pp.

40-53, 2018.
[9] N. V. Dinh, N. X. Thao, “Some Measures of Picture

Fuzzy Sets and Their Application in Multi-attribute
Decision Making”, I.J. Mathematical Sciences and
Computing (IJMSC), Vol.4, No.3, pp. 23-41, 2018.

[10] N. Meskin, K.Khorasaniy, “Fault detection and isolation
of discrete-time Markovian jump linear systems with
application to a network of multiagent systems having
imperfect communication channels”, Automatica, 45(9),
pp. 2032-2040, 2009.

[11] R. Micalizio, P. Torasso, G. Torta, “On-line monitoring
and diagnosis of multi-agent systems: A model based
approach”, 16th European Conference on Artificial
Intelligence (ECAI), Valencia, Spain, Vol. 16, p. 848,
2004.

[12] C. Wang, W. Shang, D. Sun, “Monitoring malfunction in
multirobot formation with a neural network detector”.
Journal of Systems and Control Engineering, Vol. 225, pp.
1163-1172, 2011.

[13] F. Barsi, F. Grandoni, P.Maestrini, “A theory of
diagnosability of digital systems”, IEEE Transactions on
Computers, Vol. C-25, No.6, pp.585-593, 1976.

[14] N. Meskin, K. Khorasani, C. A. Rabbath, “A hybrid fault
detection and isolation strategy for a network of
unmanned vehicles in presence of large environmental
disturbances”, IEEE Transactions on Control Systems
Technology, 18(6), pp. 1422-1429, 2010.

[15] G. Cueva-Fernandez, J. Pascual Espada, V. Garcia-Diay,
R. Gonzalez-Crespo, “Fuzzy decision method to improve
the information exchange in a vehicle sensor tracking
system”, Applied Soft Computing, Vol.35, pp. 708-716,
2015.

[16] N. Lchevin, C. A. Rabbath, E. Earon, “Towards
decentralized fault detection in uav formations”, Control
Conference, ACC07, New York City, USA, pp. 5759-
5764, 2007.

[17] A.Bobbio, “System modelling with Petri Nets”, In: A.G.
Colombo and A. Saiz de Bustamante (eds.). System
Reliability Assessment, pp.102-143, 1990.

[18] A. Apostolakis, D. Gizopoulos, M. Psarakis, A. M.
Paschalis, “Software-Based Self-Testing of Symmetric
Shared-Memory Multiprocessors”, IEEE Transactions on
Computers, Vol. 58, No. 12, pp.1682-1694, 2009.

[19] V. Mashkov, “New approach to system level self-
diagnosis”, in Proceedings of IEEE 11th International
Conference on Computer and Information Technology,
CIT2011, Cyprus, pp.579-584, 2011.

[20] M. Elhadef, A. Boukerche, H.Elkadiki, “Performance
analysis of a distributed comparison-based self-diagnosis
protocol for wireless ad hoc networks”, in Proceedings of
the 9th ACM International Symposium on Modeling
Analysis and Simulation of Wireless and Mobile Systems,
pp.165-172, 2006.

[21] S. Jangale, D.Hadsul, “Detection of faulty sensor nodes in
wireless sensor network”, Computer technology and
Applications, Vol.4, No.1, pp. 150-154, 2009.

[22] M. H. Lee, Y. H. Choi, “Fault detection on wireless
sensor networks”, Computer Communications, Vol. 31,
2008.

[23] L. Albini, J. Duarte, R. Ziwich, “A generalized model for
distributed comparison-based system-level diagnosis”, J.
Brazi, Comput. Soc., Vol. 10, No. 3, pp. 44-56, 2005.

[24] J. Chen, S. Kher, A.Somani, “Distributed fault detection
of wireless sensor network”, in Proceedings of the
International Conference on Mobile Computing and
Networking, New York, USA, pp. 65-72, 2006.

[25] S. Chessa, P.Santi, “Comparison-based system-level fault

12 Method for Unit Self-Diagnosis at System Level

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 1, 1-12

diagnosis in ad hoc network”, in 20th Symp. Reliable
Distributed Systems, pp. 257-266, 2001.

[26] J. Xu., “The t/(n-1) diagnosability and its application to
fault tolerance”, Technical report, No. 340, University of
Newcastle upon Tyne, 1991.

[27] V. Mashkov, J. Pokorny, “Scheme for comparing results
of diverse software versions”, in Proc. of ICSOFT
Conference, Barcelona, Spain, pp.341- 344, 2007.

[28] M. J. Daigle, X. D. Koutsoukos, G. Biswas, “Distributed
diagnosis in formations of mobile robots”, IEEE
Transactions on Robotics, Vol.23, No.2, pp. 353-369,
2007.

[29] P. M. Khilar, “Performance analysis of distributed
intermittent fault diagnosis in wireless networks using
clustering”, in Proceedings of 5th International
Conference on Industrial and Information Systems, ICIIS,
pp. 13-18, 2010.

[30] B. Krishnamachari, S.Iyengar, “Distributed Bayesian
algorithms for fault-tolerant event region detection in
wireless sensor networks”, IEEE Transaction on
Computers, Vol.53, No.3, pp. 241-250, 2004.

[31] X. Luo, M. Dong, Y. Huang, “On distributed fault-tolerant
detection in wireless sensor networks”, IEEE Transactions
on Computers, Vol.55, No.1, pp. 58-70, 2006.

[32] A. Auddy, S. Mukhopadhyay, "Modelling Online
Admission System: A MultiAgent Based Approach",
International Journal of Modern Education and Computer
Science (IJMECS), Vol.6, No.5, pp. 26-32, 2014.

[33] P. Jiang, “A new method for fault detection in wireless
sensor networks”, in Proceeding of ISSN 1424-8220,
Hangzhou Dianzi Unversity, 2009.

[34] S. Mallela, G. Masson, “Diagnosable systems for
intermittent faults”, IEEE Transactions on Computers,
Vol.C-27, 6 (June), pp. 560-566, 1978.

[35] L. Qin, X. He, D. H. Zhou, “A survey of fault diagnosis
for swarm systems”. Systems Science and Control
Engineering: An Open Access Journal, Vol.2, pp. 13-23,
2014.

[36] M. Dhar, H.K. Baruah, “Theory of Fuzzy Sets: An
Overview”, I.J. Information Engineering and Electronic
Business (IJIEEB), Vol.5, No.3, pp.22-33, 2013.

[37] S. Kamal, C. V. Page, “Intermittent faults: A model and a
detection procedure”, IEEE Transactions on Computers,
Vol.23, Iss.7, pp. 713-719, 1974.

[38] J. Collet, P. Zajac, M. Psarakis, D. Gizopoulos, “Chip
self-organization and fault-tolerance in massively
defective multicore arrays”, IEEE Transactions on
Dependable and Secure Computing, Vol.8, No.2, pp.207-
217, 2011.

[39] V. Mashkov, J. Barilla, P. Simr, “Applying Petri Nets to
Modeling of Many-core Processor Self-testing when Tests
are Performed Randomly”, Journal of Electronic Testing,
Vol.29, No.1, pp.25-34, 2013.

[40] PNsimulator. Available at http://vtan.ujep.cz/PNsimulator.
[41] A. Barua, K. Khorasani, “Intelligent model-based

hierarchical fault diagnosis for satellite formations”. IEEE
international conference on Systems, Man and
Cybernetics, ISIC, Montreal, Quebec, Canada, 2007, pp.
3191-3196.

[42] V. Mashkov, “Task allocation among agents of restricted
alliance”, in Proc. of IASTED ISC2005 Conference,
Cambridge, MA, USA, pp.13-18, 2005.

[43] V. Mashkov, “Restricted alliance and coalition formation”,
Proc. of IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, China, pp. 329-332, 2004.

Authors’ Profiles

Viktor Mashkov Doctor of Science in
Engineering Docent Department of IT at the
University of J.E. Purkyne in Usti nad
Labem (Czech Republic). His major
research focuses on dependability of
computer systems, software fault tolerance,
system level self-diagnosis and multi-agent
systems

Volodymyr Lytvynenko: Kherson National
Technical University. D.Sc. (Eng. hab.),
Professor, Head of the Department
Informatics & Computer Sciences. Research
interests: data mining of complex data,
dependability of computer systems,
software fault tolerance, time series
forecasting.

How to cite this paper: Viktor Mashkov, Volodymyr
Lytvynenko, "Method for Unit Self-Diagnosis at System Level",
International Journal of Intelligent Systems and
Applications(IJISA), Vol.11, No.1, pp.1-12, 2019. DOI:
10.5815/ijisa.2019.01.01

