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Abstract—This paper suggests unconventional approach to 
system level self-diagnosis. Traditionally, system level 
self-diagnosis focuses on determining the state of the units 
which are tested by other system units. In contrast, the 
suggested approach utilizes the results of tests performed 
by a system unit to determine its own state. Such 
diagnosis is in many respects close to self-testing, since a 
unit evaluates its own state, which is inherent in self-
testing. However, as distinct from self-testing, in the 
suggested approach a unit evaluates it on the basis of tests 
that it does not performs on itself, but on other system units. 
The paper considers different diagnosis models with 
various testing assignments and different faulty 
assumptions including permanent and intermittent faults, 
and hybrid- fault situations. The diagnosis algorithm for 
identifying the unit’s state has been developed, and 
correctness of the algorithm has been verified by computer 
simulation experiments. 
 

Index Terms—System-level diagnosis, self-diagnosis, 
intermittent fault, hybrid-fault situations, computer 
simulation. 
 

I.  INTRODUCTION 

System level self-diagnosis was introduced by Preparata 
et al. [1] and since then it has been deeply investigated in 
a number of researches [2,3]. It aims at diagnosing 
systems composed of units, with the requirement that they 
are able to test each other by exchanging data through 
available links. At this level of diagnosis, each particular 
test is considered as atomic, which means that the details 
of test are abstracted (i.e., not considered), and only the 
result of test is taken into consideration. 

As a rule, decision about the state of a system unit is 
made on the basis of the results of tests performed on it 
by other system units. In view of this, testing assignment 
and the number of testing units are very important for 
system diagnosis [4].  

The decision about the state of a system unit can also be 
made on the basis of comparison of the outcomes 
produced by one unit with the outcomes produced by other 
units [5]. It is worth noting that comparing testing, as a 
self-diagnosis tool, was developed only for homogeneous 

systems. In case of comparing testing, a test is a 
comparison of the outputs between paired units 
performing the same task. Comparing the outputs from 
two units, it allows only to detect, but not to diagnose a 
failure. Comparing the outputs from more than two units, 
it allows to diagnose certain number of faulty units (resp. 
fault-free units) depending on the chosen diagnosis 
technique. 

Recently, a comparison-based diagnostic model has 
been widely used in mobile ad-hoc networks [6,7]  and 
swarm systems. Swarm systems can be found in nature 
and engineering areas. Examples of engineering swarm 
systems are systems such as unmanned vehicle formation 
systems, multi-robot systems, sensor networks [8,9]. A 
swarm system consists of nodes and the topology of 
nodes. The nodes are intelligent which means that they 
can process data by themselves. Nodes can communicate 
by exchanging of messages. Nodes of swarm system are 
prone to failure due to energy depletion and to their 
possible deployment in a harsh or hostile environment. 
Faults of nodes and faults related to the topology have 
significant influences on the operation of a swarm system 
and may have serious consequences. In view of this, the 
task of fault diagnosis is very important and still requires 
developing of more effective diagnosis methods and 
algorithms.  

Generally, fault diagnosis in the swarm systems can be 
performed either by external diagnostor or by inner 
system resources. Although the external diagnostor can 
perform more effective fault detection by comparing to 
the system nodes, communication between the nodes and 
the external diagnostor can be problematic [5]. That is 
why much attention should be given to the fault detection 
based on the testing performed by system nodes (i.e., 
system self-diagnosis). Such self-diagnosis employs one 
of the following three architectures: centralized, 
hierarchical and distributed architecture [8]. Centralized 
architecture uses one of the system nodes as an embedded 
diagnostor (or central node). Other nodes are not capable 
to perform diagnosis and they only send necessary 
messages to the diagnostor [10-12]. The main drawbacks 
of the centralized architecture are: strong dependence on 
reliability of embedded diagnostor; dependence on the 
state of communication between embedded diagnostor and 
system nodes; both communication load and computation 

mailto:viktor.mashkov@ujep.cz
mailto:immun56@gmail.com


2 Method for Unit Self-Diagnosis at System Level  

Copyright © 2019 MECS                                                               I.J. Intelligent Systems and Applications, 2019, 1, 1-12 

load are increasing rapidly as the number of nodes 
increases. A hierarchical architecture was introduced in 
order to improve the scalability and reliability of the 
centralized fault diagnosis. In the given case, local 
diagnosis information is sent to the next layer of 
architecture for further diagnosis [13,14]. This 
architecture also depends considerably on reliability of 
system nodes. Apparently, a lesser is more extent than the 
centralized architecture. Distributed architecture was 
proposed to improve both centralized and hierarchical 
architectures. In this architecture, all nodes are equipped 
with fault diagnosis algorithm. Fault diagnosis for a node is 
achieved in a collaborative way and the results of the 
algorithms in the neighbors of the monitored node are all 
needed [15,16]. It is worth noting that distributed 
architecture is much more reliable than the centralized one 
and the hierarchical one. As a limitation of this 
architecture, we can consider the fact that each node may 
use incorrect information received from other nodes (i.e., 
this architecture depends considerably on reliability of 
information which a node receives from its neighbors). 

System units can be subject to sophisticated attacks 
which attempt to manipulate the outputs of each unit [17]. 
In case, when system units are deployed in a hash or 
hostile environment, probability of fault of each unit is 
generally expected to be high [5]. Therefore, related or 
multiple faults of units are very probable. At present, 
some problems of fault diagnosis in swarm systems still 
remain. First, this concerns the topologies that may fail or 
change dynamically and the heterogeneous units [8]. In 
this paper, we propose the new method of system self-
diagnosis which can cope with all these situations (i.e., 
related or multiple faults of system nodes, changing 
topology and heterogeneity of nodes). Our method 
utilizes the results of series of tests performed by a node on 
other system nodes. The proposed self- diagnosis can deal 
with arbitrary topology (in the given case, it is called 
testing environment) and can be applied to heterogeneous 
systems in which a system node cannot be diagnosed by 
other system nodes. The proposed self-diagnosis can also 
cope with detecting and identifying the intermittent faults 
of nodes. An intermittent fault is a fault that produces 
negative effect only part of the time. 

The key idea of this self-diagnosis consists in forcing 
the faults of a node to exhibit themselves during the 
testing which a node performs on other nodes. 
Particularly, the node faults could influence the results of 
tests. For each particular type of swarm system (e.g., 
multi-robot systems, sensor networks) evaluation of such 
influence can be done on the basis of results of special 
research. However, this task is beyond the scope of this 
paper. In the paper, we assume that a fault of a system 
node has effected the test results, and this fact is used for 
the fault detection. We also assume that each system node 
has a fault-tolerant part which always allows it to 
diagnose itself correctly. Similar assumption is made for 
self-testing of multiprocessors [18]. For the 
implementation of the method, it needs that a unit is 
capable to perform tests on its neighbors. The simulation 
performed on the basis of the proposed method enable 

evaluating the performance of the developed diagnosis 
algorithm and showing the efficiency of the suggested 
approach in the situations when majority of other 
approaches yield unsatisfactory results (e.g., in the 
situations when more than half of the system units are 
faulty). 

The proposed diagnosis procedure is time consuming. 
In view of this, the paper focuses on the issue of 
determining the time needed for correct diagnosis. 
Particularly, we have determined how many times a unit 
must test the other system units in order to achieve 
highly credible result of diagnosis. The proposed self-
diagnosis was first introduced in previous research work 
[19]. In this paper, we have modified and improved the 
diagnosis of intermittent faults and performed complete 
modeling of unit’s self-diagnosis. 

In the following sections, it will describe related works 
on the given topic in section 2. It will describe a proposed 
unit’s self-diagnosis for different faulty assumptions 
section 3. The developed diagnosis algorithm is presented 
in section 4. The results of the performed computer 
simulation are shown in Section 5. 

 

II.  RELATED WORK 

Comparison-based system level diagnosis has been 
researched in many papers, and it has been analyzed and 
structured in many surveys. This diagnosis was 
considered for possible implementation in wireless sensor 
networks, in multi-robot systems, in many-core 
processors and other areas. 

In case of wireless sensor networks, researchers take into 
account the network topology (changed or fixed), types of 
possible node and communication faults (permanent or 
transient/soft/intermittent), protocol of communication 
among the nodes (one-to-one, one-to-many, one-to-all). 
Also, different comparing-based models were proposed 
(e.g., generalized, broadcast, probabilistic). 

Application of comparison-based model in sensor 
networks allows a sensor node to identify its own status 
based on the information received from the neighbors [17, 
20-22]. Alternatively, node state can be determined by the 
other system nodes [23, 24]. In case of multiple or related 
faults of sensor nodes, the unit diagnosis may be 
incorrect. 

The developed comprehensive mutual diagnosis [25] is 
built on top of self- tests and presents a combination of 
self-testing and comparing approach. This diagnosis 
applied to multi-core arrays implies that each core first 
executes itself tests and generates a test signature. Then, 
it sends this signature to its four neighbors. Each core 
compares its own signature with those received from its 
neighbors. Comparing of signatures allows the core to 
detect faulty neighbors. The proposed in [25] mutual 
diagnosis also depends considerably on the state of the 
unit neighbors. The majority of comparison-based models 
impose an upper bound on the number of faulty units in 
the system. Some researchers consider faulty situations in 
which multiple and/ or related faults take place. Related 
faults or common faults consist of some system units 
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simultaneously become faulty due to the same reason. J. 
Xu in [26] proposed to combine comparison testing with 
t/(n-1) - variant programming. It is worth noting that the 
adjudicator (i.e., diagnostor) in this scheme intends to 
detect only the correct variant. However, in practice it is 
also important to detect the faulty units (variants). In [27], 
the adjudicator with extended functionality was presented. 
This adjudicator allows to detect not only the correct 
units but also all the faulty ones. Both these papers 
consider independent and related faults. It is worth noting 
that these schemes were designed only for software 
systems to provide their fault-tolerance. 

Mostly, the self-diagnosis performed on the basis of 
comparison-based model is used to detect permanently 
faulty system units [28, 22]. S. Chessa and P. Santi [24] 
have considered the problem of fault identification in ad-
hoc networks and presented a comparison-based 
diagnostic model based on the one-to-many 
communication paradigm. In this paper, the authors 
showed how both hard and soft faults can be detected. M. 
Elhadef et al. [6] have presented distributed comparison-
based self-diagnosis protocol for wireless ad hoc networks. 
The proposed protocol identifies hard and soft faults. P.M. 
Khilar [29] proposed a distributed fault diagnosis 
algorithm for wireless sensor networks to diagnose 
intermittently faulty sensor nodes. It is worth noting that 
these researches do not consider a model to describe the 
behavior of soft/intermittent faults. However, the different 
behavior of such faults can have different impact on the 
system. A more detailed consideration of system faults 
which are different from hard faults will allow to provide a 
more effective system recovery. 

Using the Bayesian approach for system diagnosis is a 
common practice. B. Krishnamahari and S. Iyengar [30] 
presented Bayesian fault recognition algorithm to solve 
the fault-event disambignation problem in sensor 
networks. X. Luo et al. [31] have proposed a fault-
tolerant energy-efficient event detection paradigm for 
wireless sensor networks and presented Bayesian 
detection method. 

In our paper, we also use this well-known approach to 
diagnose the state of a system unit. However, in this case, 
the event that a fault unit is split into three events. 
Explanation of such splitting is given in Section 5. 

 

III.  BASICS OF UNIT`S SELF-DIAGNOSIS 

Normally, system level self-diagnosis provides unit 
diagnosis on the basis of the results of tests performed on 
the diagnosed unit. In view of this, the number of fault-free 
testing units and, consequently, the system testing 
assignment are very important for correct unit diagnosis 
[4]. 

In contrast, we propose to deal with the results of tests 
which a unit performs on other system units. It is expected 
that test results produced by a fault-free unit will be 
different from those produced by a faulty unit. Quality of 
such diagnosis depends considerably on the number of 
tested units, on the number of tests performed on each 
tested unit and also on the states of tested units. 

For elucidation of the main parts of the proposed self-
diagnosis, we consider a simple example (Fig.1) with 
only one tested unit. It is assumed that unit ui has 
performed m identical successive tests on unit uj. It is 
also assumed that the states of testing and tested units do 
not change while all m tests are performed. We consider 
that each test result rij can take the value either 0 or 1, 
which depends on the states of tested and testing units 
and on the assumptions made in relation to the test 
results. 
 

 

Fig.1. Repeated testing of unit uj . 

Assumptions made about test results and their 
probabilities can be expressed with the help of Fig.2. 
 

 

Fig.2. Test results and their probabilities. 

In Fig.2, the following denotations are used: 
PC is the probability that a fault-free unit will correctly 

diagnose a tested fault-free unit. This probability takes 
into consideration the fact that connection between units 
can fail; 

PT is the probability that a fault-free unit will correctly 
diagnose a tested faulty unit. This probability reflects the 
quality of test (e.g., fault coverage); 

PS is the probability that a faulty unit will produce the 
test result equal to 1 when a tested unit is fault-free; 

PF is the probability that a faulty unit will produce the 
test result equal to 1 when a tested unit is faulty. 

The assumptions made about test results can be 
specified and quantified. For example, PMC model [1] 
considers the following assumptions: 
 
 Only permanent fault of a unit is possible; 
 A fault-free unit always detects a fault in a tested 

unit (i.e., 100% fault coverage); 
 Result of the test performed by a faulty unit is 

unpredictable not depending on the states of tested 
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units and can take the values either 0 or 1 with 
equal probability. 

 
When the assumptions of PMC model are taken into 

consideration, the following specifications of the 
probabilities are possible: PC = 1, PT = 1 and PS = PF = 
0.5. If the assumptions made in PMC model are applied 
to the test results in the considered example, then only 
two different tuples are possible (under the condition that 
unit ui is fault-free). Each tuple has the length of m and 
consists of the results of single tests. 

The first tuple T0 = (0, 0, .., 0) will be obtained when 
tested unit is fault-free, whereas the second one T1 = (1, 

1, .., 1) will be obtained when tested unit is faulty. When 
unit ui is faulty, the tuple will be obtained, with great 
probability, contain both 0 and 1. It is followed by the 
assumptions which made about test results. Thus, 
diagnosis algorithm consists in the following. If the 
obtained tuple is either T0 or T1, then the testing unit is 
fault-free. Otherwise, the testing unit is faulty. It is worth 
noting that faulty unit can also produce tuple equal to 
either T0 or T1. Probability of such result, Pfn , which can 
be determined as 

 

0 1fn T T
P P P                               (1) 

 

where PT 0 is the probability of obtaining tuple T0, PT 1 is 
the probability of obtaining tuple T1. 

If it assumes that all units have the same probability of 
fault, q, then  
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P q P q P                     (2) 
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P q P qP   ;                      (3) 
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Probability Pfn reflects Type II errors, and can be used 

for evaluating credibility of the performed diagnosis, D. 
 

1`
fn

D P  .                                (5) 

 
Fig. 3 and Fig. 4 give the idea of how parameters m, q, 

PS and PF can influence the credibility of diagnosis result. 
The proposed diagnosis will slightly change if some of 

the assumptions made about test results are different from 
those that are accepted in PMC model. For example, we 
can accept the assumptions of BGM model [32] according 
to which a faulty testing unit will always produce the 
result equal to 1 when it tests any faulty unit (i.e., PF = 1). 
Thus, one tested unit is used. 
 
 

 
Fig.3. Functional dependence D = f (PS). 

 
Fig.4. Functional dependence D = f (m). 

Thus, the proposed diagnosis becomes less effective 
when only one tested unit is used. The effectiveness of 
the proposed diagnosis can be raised by using several 
tested units (Fig.5). 
 

 
Fig.5. Repeated testing of k units. 

When k tested units are used, we can expect, with great 
probability, that at least one of the tested units will be 
fault-free.  This probability is equal to 1 − q

k. Since a 
faulty testing unit after testing a fault free unit, it will get 
great probability (denoted as PE), and produce the tuple 
different from T1 and T0, we can use this fact as the basis 
for diagnosis algorithm. Probability PE can be computed 
as 
 

 1 1
mm

E S S
P P P                       (6) 
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If testing unit is fault-free, all of the obtained tuples 
will be equal to either T0 or T1, which depends on the 
states of tested units. Thus, diagnosis algorithm is as 
follows. If each of the obtained tuples is either T0 or T1, 
then testing unit is fault-free. Otherwise, testing unit is 
faulty. 

Credibility of such diagnosis can be evaluated on the 
basis of probability PE. Diagnosis will be incorrect if 
testing unit is faulty and event Ai, i ∈ [0, 1, .., k] takes place. 
Here Ai is the event when i tested units are fault-free, and 
each of the tuples is either of type T0 or T1. Probability of 
event Ai is determined as 

 

 1
ik k i i

i i d
P A C q q P

 ( )                        (7) 

 
where probability Pd = 1 − PE. 

Probability of incorrect diagnosis, PID is equal to: 
 

0

1 1 1

k

k k i i i
i dID

i

D P C q q P


     ( )            (8) 

 
Thus, 

 

0 0

1
k k

k k i i i
ID i i d

i i

P P A C q q P


 

   ( ) ( ) .            (9) 

 
It is worth noting that the probability of incorrect 

diagnosis, PID is computed under the condition that 
testing unit is faulty. Fig.6 and Fig.7 shows the idea of 
how parameters m, q, k and PS influence the credibility of 
proposed diagnosis. 
 

 
Fig.6. Functional dependence D = f (m) for the best case. 

 

Fig.7. Functional dependence D = f (m) for the case of PS = 0.1. 

Fig.6 presents the results for the case of PS = 0.5. In the 
given case, credibility of diagnosis is greater than the 
credibility obtained for PS ≠ 0.5. Fig.7 depicts the 
credibility of diagnosis for PS = 0.1.  Even for this worse 
case, the number of test repetitions doesn’t exceed a few 
dozens. For example, for k  > 2, it is sufficient to repeat 
the tests 14 times to obtain highly credible result of 
diagnosis. 
 

IV.  DIAGNOSIS OF INTERMITTENT FAULT 

Intermittent faults can be defined as the faults whose 
presence is bounded in time. More precisely, a unit can 
possess an intermittent fault but the effect of this fault is 
present only part of time. The amount of time of 
diagnosis procedure, td is important for diagnosis of 
intermittent faults. Depending on the amount of time td 

and on its position on the time axis (Fig. 8), the same fault 
may be identified as a permanent fault (case of td

1) and as 
an intermittent fault (case of td

2). There is also probability 
that the effect of intermittent fault will not be present 
during diagnosis procedure (case of td

3). 
 

 
Fig.8. Diagnosis procedure and effect of intermittent fault. 

Many researches have been done on the problem of 
diagnosis of intermittent faults. For instance, in [33], S. 
Kamal and V. Page considered the problem of the 
required number of test repetitions before a decision 
about the state of a digital circuit is made. At the 
beginning of testing, unit’s state is indefinite. Testing 
procedure (i.e., repetition of tests) is terminated either 
when a fault is detected, or on the basis of a decision rule. 
The authors suggested several decision rules for 
termination of testing procedure with the outcome 
indicating unit’s fault-free state. According to their 
research, the presence of intermittent fault in a unit can 
affect its behavior only part of the time. However, if the 
effect of an intermittent fault occurs during testing 
procedure, then such fault will be detected. Therefore, 
they described the behavior of intermittent faults 
(particularly, the occurrence of their effects) with the help 
of probability P (Si/wi), where Si denotes the state of the 
unit when it possesses intermittent fault wi and the effect 
of the fault occurs. 

Another approach to describe behavior of intermittent 
faults is presented in [34]. In this case, an intermittent fault 
has two states active (AS) and passive (PS). When an 
intermittent fault is in AS, the effect of intermittent fault 
is present. Whereas when an intermittent fault is in PS, its 
effect is not present. Transfers from one state to the other 
one are described with the corresponding intensities λ and 
µ (Fig.9). 
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Fig.9. Model of intermittent fault. 

The process of transfers between these two states can 
be described as continuous Markov chain, where the time 
of the process being in the given state is random value. 
This random value has exponential probability 
distribution. In our research, we have adopted this model 
of intermittent fault because it enables us to model and to 
examine a wide range of intermittent faults. 

It is assumed that if a testing unit possesses an 
intermittent fault which testing is in the AS at the 
moment, then the result of the test will be affected by this 
fault, and such intermittent fault can be detected. In the 
sequel, this fault can be identified on the basis of the 
affected test result(s). It is evident that it is possible to 
detect different types of intermittent faults depending on 
the time allocated to testing procedure. Here, we 
introduce two classes of intermittent faults. 

To the first class C1, it refers to the intermittent faults 
which can frequently (more than once) appear in AS 
during testing procedure. To the second class C2, we refer 
the intermittent faults which can rarely (not more than 
once) appear in AS during testing procedure. The 
introduced classification of intermittent faults is relative 
and depends considerably on the parameters of testing 
procedure. Such classification of intermittent faults is 
important for diagnosis based on limited time of testing 
procedure. 
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V.  DECISION RULE FOR UNIT`S SELF-DIAGNOSIS 

As a rule, diagnosis algorithm is executed when 
checking procedure detects an error in system. The 
proposed unit’s self-diagnosis adopts this approach, 
which means that if all test results are equal to 0, which 
suggests no diagnosis algorithms are executed. When at 
least one test result is equal to 1, diagnosis algorithm 
should figure out whether the unit is fault-free or not. 
This is done on the basis of the accepted decision rule.  

We recommend using Bayes’ rule 
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where R is a set of all test results (so-called, syndrome), 
H1 is the hypothesis that a unit is fault-free, H2 is the 
hypothesis that a unit is faulty. 

The prior probabilities of the examined hypotheses can 
be determined as P (H1) = ξ and P (H2) = 1 − ξ, where ξ is 
the probability that a unit is fault- free. 

Decision about unit’s state can be made by using 
likelihood ratio 
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and a chosen threshold ω. The value of ω can be set on 
the basis of Bayesian discriminant analysis, so as to 
minimize the average misjudgment cost [35]. 

Thus, if χ ≥ ω, then hypothesis H1 is accepted. 
Otherwise, additional measures should be undertaken to 
provide correct diagnosis. 

The event that a fault unit can be split into three events 
P, C1 and C2, where 

P is the event that a unit is permanently faulty; 
C is the event that a unit possesses an intermittent fault 

of class C1; 
C is the event that a unit possesses an intermittent fault 

of class C2. 
For convenience, we denote with A the event that a unit 

is fault free, which corresponds to hypothesis H1. With 

account of these events, the conditional probabilities P 

(A|R), P (P |R), P (C1|R) and P (C2|R) can be expressed as 
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where ξ + PP + PC1 + PC2 = 1. 

 
 PP is the probability of the event that a unit is 

permanently faulty; 
 PC1 is the probability of the event that a unit 

possesses an intermittent fault of class C1. 
 PC2 is the probability of the event that a unit 

possesses an intermittent fault of class C2. 
 

Given PP, PC1 and PC2
, it is possible to compute 

conditional probabilities P (A|R), P (P |R), P (C1|R) and P 

(C2|R) and then it needs to choose two of them which have 
the greatest values. 
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VI.  CONSIDERATIONS BEHIND THE DIAGNOSIS 

ALGORITHM 

The situation when only one test result is not equal to 0, 
it means that the total number of “1” in the obtained 
syndrome R is equal to 1. It denotes such syndrome as R1. 
This situation is possible only when performing test τij 

either testing or tested unit at the moment, or both of 
them possess an intermittent fault in active state. In view 
of this, for examining this situation we suggest the 
following three hypotheses: 

 
 h1: unit ui possesses an intermittent fault in AS and 

unit uj is fault-free; 
 h2: unit uj possesses an intermittent fault in AS and 

unit ui is fault-free; 
 h3: both units ui and uj possess an intermittent fault 

in AS. 
 
The probability of hypothesis h3 is much lesser than the 

probabilities of hypotheses h1 and h2. In view of this, only 
hypotheses h1 and h2 are considered. 

According to the Bayes’ rule 
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Consequently 
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If information about the current state of unit uj is not 

available, then P (h1) = P (h2). If we assume that a unit 
possessing an intermittent fault in AS can produce test 
result 0 or 1 with equal probability, then P ((rij = 1)|h1) = 
0.5. In case when PC = 1 and PT = 1, probability P ((rij = 
1)|h2) = 1. Thus,  
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If unit uj with certain probability η, it possesses an 

intermittent fault, then  
 

1

2

1 1

1 2

ij

ij

P h r

P h r




 
 



( / ( ))
.

( / ( ))
                       (20) 

 
The higher the value η is, the greater our confidence is. 

unit ui is fault-free. When the obtained syndrome contains 
more than one test results not equal to zero, it is 
necessary to compute conditional probabilities of 
receiving particular syndrome when a unit possesses 
certain type of fault (permanent, intermittent of class 1 or 
intermittent of class 2). Accurate determination of these 
probabilities presented in [4] which requires additional 
information about intermittent faults. In practice, 
obtaining this information is very difficult. 

In view of this, we suggest the approximate method. 
This method consists in using approximate assessment of 
these conditional probabilities. Particularly, we assess 
these probabilities as either “very high” or “very small”. 
In the latter case, we consider these probabilities equal to 
zero and omit them. This approach bears some 
resemblance to the techniques based on fuzzy logic [36, 
37], as mentioned in [38] for an example. 

Given PC, PT , PS and PF , each tuple Tα, α ∈ [1, .., k] 
can be expressed with the help of the table containing the 
total number of “1” in the tuple. For PC = 1, PT = 1, PS = 
0.5 and PF = 0.5 such table takes the following view.  

Table 1. Total number of “1” in the tuple  

Total number 
of “1” in 

the resulting 
tuple, s 

Tested unit 

A P C1 C2 

Testing unit 

A 0 m 1 ≤ s < m 0 U 1 

P Chi{m/2} Chi{m/2} Chi{m/2} Chi{m/2} 

C1 0 ≤ s < m 1 ≤ s < m 1 ≤ s <m 0 ≤ s < m 

C2 0 U 1 (m-1) U m 1 ≤ s < m - 

 
In the table, the Chebyshev’s inequality for the case 

when mp = m/2 is denoted as Chi {m/2}. 
When a fault-free unit tests a fault-free unit (suppose m 

times), the resulting tuple will contain the total number of 
“1” equal to zero (in the table, see the intersection of the 
first row and the first column). When a tested unit is 
permanently faulty, the resulting tuple will contain the 
total number of “1” which is equal to m. When a tested 
unit possesses an intermittent fault of class C1, the 
resulting tuple will contain “very high” probability, the 
total number of “1” satisfies the expression 1 ≤ s  < m. If 
a tested unit possesses an intermittent fault of class C2, 
then the resulting tuple will contain, with “very high” 
probability, the total number of “1” is equal to either zero 

or one (in Table 1, it is denoted as 0 ∪ 1). 
Results produced by a permanently faulty unit are 

similar to tossing of fair coin. When a permanently faulty 
unit can produce result either 0 or 1 with equal 
probability, the total number of “1” in m tests (considered 
as Bernoulli trials) will follow the Chebyshev’s inequality 

 

2

s
p s mp 


  

var( )
{ }                    (21) 

 
where var(s) is the variance of s, i.e. var(s) = mp(1 − p). 

Let’s set the deviation of s from mp as three or more 
standard deviations, i.e. 
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3 1mp p  ( ).                          (22) 

 
Thus, Chebyshev’s inequality will be formed as: 

 

  1
3 1

9
P s mp mp p   ( ) .              (23) 

 
For example, for m=100, it gets: 

 

  8
50 15

9
P s    .                         (24) 

 
In other words, when the probability is greater than or 

is equal to 0.888, the total number of “1” in 100 tests 
performed by a permanently faulty unit will be in the 
range 35 < s < 65. 

As distinct from permanently faulty units, a unit 
possessing an intermittent fault of class C1 doesn’t have 
such consistent pattern in producing tests results as a 
permanently faulty unit can produce. This fact allows us 
to discriminate between permanent and intermittent faults. 
In the given case, achieving correct diagnosis is not very 
important. As a rule, incorrect diagnosis results in a 
permanently faulty unit is diagnosed as a unit with an 
intermittent fault whose behavior is very similar to a 
permanently faulty unit. 

We assume that the probability that both testing and 
tested units possess an intermittent fault of class C2 and 
both these intermittent faults are in AS during the same 
testing procedure is so small that it can be neglected. In 
the Table, this situation is depicted as “-”. 

According to the above considerations, the sought 
conditional probabilities P (R|A), P (R|P), P (R|C1) and P 

(R|C2) can be determined approximately. More accurately 
these conditional probabilities can be determined by 
taking into account the fact that probability distribution of 
random variable s is not discrete uniform distribution. 

Then, probabilities P (A|R), P (P |R), P (C1|R) and P 

(C2|R) can be determined by using expressions (12) to 
(15). 

Having computed conditional probabilities P (A|R), P 

(P |R), P (C1|R) and P (C2|R), we can choose two most 
probable hypotheses and then compute the likelihood 
ratio χ. 

In case when χ < ω, and testing procedure can be 
continued, we increase either m, or k, or both. After 
performing additional testing, the value of χ is computed 
anew. 
 

VII.  DIAGNOSIS ALGORITHM 

The diagnosis algorithm summarizes and integrates all 
the results of the above considerations. The initial data 
for the algorithm are as follows: 

 
- diagnosis model (i.e., assumptions about allowable 

faulty model, about the probabilities presented in 
Fig.2, about allowable classes of intermittent faults, 
about homogeneity of units, etc.); 

- unit statistical characteristics (e.g., those related to 
reliability and intermittent fault behavior); 

- requirements to credibility of diagnosis result; 
- time available for diagnosis. 
 
Flowchart of diagnosis procedure is shown in Fig.10. 

The value of m (i.e., the number of rounds of testing) can 
be set either on the basis of available time or on the basis 
of the results of simulation. For the given unit’s reliability 
and the given intermittent fault parameters, simulation 
allows to determine the value of m which ensures high 
credibility of diagnosis result. 

When information about possible intermittent faults is 
absent, the worst case can be modeled. In the given case, 
the “worst” parameters of intermittent faults are used. 
Diagnosis of intermittent faults with such “worst” 
parameters requires high values of m. In this case, for 
calculating the value of χ these worst parameters of 
intermittent faults should be used. 

When information about possible intermittent faults is 
present, the interested party can use the known 
parameters and can set the acceptable threshold ω by 
taking into account the possible risk. 

They can also make decision on possible changes of 
diagnosis procedure (e.g., value of m) which will allow to 
achieve better diagnosis results. 

 

VIII.  COMPUTER SIMULATION 

With the aim to verify the correctness of the diagnosis 
algorithm, the computer simulation was performed. The 
simulation involved the following tasks: 

 
 simulation of changes of units’ states; 
 simulation of testing procedure for obtaining 

syndrome; 
 processing the obtained syndrome (i.e., 

performing diagnosis algorithm). 
 
The first two tasks were solved by using Petri Nets, 

and the third one was fulfilled in the web application [14]. 
The main parts of this web application are shown in 
Fig.11. 

In Fig.11, z-score means standardized value indicating 
the number of standard deviations above or below the 
mean. For the case under consideration, the mean is equal 
to m/2. 

Petri Nets have proved as very efficient tool for 
providing modeling and simulation of tests performed by 
one unit on other ones [39].  We are going to elucidate 
the simulation performed by using Petri Net (PN) with a 
simple example. Assume that unit u0 tests two other units, 
u1 and u2, in round-robin manner. The Petri net that 
depicts the units’ states, tests and test results is shown in 
Fig.12. 

Modeling of units’ states is depicted at the top of 
Fig.12. The figure presents the case when all units 
possess intermittent faults. 

Unit with intermittent fault has two states, AS and PS, 
(Fig.9) which are modeled by places PAS and PPS, and by 
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two timed transitions, Tλ and Tµ. 
 

 
Fig.10. Flowchart of diagnosis procedure. 

 
Fig.11. Main parts of application. 

 

 
Fig.12. Petri Net used for simulation of testing procedure. 

Duration of tests and the pairs of units which are 
involved in each test are modeled by timed transitions  

Tτ11,  Tτ12,  Tτ13,  Tτ14,  Tτ21,  Tτ22,  Tτ23,  Tτ24,  and by places 
Pτ1, Pτ2, Pτ3, Pτ4 (in the middle of Fig. 12). And  finally,  
the  test results are modeled with the help of immediate 
transitions tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8 and by  places  Pr10,  
Pr11,  Pr20,  Pr21  (at  the  bottom  of  Fig.  12). PN has also 
additional places Pm, Ptest1 and Ptest2. Place Pm is used for 
simulation of m rounds of testing. Places Ptest1 and Ptest2 
are used to model the order of tests execution. In the 
given case, unit u0 tests units u1 and u2 sequentially, not 
concurrently. The whole simulation procedure is presented 
on web site [40]. 

One of the main tasks of the simulation was to choose 
among the enabled transitions in each marking that 
transition actually fires. The choice is made on the basis 
of probability mass functions. Thus, we exploit the 
construct which is called a random switch [41]. 

At the beginning, the initial marking for the places that 
model unit’s states is determined. This is done on the 
bases of the units’ states which are set by researcher. 
When unit’s state is set as having an intermittent fault, the 
probabilities of AS and PS for the first initial marking 
will be computed according to the following expressions: 
 

PPS = µ/(λ + µ)  and  PAS = λ/(λ + µ). 
 

Then, by using random switches, the resulting marking 
is computed. In the resulting marking, we are interested 
in the places that model the test results (for the above 
example these places are Pr11 and Pr21). 

The simulator clock is updated with the constant value 
equal to duration of test, ttest. The time needed for a 
testing unit to move the focus to the next unit for testing 
is very small and is neglected here. Every time after each 
clock update, new initial marking is determined only for 
the places modeling the unit states, and then the resulting 
marking is updated. As a result, the tokens are 
accumulated in the places which model test results. 

For each updated initial marking, the probabilities PPS 

and PAS are determined as 
PAS = 1 − e−λt

 if the previous clock update at the end, 
the intermittent fault was in PS. 

PPS = 1 − e−µt
 if the previous clock update at the end, 

the intermittent fault was in AS, where t = ttest. 
In the resulting marking, the places that model test 

results will contain the total number of tokens equal to 
the total number of “1” in the tuples, and, thus, give the 
input data for the diagnosis algorithm. 

Hence, algorithm for simulation of testing procedure 
can be outlined as follows: 

 

begin 

    for i:=1 to (m × k) do  

       begin 
           compute initial marking; 
           initial marking −→ resulting marking; 
         end 

    calculate the number of tokens in the places that            
    model test results; 
end 
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The main elements of diagnosis algorithm are shown in 
Fig.10 within the area bounded by dashed line. Diagnosis 
algorithm was written in PHP and is used by web 
application [40]. By exploiting this web application, a 
simulation of various faulty situations is performed to 
assess the quality of the developed diagnosis algorithm. 

Fig.13 shows the probability of correct diagnosis, Pdet.  
During the simulation, the state of the testing unit was 

constantly set as permanent fault. For each execution of 
testing procedure, the state of each tested unit was 
arbitrarily set as either fault-free, or permanently faulty, 
or intermittently faulty (C1 or C2). Results of simulation 
have shown that reliability of the tested units has minor 
impact on diagnosis result. On the average, twelve rounds 
are sufficient to obtain Pdet greater than 0.99 regardless of 
what faulty sets are allowed, even when all of the system 
units are faulty. The required number of rounds, m, 
reduces to 8 if the number of faulty units (with permanent 
or intermittent faults) is lesser than (k + 1)/2. 
 

 
Fig.13. Probability of correct diagnosis of permanently faulty unit. 

 

Fig.14. the probability of correct diagnosis of fault-free unit. 

Fig.14 shows the probability of correct diagnosis. In 
the given case, incorrect diagnosis represents a Type I 
error (i.e., false positive). During the simulation, the state 
of the testing unit was constantly set as fault-free. The 
number of rounds and the reliability of tested units had a 
minor impact on diagnosis results. Fig. 14 depicts the 
case when m = 2 and ξ = 0.9999. If only faulty sets with 
not more than (k + 1)/2 arbitrarily faulty units are allowed, 
the probability Pdet becomes greater than 0.99 when k ≥ 5. 

Fig.15 depicts possible intermittent faults expressed via 
parameters λ and µ . Each intermittent fault is presented as 
a point with coordinates (λ, µ). A denotes the subset of 
intermittent faults that do not belong to class C1. B 

denotes the subset of intermittent faults that produce the 
effect similar to the effect produced by a permanent fault. 
We examined only intermittent faults that do not belong 
to subsets A and B. Basing on the simulation results, we 
have determined the subset of intermittent faults, denoted 
as C, in which every intermittent fault can be correctly 
diagnosed. Specifically, the probability of correct 
diagnosis of intermittent fault that belong to subset C is 
greater than 0.94 (for k = 4, m = 16 and z-score=0.5). 
 

 
Fig.15. Subsets of intermittent faults. 

The impact of z-score on the probability of correct 
diagnosis was investigated for intermittent faults 
belonging to subset C, and is shown in Fig.16. 

It should be noted that the proposed method allows 
increasing the probability of correct diagnosis if statistical 
characteristics of possible intermittent faults are taken 
into account. 

 

IX.  CONCLUSION 

The paper presents a novel approach to system level 
self-diagnosis. Traditionally, system level self-diagnosis 
uses the results of tests performed on a unit for the 
diagnosis of its state. Unlike this traditional approach, we 
proposed diagnosis which uses a set of test results for 
diagnosis of a testing unit. This approach does not impose 
strict requirements on testing assignment. Diagnosis can 
be performed for different types of faults and different 
models of test result interpretation. It enables achieving 
the required credibility of diagnosis result by way of 
increasing the time of execution of testing procedure. 

The distinctive feature of the proposed diagnosis 
consists in the fact that correct diagnosis can be obtained 
in case of multiple on related faults in the system and in 
case of heterogeneous systems. The main deficiency of 
the suggested diagnosis is somehow time-consuming, 
which may restrict its applicability. When time is crucial 
factor, the suggested diagnosis could be used as a 
supplementary facility for the traditional system level 
diagnosis, and could be performed in background mode 
(i.e., as a daemon). 
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Simulation results of the proposed unit’s self-diagnosis 
give proof of feasibility of this new technique. 
Conventionally, for self-testing and self-diagnosis it is 
implicitly assumed that a unit includes some fault-free 
subsystem capable of executing the diagnosis algorithms 
correctly. This limitation can be overcome if a unit sends 
its test results to other system units (e.g., to its neighbors 
in multi-core arrays). In this case, the diagnosis algorithm 
will be executed by these neighbors. 

Finally, the proposed diagnosis is intended to be 
applicable to complex systems such as, for example 
sensor networks, multi-robot system, many-core 
processors, multi-agent systems [42, 43], and possibly, in 
other fields. 
 

 
Fig.16. Impact of z-score on the probability of correct diagnosis. 
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