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ABSTRACT: The finite-element method can be used for an approximate solution of axisymmetric 
exterior-field problems by truncating the unbounded domain, or by applying various techniques of 
coupling a finite region of interest with the remaining far region, which is properly modelled. 

In this paper, we propose the solution of axisymmetric exterior-field problems by using the standard 
finite-element method in a bounded, transformed domain obtained by conformal mapping from the 
original, unbounded one. The transformed functionals have very simple expressions and the exact 
transforms of the original boundary conditions are used in the transformed domain. Consequently no 
approximation is introduced in the proposed method and improvements in the accuracy of the solution 
are obtained as compared with several other methods in common usage, especially with the truncated 
mesh technique. 

A few example problems are solved and the presented method is found to be simple and computation­
ally highly efficient. It is particularly recommended for problems with material inhomogeneities and 
anisotropies within large regions. 

1. INTRODUCTION 

The simplest procedure for implementing the finite-element method (FEM) for the 
solution of unbounded region field problems consists in truncating the infinite 
domains at a sufficiently large distance and imposing approximate conditions on the 
terminating boundaries. This technique, however, requires a large amount of com­
putation to achieve acceptable accuracy. 

Several techniques for improving the accuracy of the solution and the computation 
efficiency have been proposed based on boundary integral equation methods or on 
hybrid methods of coupling finite elements with integral equations [1-3]. 

Recently, methods of mapping have been elaborated for unbounded region field 
problems. A widely investigated procedure, which has become a standard practice, 
consists of using various local mappings defined for infinite elements [4-8], which are 
designed to approximate the actual field decay towards infinity. An alternative 
approach is to map the entire unbounded region of the problem onto a bounded 
transformed domain in which a numerical method, such as the FEM, is im­
plemented. Since the two-dimensional Laplace's equation remains unchanged under 
conformal mapping, such an approach has been found to be computationally efficient 
for parallel-plane scalar fields [9]. 

In this paper, we present the solution of three-dimensional axisymmetric field 
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problems by implementing the FEM in the bounded transformed domain obtained 
from the original one by conformal mapping. Due to the fact that the modelling and 
discretization of any bounded region can be performed accurately by finite elements, 
it is not necessary to search for problem-dependent analytic function transformations 
for the purpose of getting simply shaped transformed domains. Therefore, only a few 
standard conformal transformations, such as inversion for instance, will be sufficient 
for implementing the proposed method. 

A major advantage of using analytic function transformations for axisymmetric 
field problems involving the Laplacian operator is that the form of the transformed 
energy functionals is very similar to that of the original ones. Consequently, this 
method can be implemented with any standard finite-element computer program. 

The proposed method can be used for the analysis of both bounded and un­
bounded region axisymmetric fields, but is best suited to the solution of unbounded 
region field problems. A few examples are given and the solution is much better than 
that corresponding to the truncated mesh technique in the original domain. Even 
with a small number of elements, highly accurate results are obtained. 

2. THEORETICAL FORMULATION 

Consider a three dimensional axisymmetric scalar field described in circular cylin­
drical coordinates (p, </>, z ), with the z-axis chosen as the axis of symmetry, by the 
equation 

1 {a [ ( a<P a<P)] a [ ( a<P a<P)]} - - p K11-+K12- +- p Kz1-+K22- =g 
p az az ap ap az ap 

(1) 

In terms of the operator V=az(a/az)+aP(a/ap), eq. (1) has the following concise 
form 

I 
- [V · (pK • V <P)] = g 
p 

(2) 

The tensor K describes the axisymmetric material inhomogeneities and anisotropies, 
and is represented by the matrix 

K=["11(z,p) K12(z,p)J 
"21(z, P) "zz(Z, P) 

(3) 

which is positive definite at all the points (z, p) for most physical media. The function 
g(z, p) in eq. (2) defines the source space distribution. 

Consider the domain D of the azimuthal semi-plane (Fig. I) with the boundary C, 
which usually includes sections of the z-axis. The general from of the boundary 
conditions is of a mixed type and can be written as 

<P\c
1 

= <P0(s), s E C1 

[(pK · V<P)· n] + a(s)<P(s) = h(s), 

(4) 

(5) 
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Figure 1: Azimuthal section of axisymmetric region 

where u(s);;;.: 0, and n denotes the outward unit normal to the boundary, C = 

C1+C2. 
The solution of the above problem can be obtained (10] by minimizing the 

functional 

F= ~ J ((V<l>)· (pK ·V<l>)+ 2p<l>g] dz dp+~ J (u<l>2 -2h<l>)dl (6) 

D 

with trial functions which satisfy the Dirichlet condition (4). The Euler-Lagrange 
equation associated to the functional (6) is eq. (2), and eq. (5) is satisfied as a 
natural boundary condition. 

Consider now the conformal mapping of the bounded domain D' + c; + C~ of the 
uv-plane onto the domain D + C1 + C2 of the zp-plane, given by the following 
analytic function transformation 

z + ip = z(u, v) + ip(u, v) = f( w) 

where w = u + iv and i = V -1. By using the Cauchy-Riemann conditions 

au av 
az ap' 

eq. (6) can be written in the form 

au 
ap 

av 
az 

F= ~ J [(V'<l>')·(p'K' · V'<l>')+ 2p'<l>'g'/ ::1 2

J du dv 

D' 

+ ~ J (u'<l>'
2 

- 2h'<l>') I:: I di' 

C2 

(7) 

(8) 

(9) 
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with V' = au(ij/au)+ av( a/av) and <P', p', g', <r' and h' denoting, respectively, the 
functions <P, p, g, <r and h written explicitly in terms of u and v by means of the 
transformation in eq. (7). In matrix form, the tensor 1C

1 is related to IC by 

where the matrix T is defined as 

T~ :: :: l 
av av 
az ap 

and y-i denotes its inverse. 

(10) 

(11) 

For the two-dimensional (parallel-plane) field in the transformed domain, p 1
1C

1 can 
be interpreted as representing the fictitious material properties, p'g'ldf/dwl2 as the 
corresponding source space distribution, with <r and h replaced by <r'ldf/dwl and 
h'ldf/dwl, respectively. One can see from eq. (10) that for an isotropic but in­
homogeneous medium, for which IC is a scalar function of position, 1C

1 is also a scalar 
function of position. In the case of an isotropic and homogeneous medium, IC and 1C

1 will 
both be the same scalar constant. 

In the proposed method, the new functional in eq. (9) is to be minimized by 
implementing the finite-element technique in the transformed domain. The Dirichlet 
boundary condition in eq. (4) remains unchanged at the corresponding points on c; and 
must be enforced for all the trial functions. The given mixed boundary conditions have 
been directly incorporated into the new eq. (9) and as a consequence, all the boundary 
conditions in the bounded transformed domain are the exact transforms of the original 
ones. Once the transformed domain solution is obtained, the original field problem 
solution is recovered through mapping. 

Due to the similarity in the form of the two expressions in eqs. (6) and (9), an 
existing standard finite-element computer program for the original domain can be 
used in the transformed domain. The implementation of the presented procedure 
does not require a new special computer program. 

It should be noted that other numerical techniques may also be applied in 
conjunction with global mapping. If, instead of FEM, the finite-difference method is 
used, for instance, the transform of the governing equations must also be known. By 
applying the transformation in eq. (7), eqs. (2), (4) and (5) become, respectively, 

and 

1 d/ ? 

-(V' · (p'K' · V'<P')] = g' 1-1-
p' dw 

<Plc
1
• = <Po(s'), s' E c; 

in D' (12) 

(13) 

on c~ (14) 
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where n' denotes the outward unit normal to c;. In order to implement easily a 
method such as the finite-difference method, it is essential for the transformed 
domain to be geometrically "simple", and that necessarily requires problem-depen­
dent transformations which are not always available. This is not the case when 
implementing the FEM. Indeed, taking into account that any bounded region can be 
discretized accurately by finite elements, the geometric shape of the transformed 
domain is not an important factor. For the application of the proposed method, a 
few standard analytic function transformations will be sufficient for most practical 
system geometries. 

3. TEST PROBLEMS 

Four examples are presented in this section to test the proposed method for field 
problems in homogeneous media, in inhomogeneous media, as well as with external 
source distribution, by using two types of transformation function. In all the examples, 
quadratic triangular elements have been used in the finite-element analysis. 

3.1. Conducting sphere in the presence of an infinite ground plane 

The center of a conducting sphere of radius a is at a distance b from an equipoten­
tial infinite plane, as shown in Fig. 2. An electric potential of <P0 is applied to the 
sphere relative to the plane. The infinitely extended dielectric medium between the 
sphere and the plane is uncharged and is homogeneous with a permittivity t:0 . The 
electric potential <P satisfies eq. (1) where K 12 = K 21 = g = 0 and Ku= K 22 = t:0 , with 
the following boundary conditions 

! <Po 
for (z - b )2 + p 2 

= a 2 

<P = ~ at z = 0 (15) 
at infinity 

a<P 
-=0 at p = 0 (16) 
ap 

p 

/ /~ 

I 

/ acl> =O ,, an 
' ,/ 
____ .,,.. 

Figure 2: Azimuthal section for sphere-to-plane configuration 
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Using the analytic function /( w) = c tanh( w/2), where c = a sinh u0 and u0 = 
cosh -i (bf a), yields 

c sinh u 
(17) z=------

cosh u +cos v 

c sin v 
p= 

cosh u +cos v 
(18) 

This transformation maps conformally the domain D onto the rectangular domain 
D' shown in Fig. 3. 

The transformed functional in eq. (9) is now 

F=eoj( csinv )<V'cP')2dudv 
2 cosh u + cos v 

D' 

and the constraints for <P' are 

<P' ={<Po, 
0, 

U = U0 

u=O 

(19) 

(20) 

The normalized electrostatic capacitance C of this system can be calculated from the 
minimum value Fmin of the functional (19) [11) as 

(21) 

The problem was solved for various ratios of b/a by using the mesh presented in 
Fig. 3. The percentage error in the electrostatic capacitance obtained is given in Fig. 
4. 

v 

ct>·= cl>o 

0 

Flgure 3: Finite element mesh in the transformed domain for sphere-to-plane problem 
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Figure 4: Error in electrostatic capacitance for sphere-to-plane system 
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Figure 5: Normalized potential distribution along the z-axis for the system in Fig. 2, for b/a = 8 

Table 1 
Comparison of the results obtained in the transformed and original domains for sphere-to-plane 

configuration 

Original domain Transformed domain 

Item b/a = 2 b/a = 8 b/a = 2 b/a = 8 

Total number of elements 33 36 15 15 
Total number of unknowns 60 65 30 30 
Artificial boundary 16a x 16a 16a x 22a 
CPU time on the Amdahl 1.77 sec 2.07sec 0.61 sec 0.61 sec 

5850 system 
Error in capacitance 2.66% 4.44% 0.22% -0.27% 
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For two extreme values of the ratio bl a, bl a = 2 and bl a = 8, FEM was also 
applied in the original domain by considering the potential equal to zero on the 
boundaries of the truncated region. For the case corresponding to the ratio bla = 8, 
the potential distributions obtained by the two methods is given in Fig. 5. A 
comparison between the proposed method and the truncated mesh technique in 
terms of computational effort is summarized in Table 1. 

3.2. Capacitance of a torus in free space 

In order to obtain accurate results with a reduced amount of computation, ap­
plication of the proposed method does not require the transformed domain to have 
such a simple geometric shape as that in Example 3.1. To illustrate this, consider the 
application of the standard inversion transformation for calculating the capacitance 
of a torus. The azimuthal section of a conducting torus of circular cross section is 
shown in Fig. 6. As in Example 3.1, the capacitance of this torus can be determined 
from the minimum value of the functional 

with the constraints 

F = ~o J p(V<P)2 dz dp 

D 

{
<P0 for z2 + (p- b)2 = a2 

<P = 
0 at infinity 

(22) 

(23) 

The inversion with respect to the circle z 2 + (p - b )2 = a 2 is given by the trans-

p 

Figure 6: Azimuthal section of a torus 
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formation function f(w) = a/w + ib, which yields 

au 
z=--­

u2+ v2 

av 
p=---+b 

u2 + v2 

(24) 

(25) 

The transformed domain D' 1s shown in Fig. 7 and eqs. (22) and (23) become, 
respectively, 

F = ~o J p'(V'<P')2 du dv 

D' 

and 

<P' = { <P0 for u
2 
+ v

2 
= 1 

0 u=v=O 

The function p' in eq. (26) can be written in polar coordinates as (see Fig. 7) 

a sin 8 
p'(r, 8)= ---+ b 

r 

(26) 

(27) 

(28) 

For a ratio of b/a = 8, the mesh used in the transformed domain is presented in 
Fig. 7 and consists of 30 quadratic elements. The exact value of the capacitance 

v 

;<fi=<l>o 

u 

Figure 7: Finite element mesh in the transformed domain for Example 3.2 
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normalized with respect to 41Te0a was determined [12] as being 6.1007 ± 0.00092. The 
result obtained by the present method is 6.148. 

3.3. Conducting sphere in an inhomogeneous dielectric'. 

As an example of a field problem involving inhomogeneities, consider a conducting 
sphere of radius a in an infinitely extended inhomogeneous dielectric. The electric 
potential of the sphere is <1>0 with respect to the zero potential at infinity. The 
variation of the permittivity e of the dielectric is chosen to be 

(
lOa ) e = £0R+1 (29) 

where R denotes the radial distance from the center of the sphere. 
The original domain D is now mapped onto a bounded domain D' by using the 

inversion transformation function /( w) = a/ w, as illustrated in Fig. 8, and the 
transformed functional in eq. (9) is now 

-e0a J v ---
F = -- -

2
--

2 
(lOV u 2 + v 2 + 1)( V'</>')2 du du 

2 u + v 
(30) 

D' 

v 
U + ·1v- 0 

- z+lp 

Figure 8: Mapping by inversion for exterior-field problems relative to a sphere 

Figure 9: Finite element mesh in the transformed domain for Examples 3.3 and 3.4 
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Figure 10: Normalized potential distribution in the radial direction: (1) Conducting sphere in in­
homogeneous dielectric medium (Example 3.3); (2) Conducting sphere with external source distribution 
(Example 3.4) 

Taking into account the symmetry with respect to the v-axis, the problem was 
solved for the quadrant shown in Fig. 9, with a mesh of 25 quadratic elements. The 
potential distribution obtained is given in Fig. 10 and the calculated normalized 
electrostatic capacitance, C = Fm;0 /(E0a<P~) is 0.68% above its exact value of 10/ln 11. 

3.4. Charged sphere with external source distribution 

To test the proposed method for the solution of the nonhomogeneous equation (1), 
consider now a conducting sphere of radius a in an infinitely extended homogeneous 
dielectric with a source distribution outside the sphere given by (see eq. (1)) 

1 
g= R4 

where R is the distance from the center of the sphere. 

(31) 

The same transformation and mesh used in Example 3.3 were considered for this 
problem. The normalized potential distribution obtained is shown in Fig. 10. Within 
a radial distance of 11 times the radius of the sphere, the maximum percentage error 
in nodal potentials is 1.04 % . 

DISCUSSION 

From the examples considered, one can see that the proposed method is well suited 
to solving scalar field problems in unbounded regions. When mapping an unbounded 
axisymmetric region onto a bounded domain, a factor which is singular at the point 
corresponding to infinity in the original domain will appear in the integrand of the 
transformed functional (such as 1/r in eq. (28)). In order to evaluate the transformed 
functional in eq. (9), the trial functions used in the FEM must be chosen properly. 
Lagrangian polynomial shape functions of order n are adequate even for problems 

http:Propo.ed
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in which the radial distance function p' in eq. (9) has a singularity of the order 
O(l/r2

n-
1
). In the case of inversion mapping, p' has a singularity of the order 0(1/r) 

and, therefore, even linear elements can be used. 
The numerical evaluation of the integral in eq. (9) can be performed by applying 

standard quadrature formulas [13] and this constitutes an advantage of the method 
presented. As illustrated in Example 3.1, the solution for the whole range of 
geometric parameters can be obtained by using the same mesh in the transformed 
domain, shown in Fig. 3. In such cases, the analysis in the original domain would 
have required a different mesh for each set of parameters characterizing the system 
geometry. 

In the examples considered, much more accurate results were obtained for 
approximately half the number of unknowns in the transformed domains, as com­
pared to the truncated mesh technique in the original domains. 

4. CONCLUSIONS 

A very simple technique of using conformal mapping in the finite-element solution 
of unbounded region axisymmetric field problems has been presented. By trans­
forming directly the functional incorporating the boundary conditions of the original 
problem, there is no approximation made regarding the: boundary conditions and the 
behaviour of the field quantities towards infinity. This greatly enhances the accuracy 
of the numerical results. 

Since the transformed functional is similar to the original one and special quadra­
ture techniques are not required, any standard finite-element computer program can 
be used for the implementation of this method. 

The usage of the presented procedure is straightforward and simple even for 
problems with material inhomogeneities, as illustrated in Example 3.3, or in aniso­
tropic media. As shown in the comparative Table 1 for a characteristic tested 
example, the proposed method is efficient, yielding highly accurate results with a 
substantially reduced amount of computation. 

The general procedure presented in this paper is not restricted to the scalar 
axisymmetric fields considered for illustration. It can also be applied to the analysis 
of other scalar and even vector axisymmetric field problems. 
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