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�is paper presents a method of depression recognition based on direct measurement of affective disorder. Firstly, visual
emotional stimuli are used to obtain eye movement behavior signals and physiological signals directly related to mood. �en, in
order to eliminate noise and redundant information and obtain better classification features, statistical methods (FDR corrected t-
test) and principal component analysis (PCA) are used to select features of eye movement behavior and physiological signals.
Finally, based on feature extraction, we use kernel extreme learning machine (KELM) to recognize depression based on PCA
features. �e results show that, on the one hand, the classification performance based on the fusion features of eye movement
behavior and physiological signals is better than using a single behavior feature and a single physiological feature; on the other
hand, compared with previous methods, the proposed method for depression recognition achieves better classification results.
�is study is of great value for the establishment of an automatic depression diagnosis system for clinical use.

1. Introduction

Depression is a psychiatric disorder characterized by sig-
nificant and persistent loss of pleasure, anhedonia, and
decreased interest. To date, no specific biological markers
have been found for the diagnosis of depression. �erefore,
in clinic, the diagnosis of depression is mainly carried out by
psychiatrists through structured interviews based on diag-
nostic manuals (e.g., DSM-IV). With the development of
artificial intelligence technology, pattern recognition tech-
nology based on machine learning has been widely studied
in the recognition or diagnosis of depression.

Recently, a lot of research has been done on the de-
pression classification based on resting-state fMRI brain
image signals. For example, Cao et al. classified the severe

depression patients based on functional connections of
resting-state fMRI by feature selection and SVM and ob-
tained 84.21% classification accuracy [1]. Qin et al. used
SVM to identify patients with severe depression based on the
diffusion tensor imaging (DTI) of resting-state fMRI, and
the highest classification accuracy was 83.05% [2]. Sato et al.
classified the patients with severe depression based on fMRI
signals and achieved an accuracy of 78.26%, sensitivity of
72.00%, and specificity of 85.71% [3]. Bhaumik et al. used
SVM to classify remitted major depressive patients based on
the functional connectivity of resting-state fMRI and
achieved an accuracy of 76.1%, sensitivity of 81.5%, and
specificity of 68.9% [4]. Schnyer et al. used DTI and SVM to
identify patients with severe depression, and the highest
classification accuracy, specificity, and sensitivity were
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74.0%, 80.0%, and 68.0% [5]. Ramasubbu et al. used SVM
based on the voxel space of resting-state fMRI to classify
mild-moderate, severe, and very severe patients, and the
classification accuracy was 58%, 52%, and 66%, respectively
[6].

In addition to using fMRI signals to identify depression,
in recent years, EEG-based depression recognition has also
been widely studied. For example, Liao et al. used SVM to
classify severe depression patients based on resting-state
EEG signals, and 80% of the classification accuracy is ob-
tained [7]. Bairy et al. used the decision tree algorithm to
classify based on EEG signal, and the classification accuracy,
sensitivity, and specificity were 94.30%, 91.46%, and 97.45%
[8]. Mumtaz et al., based on resting-state EEG using SVM for
classification, achieved an accuracy of 98.4%, sensitivity of
96.66%, and specificity of 100% [9]. Acharya et al. used deep
convolution neural network to recognize depression based
on EEG signals and achieved the highest accuracy of 96%
[10].

Compared with EEG and fMRI signals, the behavior data
such as expression and voice are easier to obtain.)erefore, a
lot of research has been done on the method of depression
classification based on behavior data. For example, Valstar
et al. used linear SVM with random gradient descent to
classify depression based on video expression, audio, and
multimodality, and the F1 scores were 0.583, 0.889, and
0.467, respectively [11]. Ma et al. proposed a depth classi-
fication model (DepAudioNet) combining convolutional
neural network (CNN) with long-term and short-term
memory (LSTM) based on audio signals, and the optimal F1
score is 0.52 (0.70), classification accuracy is 0.35 (1.00), and
recall is 1.00 (0.54) (nondepressive results in parentheses)
[12].

In addition to using a single physiological or behavioral
signal for depression classification, many studies have rec-
ognized depression based on multimodal data. For example,
Zhao et al. used the multimodal data of resting-state fMRI
and DTI for classification with an accuracy of 80.95% [13].
Le et al. fused audio, video, language, and sleep multimodal
data at feature level and obtained F1 scores of 57.1% and
87.7% in depression patients and normal control group,
respectively, by using decision tree algorithm [14]. Al Hanai
et al. used LSTM to classify depression based on multimodal
data of audio/text, and the optimal F1 score and recall rate
were 0.77 and 0.83, respectively [15]. Haque et al. used causal
convolution neural network (C-CNN) to identify depression
in patients with severe depression based onmultimodality of
expression, voice, and linguistic (text), and 83.3% sensitivity
and 82.6% specificity were obtained [16].

Compared with EEG/fMRI, behavioral signals are easier
to collect and low in cost from the source of classified signals.
)erefore, the method of depression recognition based on
behavioral signals and deep learning methods has attracted
the attention of researchers. However, whether it is physi-
ological signal (fMRI, EEG) or behavioral signal (expression,
voice, etc.), the common characteristics of these signals are
acquired in the natural state of the individual; for example,
resting-state EEG and fMRI signals are all acquired when the
individual is in the state of closing eyes, relaxing, and not

thinking about anything. Behavioral signals such as ex-
pressions and voices are natural state signals obtained during
interviews (usually using virtual agents). )at is to say, at
present, the classification signals collected in the natural
state are not directly related to affective disorders but in-
direct measurement of affective disorders. However, the core
symptoms of depression patients are low and bad mood is
caused by emotional injury, so the signals obtained by direct
measurement of emotions are of great value for the study of
depression recognition.

Eye movement technology opens up a new way for the
study of automatic detection of depression. )e eye is the
window of the mind and the important organ for humans to
observe the world directly. Eye movement signals, such as
gaze objects, gaze time, gaze shift, and pupil size, acquired by
eye tracking technology, are all direct reflections of the
brain’s information processing demand and can quantita-
tively characterize emotional perception. )erefore, eye
movement signals are a direct measurement of emotional
state. Alghowinem et al., firstly based on the eye movement
features (horizontal, vertical, and eyelid movement) ob-
tained by emotional language stimulation to classify 30
depressive patients and 30 normal people, achieved 75% of
the classification accuracy by using the Gauss mixture model
and SVM [17]. Li et al. used random forest algorithm to
classify 9 depressive patients and 25 normal people based on
the eye movement features (pupil size, gaze position, gaze
time, etc.) obtained by emotional expression picture stim-
ulation, and the classification accuracy was 80.1% [18]. It can
be seen that the above studies using eye movement behavior
signals and physiological signals (pupil diameter) as clas-
sification features still do not get a high classification ac-
curacy. Although the pupil diameter signal can reflect the
change of emotion, the physical size of the pupil diameter
varies greatly and cannot be directly used for emotional
measurement. )erefore, this study further processed be-
havior and pupil diameter signals of eye movement in order
to extract classification features that can better reflect the
differences between depressed patients and normal people.

Many previous eye movement studies have shown that,
on the one hand, depressed patients tend to have emotional
attention bias [19], i.e., reduced attention to happy emotions
and excessive attention to sad emotions, which represented
that positive attention bias scores (the difference between the
total fixation time at happy expressions and the total fixation
time at calm expressions) of depressed patients were sig-
nificantly greater than those of the normal people, while the
negative attention bias scores (the difference between the
total fixation time at sad expressions and the total fixation
time at calm expressions) of depressed patients were sig-
nificantly smaller than those of the normal people [20]. On
the other hand, the processing of emotional information in
the brain can cause changes in pupil diameter.)e change in
pupil diameter directly reflects the change of people’s
emotion. Positive emotional visual stimulation can cause
people to have happy emotional experience, accompanied by
the enlargement of pupil diameter, whereas negative emo-
tional visual stimulation can cause people to have sad
emotional experience, accompanied by the smaller pupil
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diameter [21–23]. Studies have shown that there are sig-
nificant differences in pupil diameter between depressive
patients and normal people under different emotional
stimuli [24, 25].

In this study, two kinds of classification features are
extracted from eye movement signals directly related to
emotion when evoked by different emotional pictures: one is
the attention bias score [20] which reflects eye movement
behavior signals, and the other is the emotional bandwidth
[26] which reflects physiological signals based on pupil
diameter. Noise and redundant information often exist in
the acquired physiological and behavioral signal features, so
feature selection and feature extraction are needed.

In addition, the performance of classification model
directly affects the classification results. )e data collected in
this study are tabular data, and the data scale is small, which
is not suitable for deep learning methods. For relatively
small-scale data, SVM implements the suboptimal solution
learningmethod, while the extreme learningmachine (ELM)
[27, 28] shows better classification performance. ELM is a
feedforward neural network model based on a single hidden
layer, which has been widely used for its advantages of
simple calculation process, fast speed, and good general-
ization performance. At present, basic ELM and kernel ELM
have developed. Compared with basic ELM, kernel ELM has
the advantages of fewer adjustable parameters and no need
to set hidden layer nodes manually. )erefore, to improve
the recognition accuracy of depression, this study used
kernel ELM as a classifier. At the same time, to compare the
impact of different classification models on the classification
results, we also used SVM, KNN, and random forest to
classify depression.

2. Materials and Methods

2.1. SignalAcquisition. )ere were 96 participants in the data
collection, including 48 depressed patients and 48 normal
people. From the international standard expression library,
the NimStim set [29], three facial expressions (neutral, happy,
and sad) images of 36 people (18 males and 18 females), was
selected. On the one hand, to reduce the eye movement
caused by nonexpressive factors, the ears and hair should be
masked as much as possible. On the other hand, the size,
resolution, and gray level of all facial expression pictures were
consistent through picture manager software.

Data acquisition tasks were divided into two categories:
One was eye movement behavioral signals, that is, acqui-
sition of the position and time of each gaze point when a
participant views positive or negative bias tasks. Positive bias
task is composed of 36 pictures of happy and neutral ex-
pressions, while negative bias task is composed of 36 pictures
of sad and neutral expressions. Figure 1 shows an example of
eye movements when a depressed patient views positive bias
task and negative bias task. Each circle represents a gaze
point, and its size indicates the length of fixation time.

)e other is eye movement physiological signal (pupil
diameter) acquisition, that is, the size of pupil diameter
produced by each fixation point during a participant viewing
positive, negative, or neutral tasks. Positive tasks consist of

two pictures of happy expressions (36 in total), negative
tasks consist of two pictures of sad expressions (36 in total),
and neutral tasks consist of two pictures of neutral ex-
pressions (36 in total), as shown in Figure 2.

)e eye-tracking device Tobii T120 was used to collect
and record the position, time, and pupil size of each fixation
point at a frequency of 120Hz. As shown in Figure 3, the
data acquisition process was as follows: Firstly, a 1000ms
white “+” appeared in the center of the black screen to focus
on it [10].)en, the screen presented a pair of pictures with a
time of 3500ms, followed by a “∗” of 2000ms, prompting
them to rest for the next trial.

2.2. Classification Feature Calculation. Firstly, the eye
movement behavioral and physiological features are cal-
culated according to the collected behavioral data and
physiological data of eye movement.

2.2.1. Behavioral Features—Emotional Attentional Bias.
Emotional attention bias includes positive bias and negative
bias [20]. Among them, positive attention bias refers to the total
fixation time of happy expression subtracted from the total
fixation time of neutral expression in the “positive bias” task of
Figure 1; negative attention bias refers to the total fixation time of
sad expression subtracted from the total gaze time of neutral
expression in the “negative bias” task of Figure 1.

2.2.2. Physiological Features—Affective Bandwidth and
Change Rate of Pupil Diameter. Affective bandwidth in-
cludes positive affective bandwidth and negative affective
bandwidth. Although pupil size is affected by external
emotional stimuli, the pupil size of each person is different
and is also affected by light, mental load, and so on.
)erefore, the use of individual pupil size cannot simply
express the effect of emotion. Here, affective bandwidth [26]
is used to characterize the effect of emotion on pupil size,
including positive and negative affective bandwidth. Positive
affective bandwidth indicates the ability of individuals to
process and experience happy emotions.)e larger the positive
affective bandwidth, the stronger the ability of individuals to
process and experience happy information. Negative affective
bandwidth indicates the ability of individuals to process and
experience negative emotions. )e larger the negative affective
bandwidth, the stronger the ability of individuals to process
and experience negative information.

Positive affective bandwidth is calculated that the mean
pupil diameter of all fixation points in the “neutral” task
(Figure 2(a)) is subtracted from that of all fixation points in
the “positive” task (Figure 2(c)). Negative affective band-
width is calculated that the mean pupil diameter of all
fixation points in the “neutral” task (Figure 2(b)) is sub-
tracted from that of all fixation points in the “negative” task
(Figure 2(c)).

At the same time, the change rate of positive pupil di-
ameter and negative pupil diameter is calculated with the
mean pupil diameter in the “neutral” task as the baseline.
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On this basis, the statistical indicators of each eye
movement behavioral feature (positive attention bias and
negative attention bias) and each eye movement physiological
feature (positive/negative affective bandwidth, positive/neg-
ative pupil diameter change rate) are calculated, including
minimum, lower quartile, median, upper quartile, maximum,
mean, and standard deviation. )is constitutes 42 classifi-
cation features, including 14 behavioral features and 28
physiological features of eye movement, as shown in Table 1.

2.3. Classification Feature Reduction. Since there may be
irrelevant and redundant information in eye movement

features, dimensionality reduction is carried out after nor-
malization. Here, feature selection and feature extraction are
used to complete dimensionality reduction.

2.3.1. Feature Selection. Feature selection is to select a subset
of features that are effective for classification from all fea-
tures. Here, the FDR corrected t-test was used to analyze
whether there was a significant difference between the de-
pression group and healthy control group (P< 0.05). As
shown in Table 1, only 24 of the 42 features showed sig-
nificant differences among groups (including 11 behavioral
and 13 physiological features).
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Figure 1: An example of eye movements when a depressed patient views (a) positive bias tasks and (b) negative bias tasks. Each circle
represents a gaze point, and its size represents the length of fixation time.
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Figure 2: An example of eye movements when a depressed patient views (a) positive task, (b) negative task, and (c) neutral task. Each circle
represents a gaze point, and its size represents the length of fixation time.

4 Complexity



)e positions of the 24 selected features in Table 1 are
expressed as F1∼F24 in the order of left to right and top to
bottom. Among them, F1∼F11 are the behavioral signal
features and F12∼F24 are the physiological signal feature.

2.3.2. Feature Extraction. )ere may be redundancy in the
24 features obtained by feature selection; that is, there may
be correlation between features. )erefore, feature extrac-
tion is needed.

In order to determine whether there is redundant in-
formation between features, we use the Pearson correlation
coefficient to calculate the correlation between these fea-
tures. )e calculation formula is as follows:

ρX,Y �
E(XY) − E(X)E(Y)�������������

E(X)2 − E2(X)

 �������������
E(Y)2 − E2(Y)

 , (1)

where E(X) represents the mathematical expectation of
variable X. When |ρX,Y| ≥ 0.6, there is a strong correlation
between variables X and Y. On the contrary, there is a weak
correlation or no correlation between them.

)e correlations between behavioral features and physi-
ological features are shown in Figure 4. It can be seen that
there is a strong correlation between some behavioral features
(Figure 4(a)) and some physiological features (Figure 4(b)).

To eliminate redundant information and further reduce
the dimension of features, principal component analysis
(PCA) is used to extract features. )e behavioral and
physiological features are processed with PCA, respectively.
Figure 5 shows the single variance contribution rate and
accumulated variance contribution rate of behavioral fea-
tures PCA (PCA1, PCA2, . . ., PCA11) and physiological
features PCA (PCA1, PCA2, . . ., PCA13).

2.4. Classification Model

2.4.1. KELM Classification Model. )e output function for
extreme learning machine (ELM) is

f(x) � h(x)HT I

C
+HH

T − 1O, (2)

where f(x) is the actual output, O is the expected output of
neural networks, C is the regularization factor, h(x) is the
function of hidden layer, and H is the output matrix of
hidden layer.

Kernel extreme learning machine (KELM) introduces
the kernel function based on ELM and solves the problem
that the low-dimensional space is inseparable. )e kernel
function is defined as

Ωi,j � h xi( h xj  � K xi, xj , (3)

Ω � HH
T
�

K x1, x1(  · · · K x1, xN( 
⋮ ⋱ ⋮

K xN, x1(  · · · K xN, xN( 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

)e final output function of KELM is

f(x) � h(x)HT 1

C
+HH

T − 1O �
K x, x1( 

. . .

K x, xN( 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

1

C
+Ω − 1O,

(5)

where N is the number of input samples.
Since the RBF kernel function has the advantage of

strong learning ability and fewer parameters to be optimized,

1000ms 3500ms 2000ms

+ ∗

Figure 3: Data acquisition process.

Table 1: Analysis of differences between groups in 42 classification features (FDR corrected t-test).

Minimum Lower quartile Median Upper quartile Maximum Mean
Standard
deviation

Positive bias − 1.47 1.73 5.71∗∗∗ 7.59∗∗∗ 6.58∗∗∗ 6.00∗∗∗ 6.30∗∗∗

Negative bias − 5.45∗∗∗ − 6.99∗∗∗ − 8.25∗∗∗ − 8.3∗∗∗ − 8.25∗∗∗ − 8.15∗∗∗ − 0.10
Positive affective bandwidth 6.50∗∗∗ 6.49∗∗∗ 5.74∗∗∗ 4.68∗∗∗ 3.32∗∗ 5.97∗∗∗ − 2.06
Negative affective bandwidth 1.63 1.03 0.62 0.14 − 1.02 0.50 − 2.60∗

Positive pupil diameter change rate 6.49∗∗∗ 6.95∗∗∗ 6.21∗∗∗ 5.44∗∗∗ 4.17∗∗∗ 6.70∗∗∗ − 1.14
Negative pupil diameter change rate 1.64 1.25 1.02 0.63 − 0.24 0.92 − 1.47
∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001.
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RBF kernel function is adopted in this study, as shown in the
following formula:

K xi, xj  � exp −
xi − xj

����� �����2
σ2

⎛⎜⎜⎝ ⎞⎟⎟⎠. (6)

2.4.2. Model Training Strategy. )e number of participants
was 96 (48 for normal subjects and 48 for depressed pa-
tients). )e training process of the model uses 10-fold cross-
validation. )e training set is randomly divided into 10
disjoint subsets of the same size, in which 9 subsets are used
as the training set and the remaining one is used as the
validation set. Ten models are trained in turn, and the mean
values of the classification results of the test set on 10 models
are calculated.

3. Results and Discussion

In this section, the depressed patients group is regarded as
positive class, while the normal control group is regarded as
negative class. )e results are analyzed from four aspects:
accuracy, specificity, sensitivity, and F1 score. Among them,
the accuracy reflects the ability of the model to distinguish
depressed patients from normal people, the sensitivity re-
flects the proportion of depressed patients correctly classi-
fied, the specificity reflects the proportion of normal people
correctly classified, and F1 score takes into account the
precision and recall of the classification model.

3.1. Selection of Optimal Feature Subset. Feature selection is
carried out inside the cross-validation folds to make the
classification algorithm more robust. To do this, the top k
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Figure 4: Analysis of correlations between selected features: (a) behavioral features; (b) physiological features.
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Figure 5: Single and accumulated variance contribution rate after PCA processing: (a) behavioral features; (b) physiological features.
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PCA features (k is less than or equal to the number of PCA
features) are selected iteratively as the classification features,
and the 10-fold cross-validation method is used to train the
model. Finally, the optimal feature subset is selected from
multiple PCA feature subsets based on the classification
accuracy.

Figure 6 shows the classification accuracy based on
different PCA feature subsets. It can be seen that as the
number of PCA features increases, the classification accu-
racy generally increases first and then decreases. According
to the classification results, the optimal feature subset of
behavioral signal PCA features is PCA1∼PCA7, and the
optimal feature subset of physiological signal PCA features is
PCA1∼PCA10.

3.2. Comparison of Classification Results of Different Signal
Features. )e classification results based on the features of
eye movement behavioral signals, physiological signals, and
their fusion signals are shown in Figure 7. It can be seen that

the classification accuracy, sensitivity, specificity, and F1 score
of behavioral signals are much higher than those of physi-
ological signals, which indicate that the difference of atten-
tional function in the emotional information between
depressed patients and normal people is much greater than
that of pupil size changes. When behavioral and physiological
signals are used together in modeling, the classification results
are better than those using single eye movement behavioral
signals and single physiological signals.

3.3. Comparison with Other Methods. Table 2 shows the
comparison with other methods for depression classification
based on eye movement signals. It can be seen that our
proposed classification method is much better than other
methods.

Table 3 shows the comparison with other methods of
depression classification based on fusion signals, and our
proposed classification method is also much better than
other methods.
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Figure 6: Classification accuracy of different PCA feature subsets: (a) behavioral features; (b) physiological features. PCA∼m represents
PCA1+PCA2 +. . .+ PCAm.
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We also compare the effects of different classification
models on the classification results, as shown in Table 4. It
can be seen that the KELM model and random forest model
have better classification results.

From the comparison of the classification results in
Tables 2 and 3, we can see that the proposed classification
results based on the fusion of eye movement behavioral and
physiological signals are better.)ere are three main aspects:
first, compared with the previous resting-state EEG/fMRI
signals and expression/voice, we obtain emotional infor-
mation of eye movement under external emotional stimu-
lation, which reflects the current mood of depressed patients;
second, we use the relative change indicators such as at-
tention bias and affective bandwidth features as classification
features and, based on this, extract statistical indicators
(minimum, lower quartile, median, upper quartile, maxi-
mum, mean, and standard deviation) directly related to the
data distribution, which effectively improves the difference
between depressed patients and normal people; third,
through statistical feature selection and PCA-based feature
extraction, the irrelevant features and redundant informa-
tion are effectively removed, and the classification

performance of depression is improved. In addition, com-
pared with other methods, our proposedmethod also has the
advantages of simple data acquisition and fewer features for
classification.

4. Conclusion

In view of the lack of physiological and behavioral signals
directly related to affective disorders in current research on
depression recognition, this paper designs and extracts
physiological signals based on the changes of affective
bandwidth and pupil diameter and attentional bias signals
based on gaze behavior. Statistical FDR corrected t-test and
PCA are used for feature selection and feature extraction to
eliminate noise and redundant information in behavioral
and physiological signals of eye movement. )e KELM
classifier is used to classify depression based on behavioral
features, physiological features, and fusion of behavior and
physiological features. )e results show that behavioral and
physiological features are the main features of depression,
and the fusion features improve the classification perfor-
mance of depression.

In addition, we also use other classifiers (SVM, KNN,
and random forest) to classify depression based on the
fusion features of eye movement behavioral and physio-
logical signals. )e results show that the random forest
model also achieved satisfactory classification results.
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