
Partial Di�erential Equations

W. E. Schiesser

Iacocca D307

111 Research Drive

Lehigh University

Bethlehem, PA 18015

(610) 758-4264 (o�ce)

(610) 758-5057 (fax)

wes1@lehigh.edu

http://www.lehigh.edu/~wes1/wes1.html

1

Partial Di�erential Equations

http://www.lehigh.edu/~wes1/apci/28apr00.tex

http://www.lehigh.edu/~wes1/apci/28apr00.ps

http://www.lehigh.edu/~wes1/apci/28apr00.pdf

�les.txt

1. Geometric and related classi�cations

2. Time and spatial discretization

3. Method of Lines

4. Finite di�erences

5. Finite elements

6. Finite volumes

7. Weighted residuals

8. Adaptive grids

9. References and software

2

Why di�erential equations?

Di�erential equations are possibly the most widely used form of mathematics

in science and engineering.

What are di�erential equations?

Di�erential equations are equations with one or more derivatives.

What are partial di�erential equations (PDEs)?

PDEs are di�erential equations with two or more independent variables, typ-

ically time and one or more spatial dimensions.

Why solve PDEs using computers?

Essentially all realistic problems in di�erential equations are:

� High order (of order n� n)

{ 100 � 100 systems are now routine

{ 101 � 101 to 102 � 102 systems are now rather commonplace

{ 103 � 103 systems are at the forefront of applications

� Nonlinear

We can solve di�erential equations (PDEs) analytically only if n � 2, and

they are linear.

Representative analytical methods include separation of variables, Laplace

transforms

What is the origin of such high order, nonlinear problems?

Examples: Solid state device simulation; dynamics of chemical reactors, sep-

aration systems

3

PDEs - (more than one independent variable, e.g., x; t)

@u

@t
=

@
2
u

@x2
; solution: u(x; t)

The solution is the dependent variable(s) as a function of the independent

variables (that satis�es the PDE(s) and all of its auxiliary conditions).

PDEs are frequently written with subscript notation, e.g.,

@u

@t
, ut;

@
2
u

@x2
, uxx

so the PDE can be written in subscript notation as

ut = uxx

This notation makes the statement of PDEs more compact, and is also useful

in their coding, e.g., for an arrays, we can use

u, u(i); ut;, ut(i); uxx , uxx(i)

In general, we will obtain the solution in numerical form, e.g., u(x; t) will be

tabulated (or plotted) values of u(x; t) vs x and t..

Geometric and Related Classi�cations

The geometric classi�cation of PDEs as elliptic, hyperbolic and parabolic has

a rigorous de�nition for a single linear, second order PDE. Here we introduce

a geometric classi�cation that is less rigorous, but more general.

4

Order in z (BV) Order in t (IV) Classi�cation Example

1 1 First order hyperbolic
@u

@t
= �v

@u

@z
(advection equation)

2 2 Second order hyperbolic
@
2
u

@t2
= c

2
@
2
u

@z2

(wave equation)

2 1 Parabolic
@u

@t
= �

@
2
u

@z2

(Fourier's or Fick's second law)

2 (in y; z) 0 Elliptic
@
2
u

@y2
+
@
2
u

@z2
= 0

(Laplace's equation)

Combinations of these classes of PDEs are also possible. For example

@u

@t
= �v

@u

@z
+D

@
2
u

@z2
(1)

is a hyperbolic-parabolic (or convective di�usion) equation which could have

the auxiliary conditions

u(z; 0) = f(z) (2)

�D
@u(0; t)

@z
= v(u0 � u(0; t)) (3)

@u(L; t)

@z
= 0 (4)

BCs (3) and (4) (note there are two since eq. (1) is second order in z) are the

Wilhelm Danckwerts BCs (named after two well known ChEs); generally,

5

eq. (4) is not appropriate for unsteady state problems, and can be replaced

by

@u(L; t)

@t
= �v

@u(L; t)

@z
(5)

Note that eq. (5) is an acceptable BC for eq. (1) since it is only �rst order

in z, while eq. (1) is second order in z (generally, a BC is at least one order

lower than the highest order derivative in the PDE).

To repeat, we have the basic question, what do we mean by the solution

to a PDE? The answer in general is the dependent variable as a function of

the independent variables. Thus, for equations (1) to (4), the solution is a

function, u(z; t); in analytical or numerical form.

Eq. (1) can be extended in cylindrical coordinates to include a radial

coordinate, r

@u

@t
= �v

@u

@z
+D

�
@
2
u

@z2
+
@
2
u

@r2
+

1

r

@u

@r

�
(6)

Since eq. (6) is second order in r, it requires two BCs, e.g.,

@u(0; z; t)

@r
= 0 (7)

Eq. (7) is a Neumann BC (re
ecting symmetry around the centerline r = 0)

since it de�nes the �rst derivative of the solution, u(r; z; t), at r = 0.

A second BC might be

u(r0; z; t) = uw (8)

Eq. (8) is a Dirichlet BC since it de�nes the dependent variable, u(r; z; t);

at the wall, r = r0:

Eq. (3) is a combination of a Dirichlet BC and a Neumann BC (it contains

both u(0; t) and
@u(0; t)

@z
), and is generally termed a BC of the third type or

a Robin BC.

6

Thus, the possible BCs are Dirichlet, Neumann, third type, linear or nonlin-

ear.

The coe�cient
1

r
in eq. (6) is termed a variable coe�cient (it is a function

of the independent variable r). Note, however, that eq. (6) is linear (PDEs

with variable coe�cients may be linear or nonlinear).

If the third angular coordinate is added to eq. (6), it becomes

@u

@t
= �v

@u

@z
+D

�
@
2
u

@z2
+
@
2
u

@r2
+
1

r

@u

@r
+

1

r2

@
2
u

@�2

�
(9)

Eq. (9) is a linear, initial value, hyperbolic-parabolic PDE (with variable

coe�cients) in cylindrical coordinates; it requires two BCs in � (generally

unnecessary in most applications because of no variation of u(r; �; z; t) with

� (note the \units" of the various derivatives in eq. (9)). Eq. (9), with

v = 0, is the full Fourier's second law in cylindrical coordinates (a parabolic

PDE). Note that eq. (9) is �rst order in t; and second order in r; � and z,

and therefore requires the requisite number of auxiliary conditions in each

independent variable

Independent Highest order Type of auxiliary Example

variable derivative condition

t 1 Initial condition u(r; �; z; 0) = u0

r 2 Neumann, linear @u(r0; �; z; t)=@r = 0

Third type, nonlinear �k@u(r1; �; z; t)=@r =

�(u4a � u
4(r1; �; z; t))

� 2 Neumann, linear @u(r; 0; z; t)=@� = 0

Neumann, linear @u(r; �; z; t)=@� = 0

z 2 Neumann, linear @u(r; �; 0; t)=@z = 0

Neumann, linear @u(r; �; L; t)=@z = 0

These ICs and BCs imply ranges for the independent variables that are not

7

speci�ed above. For example, the second BC

@u(r0; �; z; t)=@r = 0

means

@u(r0; �; z; t)=@r = 0; 0 � � � �; 0 � z � L; t � 0

The equation in spherical coordinates is:

@u

@t
= D

�
@
2
u

@r2
+

2

r

@u

@r
+

1

r2 sin �

@

@�

�
sin �

@u

@�

�
+

1

r2 sin2 �

@
2
u

@'2

�
(10)

Eq. (10) is a linear, initial value, parabolic PDE (with variable coe�cients)

in spherical coordinates (Fourier's second law in spherical coordinates).

If we have a reaction in the sphere, with a signi�cant heat e�ect

@u

@t
= D

�
@
2
u

@r2
+

2

r

@u

@r
+

1

r2 sin �

@

@�

�
sin �

@u

@�

�
+

1

r2 sin2 �

@
2
u

@'2

�
+�Hk0e

�E=(Ru)

(11)

Eq. (10) is a nonlinear, initial value, parabolic PDE (with variable coe�-

cients) in spherical coordinates.

All of these PDEs can be stated in a coordinate-independent format, e.g.,

@u

@t
= Dr � ru�r � (vu)� R (12)

where:

8

r� (divergence of a vector):

Coordinate system Components

Cartesian

2
666666664

[r]x =
@

@x

[r]y =
@

@y

[r]z =
@

@z

3
777777775

cylindrical

2
666666664

[r]r =
1

r

@

@r
(r)

[r]� =
1

r

@

@�

[r]z =
@

@z

3
777777775

spherical

2
666666664

[r]r =
1

r2

@

@r
(r2)

[r]� =
1

r sin �

@

@�
(sin �)

[r]� =
1

r sin �

@

@�

3
777777775

9

r (gradient of a scalar) :

Coordinate system Components

Cartesian

2
666666664

[r]x =
@

@x

[r]y =
@

@y

[r]z =
@

@z

3
777777775

cylindrical

2
666666664

[r]r =
@

@r

[r]� =
1

r

@

@�

[r]z =
@

@z

3
777777775

spherical

2
666666664

[r]r =
@

@r

[r]� =
1

r

@

@�

[r]� =
1

r sin �

@

@�

3
777777775

10

r � r (divergence of the gradient of a scalar):

Coordinate system Component

Cartesian
@
2

@x2
+

@
2

@y2
+

@
2

@z2

cylindrical (
@
2

@r2
+
1

r

@

@r
) +

1

r2

@
2

@�2
+

@
2

@z2

spherical
1

r2

@

@r
(r2

@

@r
) +

1

r2 sin �

@

@�
(sin �

@

@�
) +

1

r2 sin2 �

@
2

@�2

The derivation of r � r (the Laplacian) follows directly from the preceding

components of r� (divergence of a vector) and r (gradient of a scalar).

Cartesian coordinates:

r � r = (i
@

@x
+ j

@

@y
+ k

@

@z
) � (i

@

@x
+ j

@

@y
+ k

@

@z
) =

@
2

@x2
+

@
2

@y2
+

@
2

@z2

Cylindrical coordinates:

r � r = (ir
1

r

@

@r
(r) + j�

1

r

@

@�
+ kz

@

@z
) � (ir

@

@r
+ j�

1

r

@

@�
+ kz

@

@z
)

=
1

r

@

@r
(r

@

@r
) +

1

r

@

@�
(
1

r

@

@�
) +

@

@z
(
@

@z
)

=
1

r
(
@

@r
+ r

@
2

@r2
) +

1

r2

@

@�

@

@�
+

@

@z

@

@z

= (
@
2

@r2
+
1

r

@

@r
) +

1

r2

@
2

@�2
+

@
2

@z2

Spherical coordinates:

11

r � r = (ir
1

r2

@

@r
(r2) + j�

1

r sin �

@

@�
(sin �) + k�

1

r sin �

@

@�
) � (ir

@

@r
+ j�

1

r

@

@�
+ k�

1

r sin �

@

@�
)

=
1

r2

@

@r
(r2

@

@r
) +

1

r sin �

@

@�
(sin �

1

r

@

@�
) +

1

r sin �

@

@�
(

1

r sin �

@

@�
)

=
1

r2

@

@r
(r2

@

@r
) +

1

r2 sin �

@

@�
(sin �

@

@�
) +

1

r2 sin2 �

@
2

@�2

To summarize, the classi�cation of a PDE and its auxiliary conditions is

speci�ed in terms of

� Geometric classi�cation: elliptic, hyperbolic, parabolic

� Coordinate system

� Number of dimensions

� Initial value or boundary value

� Linearity

� Coe�cients: constant or variable

� Boundary conditions: Dirichlet, Neumann, third type; linear or non-

linear

This classi�cation is useful for:

� De�ning the type of PDE(s)

� Suggesting numerical methods for the solution of the PDE(s)

12

Of the three classes of PDEs, hyperbolic PDEs are the most di�cult to

integrate numerically. This can be illustrated with some famous examples of

�rst-order, hyperbolic PDEs:

(1) One dimensional, isothermal Euler equations written in conservation

form:

ut + [f(u)]x = 0

where

u =

�
�

�u

�
; f(u) =

�
�u

�u
2 + p

�

Substitution of u and f(u) into the general equation gives the one-dimensional

Euler equations

�t + (�u)x = 0 continuity

(�u)t + (�u2 + p)x = 0 momentum

Also, an equation of state (EOS) is required (to give a 2�2 system for �(x; t);

u(x; t))

p = p(�; T)

These PDEs are:

� Hyperbolic (�rst order in x and t)

� Source of sharp fronts and discontinuities

� Nonlinear

� Di�cult to solve numerically (and impossible analytically)

13

� Limited in their application, e.g., they have no heat transfer or reaction

terms

CFD codes are available for the solution of these Euler equations.

(2) One dimensional, nonisothermal Euler equations with chemical reaction

written in conservation form:

ut + [f(u)]x = g(u)

where

u =

2
66666664

�

�u

E

�Y1
...

�YN

3
77777775
; f(u) =

2
66666664

�u

�u
2 + p

(E + p)u

�uY1
...

�uYN

3
77777775
; g(u) =

2
66666664

0

0

0

r1(T; �; Y1; � � � ; YN)
...

rN(T; �; Y1; � � � ; YN)

3
77777775

where Yi is the mass fraction of component i and N is the number of reacting

species; the energy is given by

E = �p +
�u

2

2
+ �h

where h is the enthalpy per unit mass.

Substitution of u, f(u) and g(u) into the general equation gives the one-

dimensional Euler equations with chemical reactions

14

�t + (�u)x = 0 total continuity

(�u)t + (�u2 + p)x = 0 momentum

Et + [(E + p)u]x = 0 energy

(�Y1)t + [�uY1]x = r1(T; �; Y1; � � � ; YN) component 1 continuity
...

...

(�YN)t + [�uYN]x = rN(T; �; Y1; � � � ; YN) component N continuity

Note that an explicit heat transfer term and a heat of reaction term do not

appear in the energy balance (these can be added as in the model tubular

reactor PDEs derived in the �rst lecture). Again, an equation of state (EOS)

is required

p = p(�; E; Y1; � � �YN); T = T (�; E; Y1; � � �YN)

This is a (3 +N)� (3 +N) for �(x; t); u(x; t); E(x; t); Y1(x; t); � � �YN(x; t).

CFD codes are available for the solution of these Euler equations.

(3) Multidimensional, isothermal Euler equations (without the energy equa-

tion or chemical reaction) written in conservation form:

ut +r � [f(u)] = 0

where

u =

�
�

�v

�
; f(u) =

�
�v

�vv + p

�

v is a vector, e.g., Substitution of u and f(u) into the general equation gives

the one-dimensional Euler equations

�t +r � (�v) = 0 continuity

(�v)t +r � (�vv) +rp = 0 momentum

15

where r is an operator applied to a vector in the continuity equation, and

to a scalar and a tensor in the momentum equation. Considering r a bit

further, in Cartesian coordinates (with v = ivx + jvy + kvz)

r = i
@

@x
+ j

@

@y
+ k

@

@z

For example

r � (�v) =

�
i
@

@x
+ j

@

@y
+ k

@

@z

�
� (i�vx + j�vy + k�vz)

=
@ (�vx)

@x
+
@(�vy)

@y
+
@ (�vz)

@z

and the (scalar) continuity equation is

@�

@t
+
@ (�vx)

@x
+
@(�vy)

@y
+
@ (�vz)

@z
= 0

Note that for a constant density (incompressible)
uid,

�t = 0

@ (�vx)

@x
+
@(�vy)

@y
+
@ (�vz)

@z
= �(

@vx

@x
+
@vy

@y
+
@vz

@z
) + vx

@�

@x
+ vy

@�

@x
+ vz

@�

@x
= 0

or

@vx

@x
+
@vy

@y
+
@vz

@z
= 0

r � v = 0

16

Thus, an incompressible
uid is divergence free.

Consider the term

r � (�vv)

The product vv is actually a second order (nine-component) tensor. Thus

�vv =

2
4 �vxvx �vxvy �vxvz

�vyvx �vyvy �vyvz

�vzvx �vzvy �vzvz

3
5

r � (�vv) =

2
66666666664

i

�
@

@x
vx(�vx) +

@

@y
vy(�vx) +

@

@z
vz(�vx)

�

j

�
@

@x
vx(�vy) +

@

@y
vy(�vy) +

@

@z
vz(�vy)

�

k

�
@

@x
vx(�vz) +

@

@y
vy(�vz) +

@

@z
vz(�vz)

�

3
77777777775

Then, using this result (a vector) in the momentum equation

(�v)t +r � (�vv) +rp = 0

and equating like components

@

@t
(�vx) +

@

@x
(�vxvx) +

@

@y
(�vxvy) +

@

@z
(�vxvz) +

@P

@x
= 0 (i component)

@

@t
(�vy) +

@

@x
(�vyvx) +

@

@y
(�vyvy) +

@

@z
(�vyvz) +

@P

@y
= 0 (j component)

@

@t
(�vz) +

@

@x
(�vzvx) +

@

@y
(�vzvy) +

@

@z
(�vzvz) +

@P

@z
= 0 (k component)

Again, these PDEs are:

17

� Hyperbolic (�rst order in x; y; z and t)

� Source of sharp fronts and discontinuities (but now in three dimensions)

� Nonlinear

� Di�cult to solve numerically (and impossible analytically)

� Limited in their application, e.g., they have no heat transfer, reaction

terms

CFD codes are available for the solution of these Euler equations.

These equations can be simpli�ed through the continuity equation, e.g., for

the i component:

vx
@

@t
(�) + vx

@

@x
(�vx) + vx

@

@y
(�vy) + vx

@

@z
(�vz)

�
@

@t
(vx) + �vx

@

@x
(�vx) + �vy

@

@y
(�vx) + �vz

@

@z
(�vx) +

@P

@x
= 0

or

vx

�
@�

@t
+
@(�vx)

@x
+
@(�vy)

@y
+
@(�vz)

@z

�

�
@vx

@t
+ �vx

@vx

@x
+ �vy

@vx

@y
+ �vz

@vx

@z
+
@P

@x
= 0

and the �rst row is zero through the continuity equation. In general,

�vt + �v�rv +rp = 0

which is an alternate form of the Euler equations.

Finally, if a viscosity term is added to the momentum equation

18

(�v)t +r � (�vv) +rp� �r
2v = 0

which are the Navier Stokes equations.

The preceding PDEs are written in Cartesian coordinates. As another general

approach, we can start with PDEs written in terms of vector operators that

are independent of the coordinate system, e.g.,

�t +r � (�v) = 0 continuity

(�v)t +r � (�vv) +rp = 0 momentum (Euler)

�vt + �v�rv +rp = 0 momentum (Euler)

(�v)t +r � (�vv) +rp� �r
2v = 0 momentum (Navier Stokes)

�vt + �v�rv +rp� �r
2v = 0 momentum (Navier Stokes)

With these coordinate-independent equations as the starting point, we can

go to the three preceding tables to write equations in Cartesian, cylindrical or

spherical coordinates. This approach can also be applied to other coordinate

systems, perhaps �tted to an body that is not easily described in one of the

well-established coordinate systems (body-�tted coordinates are an active

area of CFD).

As an example of this simpli�cation process, consider the x-component of

the Navier Stokes equations

�
@vx

@t
+ �vx

@vx

@x
+ �vy

@vx

@y
+ �vz

@vx

@z
+
@P

@x
� �(

@
2
vx

@x2
+
@
2
vx

@y2
+
@
2
vx

@z2
) = 0

If we consider a one-dimensional problem with no pressure gradient, this

equation reduces to

�
@vx

@t
+ �vx

@vx

@x
� �

@
2
vx

@x2
= 0

19

which is Burgers' equation. This is an unusual (and widely studied) PDE

because

� It is nonlinear, yet has a known, exact (analytical solution)

� The solution exhibits moving fronts that can be made arbitarily sharp

by decreasing the kinematic viscosity � = �=�:

Burgers' equation for � = �=� = 0 reduces to the inviscid Burgers' equation

or nonlinear advection equation.

@vx

@t
+ vx

@vx

@x
= 0

This equation can propagate discontinuties, and therefore provides a strin-

gent test problem for PDEs.

As general as all of the preceding equations may appear, they are actually

rather limited, e.g., they do not contain heat transfer or heat of reaction

terms. As an added thought, general purpose codes that solve these equations

may not be as general as we would like. We should at least be sure that we

understand the underlying PDEs of these codes.

Therefore, a second approach to developing a PDE model is to start with a

basic incremental volume and write the appropriate conservation equations

for it (including all of the e�ects that are considered important). In other

words, derive the mathematical model �rst, then look for, or write, a code

that solves the model equations. The process should not be reversed, i.e.,

we should not start with a general code, then modify the model so that it

�ts into the code (and thereby possibly drop important terms that should be

included).

This might seem like an ine�cient way to proceed, i.e., not using an (expen-

sive), readily available code, but rather writing a new code for the particular

mathematical model. But the latter ensures that we are solving the appro-

priate model, and not one that has been modi�ed to �t into the software

(or worse, using an available code incorrectly by not solving the equations

20

we think we are solving). In other words, the equations are the fundamen-

tal starting point, and the calculations (software) to solve the equations are

secondary.

Additionally, we can examine a code written for the particular problem sys-

tem in whatever detail is necessary to fully understand the calculations; a

library code, however, may not provide the details of the calculations in

the detail required to fully understand the calculations. As a minimum, we

should fully understand what the library code is doing.

As a speci�c example of this second approach, consider the PDE for a heated

pipe that originates from an energy balance written on a section of length

�z. This obviously is a simple physical system, but it leads to a PDE that

is surprisingly di�cult to solve numerically, depending on the conditions of

the problem.

A�z�Cp

@T

@t
= Av�CpTz��z � Av�CpTz + �D�zh(Tw � T)

Division by A�z�Cp with A = �D
2
=4 and minor rearrangement gives

@T

@t
= �v

(Tz � Tz��z)

�z
+

�Dh

(�D2=4)�Cp

(Tw � T)

In the limit as �z ! 0, we arrive at the PDE

@T

@t
= �v

@T

@z
+

4h

D�Cp

(Tw � T) (1)

The initial condition (IC) is

T (z; 0) = T0 (2)

and the boundary condition (BC) is

T (0; t) = Te (3)

21

Eq. (1) is a �rst order, linear hyperbolic PDE. Eqs. (1) to (3) provide a

stringent test problem for numerical methods and software. We will use the

analytical solution to evaluate the numerical methods.

If

u = T � Tw; � =
4h

D�Cp

(4)

eqs. (1) to (3) become

@u

@t
= �v

@u

@z
� �u (5)

u(z; 0) = T0 � Tw (6)

u(0; t) = Te � Tw (7)

If the Laplace transform of u(z; t) with respect to t is de�ned as

Lt fu(z; t)g =

Z
1

0

u(z; t)e�stdt = U(z; s)

eqs. (5) and (6) transform to

sU � (T0 � Tw) = �v
dU

dz
� �U

or

dU

dz
= �(1=v)(s+ �)U + (1=v)(T0 � Tw) (8)

Eq. (8) is a linear, constant coe�cient, nonohomogeneous ODE with homo-

geneous and particular solutions

22

Uh = c1e
�(1=v)(s+�)z

Up =
T0 � Tw

s+ �

Thus

U(z; s) = c1e
�(1=v)(s+�)z +

T0 � Tw

s+ �

Application of BC (7) to evaluate constant c1 gives

Te � Tw

s
= c1 +

T0 � Tw

s + �

or

c1 =
Te � Tw

s
�
T0 � Tw

s+ �

Thus

U(z; s) =

�
Te � Tw

s
�
T0 � Tw

s+ �

�
e
�(1=v)(s+�)z +

T0 � Tw

s+ �

= e
�(�=v)z

�
Te � Tw

s
�
T0 � Tw

s+ �

�
e
�(z=v)s +

T0 � Tw

s+ �
(9)

Inversion of eq. (9) gives

u(z; t) = L
�1
t fU(z; s)g

= e
�(�=v)z

�
(Te � Tw)� (T0 � Tw) e

��ft�(z=v)g
	
h(t� (z=v)) + (T0 � Tw)e

��t

23

where

h(t) = 0 t < 0

h(t) = 1 t > 0

Thus

T (z; t) = Tw + u(z; t)

= Tw + e
�(�=v)z

�
(Te � Tw)� (T0 � Tw) e

��ft�(z=v)g
	
h(t� (z=v)) + (T0 � Tw)e

��t

(10)

Check (being a little \loose" with h(z; t) and it's derivative at t = z=v):

T (z; 0) = Tw + 0 + (T0 � Tw)e
�0 = T0

T (0; t) = Tw + e
0
�
(Te � Tw)� (T0 � Tw) e

��t
	
+ (T0 � Tw)e

��t = Te

PDE, eq. (1) From eq. (10)

@T=@t e
�(�=v)z

�
� (T0 � Tw) e

��ft�(z=v)g(��)
	
+ (T0 � Tw)(��)e

��t

v@T=@z v
�
�(�=v)e�(�=v)z(Te � Tw)

�
��(Tw � T) ��Tw + �[Tw + e

�(�=v)z
�
(Te � Tw)� (T0 � Tw) e

��ft�(z=v)g
	
h(t� (z=v))

+(T0 � Tw)e
��t]

0 0

Eq. (10) consists of two parts (as de�ned by h(t� (z=v))):

t < z=v; T (z; t) = Tw + (T0 � Tw)e
��t (10a)

24

t > z=v; T (z; t) = Tw + e
�(�=v)z

�
(Te � Tw)� (T0 � Tw) e

��ft�(z=v)g
	
+ (T0 � Tw)e

��t

(10b)

Eqs. (10a) and (10b) give a discontinuity at t = z=v. To see this, if we

consider eq. (10) at t = z=v,

(a) with u(t� z=v) = 0;

T (z; t) = Tw + e
�(�=v)z

�
(Te � Tw)� (T0 � Tw) e

��ft�(z=v)g
	
0 + (T0 � Tw)e

��t

= Tw + (T0 � Tw)e
��t (10c)

(b) with u(t� z=v) = 1

T (z; t) = Tw + e
��t

�
(Te � Tw)� (T0 � Tw) e

��f0g
	
(1) + (T0 � Tw)e

��t

= Tw + (Te � T0)e
��t + (T0 � Tw)e

��t = Tw + (Te � Tw)e
��t (10d)

Only when T0 = Te are eqs. (10c) and (10d) the same, i.e., the initial and

entering conditions are the same. Otherwise, with Te 6= T0, a discontinuity

is introduced that propagates through the system. This is a basic property

of hyperbolic PDEs, i.e., they propagate discontinuities, which is the reason

they are the most di�cult of the three classes of PDEs (elliptic, parabolic,

hyperbolic) to solve numerically ; in particular, the discontinuity often occurs

through an incompatibility between the initial and boundary conditions, e.g.,

Te 6= T0.

There are some other interesting special cases of eqs. (10a) and (10b)

t = 0

t < z=v T (z; t) = T0

t > z=v NA

(11a)

t!1

t < z=v NA

t > z=v T (z; t) = Tw + e
�(�=v)z(Te � Tw)

(11b)

25

Within eqs. (11b),

t!1

t > z=v z = 0 T (z; t) = Te

t > z=v z !1 T (z; t) = Tw

(11c)

Also,

� = 0

t < z=v T (z; t) = T0

t > z=v T (z; t) = Te

(11d)

Eqs. (11d) in particular illustrates the di�culty in computing numerical

solutions to �rst order, hyperbolic PDEs, i.e., the discontinuity generated at

z = 0 where T (z; t) switches from T0 to Te,) (again, �rst order, hyperbolic

PDEs propagate discontinuities).

To summarize the case � = 0, eqs. (1) to (3) reduce to

@T

@t
+ v

@T

@z
= 0 (12a)

T (z; 0) = T0 (12b)

T (0; t) = Te (12c)

for which the solution is

T (z; t) = T0; t < z=v

T (z; t) = Te; t > z=v

26

or

T (z; t) = T0 + (Te � T0)h(t� z=v) (13)

If T0 = 0; Te = 1, this reduces to

T (z; t) = h(t� z=v) (14)

where again h(t) is the Heaviside unit step function. Note that eq. (14)

indicates the Heaviside unit step function propagates along the system with

velocity v.

Another approach to eq. (11b) is to start with eq. (1) at steady state

@T

@t
= �v

@T

@z
+

4h

D�Cp

(Tw � T) = 0 (15)

Since eq. (15) has only one independent variable, z, it is actually an ODE.

The corresponding auxiliary condition is eq. (3) at steady state

T (0) = Te (16)

The solution to eq. (15) will be a homogeneous part plus a particular part

Th(z) = c1e
�(�=v)z

; � =
4h

D�Cp

Tp(z) = Tw

Thus

T (z) = Tw + c1e
�(�=v)z

Then from eq. (16),

Te = Tw + c1e
�0

27

and the solution is

T (z) = Tw + (Te � Tw)e
�(�=v)z

which is eq. (11b).

We now consider:

� How eqs. (1) to (3) can be programmed

� The comparison of this numerical solution with the analytical solution,

eq. (10).

In order to program a PDE, we generally start by de�ning a spatial grid, in

this case, a grid in z. An index, i, is used to denote a particular position

along the grid. The spatial derivative in eq. (1),
@T

@z
; is then approximated

algebraically, in this case by a �nite di�erence, at each of the grid points.

For example, at the general grid point i

@Ti

@z

�=
Ti � Ti�1

�z

This leads to a system of ODEs, one at each grid point, that approximate

the PDE of eq. (1)

dTi

dz
= �v(

Ti � Ti�1

�z
) +

�Dh

(�D2=4)�Cp

(Tw � Ti); i = 1; 2; � � � ; n (17)

(note that in deriving eq. (17), we have essentiually reversed the process of

deriving eq. (1) starting with an incremental heat balance). This system of

simultanenous ODEs can then be integrated by any of the ODE integration

methods we discussed previously, e.g., Euler's method, the modi�ed Euler

method, RKF45, BDF, etc. In the following program we use Euler's method

to provide coding that is easy to understand (but, of course, Euler's method

is only �rst order correct, so we might eventually want to switch to a more

acccurate ODE integrator, perhaps with automatic step size adjustment).

28

The details of the procedure are most easily understood by considering the

actual computer programming, as illustrated by the following program.

Time and Spatial Discretization

We now have to discretize the time derivative and the spatial derivative in

eq. (1). A Matlab program that does this is listed below (this program

illustrates all of the essential features for a complete PDE solution):

% Fluid flow through a heated pipe

%

% The PDE that models the heated pipe is

%

% T = -v*T + (4*h)/(D*rho*Cp)*(Tw - T) (1)

% t z

%

% with the initial and boundary conditions

%

% T(z,0) = T0, T(0,t) = Te (2)(3)

%

% where

%

% T fluid temperature

%

% t time

%

% z position along the pipe

%

% v fluid velocity

%

% h fluid to pipe wall heat transfer coefficient

%

% D pipe diameter

%

% rho fluid density

%

% Cp fluid specific heat

29

%

% T0 initial fluid temperature

%

% Te entering fluid temperature

%

% Tw pipe wall temperature

%

% L pipe length

%

% Of particular interest is the fluid exiting temperature, T(L,t).

%

% The method of lines (MOL) solution of eq. (1) is coded below.

% Specifically, the spatial derivative in eq. (1) is replaced

% by a three point, finite difference (FD) approximation, both

% centered and upwind. The resulting system of ODEs in t,

% defined on a 21-point grid in z, is then integrated by the

% Euler method.

%

% The analytical solution to eqs. (1) to (3) is also programmed

% for comparison with the numerical solution.

%

% The following code is run for the four special cases:

%

% Case 1: h = 2, T0 = 25, Te = 25, Tw = 100

%

% Case 2: h = 0.2, T0 = 25, Te = 25, Tw = 100

%

% Case 3: h = 0, T0 = 25, Te = 25, Tw (NA)

%

% Case 4: h = 0, T0 = 25, Te = 100, TW (NA)

%

% Open output files

fid1=fopen('htex1.out','w');

fid2=fopen('htex1.plt','w');

%

% Model parameters (defined in the comments above)

cp=1.0;

rho=1.0;

30

v=0.5;

d=1.0;

zl=1.0;

n=21;

dz=zl/(n-1);

%

% Select three point, finite differencing (FD) of spatial

% derivative

%

% ifd = 1: Centered approximations

%

% ifd = 2: Two point upwind approximation

%

% ifd = 3: Five point, biased upwind approximation

%

% ifd = 4: van Leer flux limiter

%

ifd=1;

%

% Cases listed above

for ncase=1:4

%

% Initial, final times, integration interval, number of Euler

% steps for each output

t=0.0; tf=5.0; h=0.001; nout=250;

if ncase==1

hc=2.0;

T0=25.0;

Te=25.0;

Tw=100.0;

end

if ncase==2

hc=0.2;

T0=25.0;

Te=25.0;

Tw=100.0;

end

if ncase==3

31

hc=0.0;

T0=25.0;

Te=25.0;

Tw=100.0;

end

if ncase==4

hc=0.0;

T0=25.0;

Te=100.0;

Tw=100.0;

end

%

% Initial conditions

for i=1:n

T(i)=T0;

end

%

% Write h

fprintf(fid1,'\n\n ncase = %5d h = %10.3e\n\n',ncase,h);

%

% Write heading

fprintf(fid1,' t t-zl/v T(zl,t) Ta(zl,t) diff\n');

%

% Integrate until t = tf

while t < tf*1.0001

%

% Monitor solution by displaying t

t

%

% Write selected output, including analytical solution and difference

% between numerical and analytical solutions

alpha=4.0*hc/(d*rho*cp);

Ta=Tw+(T0-Tw)*exp(-alpha*t);

if(t > zl/v)Ta=Ta+exp(-alpha/v*zl)*((Te-Tw)-(T0-Tw)*...

exp(-alpha*(t-zl/v))); end

diff=T(n)-Ta;

fprintf(fid1,'%5.2f%10.2f%10.2f%10.2f%10.3f\n',...

t,t-zl/v,T(n),Ta,diff);

32

fprintf(fid2,'%5.2f%10.2f%10.2f%10.2f%10.3f\n',...

t,t-zl/v,T(n),Ta,diff);

%

% Take nout Euler steps

for iout=1:nout

%

% Temporal derivatives

%

% Centered approximations

if(ifd==1)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=dss002(0.0,zl,n,T);

%

% Temporal derivative

Tt(1)=0.0;

for i=2:n

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

%

% End of three point centered approximation

end

%

% Two point upwind approximation

if(ifd==2)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=dss012(0.0,zl,n,T,v);

%

% Temporal derivative

Tt(1)=0.0;

for i=2:n

33

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

%

% End of two point upwind approximation

end

%

% Five point, biased upwind approximation

if(ifd==3)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=dss020(0.0,zl,n,T,v);

%

% Temporal derivative

Tt(1)=0.0;

for i=2:n

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

%

% End of five point, biased upwind approximation

end

%

% van Leer flux limiTer

if(ifd==4)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=vanl2(0.0,zl,n,T,v);

%

% Temporal derivative

Tt(1)=0.0;

for i=2:n

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

34

%

% End of van Leer flux limiter

end

%

% Take Euler step

for i=1:n

T(i)=T(i)+Tt(i)*h;

end

t=t+h;

%

% Next Euler step

end

%

% Next output

end

%

% Next case

end

We can note the following points about this program:

(1) The model parameters are �rst set

% Model parameters (defined in the comments above)

cp=1.0;

rho=1.0;

v=0.5;

d=1.0;

zl=1.0;

n=21;

dz=zl/(n-1);

(2) A spatial di�erentiator for the derivative Tz is selected

% Select finite differencing (FD) of spatial derivative

35

%

% ifd = 1: Centered approximations

%

% ifd = 2: Two point upwind approximation

%

% ifd = 3: Five point, biased upwind approximation

%

% ifd = 4: van Leer flux limiter

%

ifd=1;

The details of these di�erentiators will be considered below.

(3) The integration parameters and the speci�c values of the model param-

eters for one of four cases are selected

% The following code is run for the four special cases:

%

% Case 1: h = 2, T0 = 25, Te = 25, Tw = 100

%

% Case 2: h = 0.2, T0 = 25, Te = 25, Tw = 100

%

% Case 3: h = 0, T0 = 25, Te = 25, Tw (NA)

%

% Case 4: h = 0, T0 = 25, Te = 100, TW (NA)

% Cases listed above

for ncase=1:4

%

% Initial, final times, integration interval, number of Euler

% steps for each output

t=0.0; tf=5.0; h=0.001; nout=250;

if ncase==1

hc=2.0;

T0=25.0;

Te=25.0;

Tw=100.0;

36

end

if ncase==2

hc=0.2;

T0=25.0;

Te=25.0;

Tw=100.0;

end

if ncase==3

hc=0.0;

T0=25.0;

Te=25.0;

Tw=100.0;

end

if ncase==4

hc=0.0;

T0=25.0;

Te=100.0;

Tw=100.0;

end

If the integration step h in the Euler integration is increased above h = 0:001,

the stability limit of the Euler method is exceeded, i.e., jh�j < 2, and the

calculation goes unstable.

(4) The 21 initial conditions are set (for the 21-point grid in z)

% Initial conditions

for i=1:n

T(i)=T0;

end

(5) A heading for the output is next

%

% Write h

37

fprintf(fid1,'\n\n ncase = %5d h = %10.3e\n\n',ncase,h);

%

% Write heading

fprintf(fid1,' t t-zl/v T(zl,t) Ta(zl,t) diff\n');

Note that both the numerical and analytical solutions, and their di�erence

are displayed in �d1.

(6) The time stepping begins at t = 0 and ends at t = tf

% Integrate until t = tf

while t < tf*1.0001

%

% Monitor solution by displaying t

t

(7) The analytical solution. eq. (10), is evaluated, and the numerical and

analytical solutions and their di�erenerence are then written to �les, �d1 and

�d2

% Write selected output, including analytical solution and difference

% between numerical and analytical solutions

alpha=4.0*hc/(d*rho*cp);

Ta=Tw+(T0-Tw)*exp(-alpha*t);

if(t > zl/v)Ta=Ta+exp(-alpha/v*zl)*((Te-Tw)-(T0-Tw)*...

exp(-alpha*(t-zl/v))); end

diff=T(n)-Ta;

fprintf(fid1,'%5.2f%10.2f%10.2f%10.2f%10.3f\n',...

t,t-zl/v,T(n),Ta,diff);

fprintf(fid2,'%5.2f%10.2f%10.2f%10.2f%10.3f\n',...

t,t-zl/v,T(n),Ta,diff);

(8) nout (= 250) Euler steps are taken for the n (= 21) ODEs in t

38

% Take nout Euler steps

for iout=1:nout

(9) The calculation of the time derivatives of eq. (1), Tt, requires �rst the

evaluation of the spatial derivative, Tz. This is done by one of the four

spatial di�erentiators selected by ifd (see (2) above). The RHS of eq (1) is

then computed in each case

% Temporal derivatives

%

% Centered approximations

if(ifd==1)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=dss002(0.0,zl,n,T);

%

% Temporal derivative

Tt(1)=0.0;

for i=2:n

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

%

% End of three point centered approximation

end

%

% Two point upwind approximation

if(ifd==2)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=dss012(0.0,zl,n,T,v);

%

39

% Temporal derivative

Tt(1)=0.0;

for i=2:n

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

%

% End of two point upwind approximation

end

%

% Five point, biased upwind approximation

if(ifd==3)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=dss020(0.0,zl,n,T,v);

%

% Temporal derivative

Tt(1)=0.0;

for i=2:n

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

%

% End of five point, biased upwind approximation

end

%

% van Leer flux limiter

if(ifd==4)

%

% Boundary condition at z = 0

T(1)=Te;

%

% Spatial derivative

[Tz]=vanl2(0.0,zl,n,T,v);

%

% Temporal derivative

Tt(1)=0.0;

40

for i=2:n

Tt(i)=-v*Tz(i)+alpha*(Tw-T(i));

end

%

% End of van Leer flux limiter

end

(10) Once the n (= 21) time derivatives are computed, the n ODEs are

integrated by the Euler method to move the solution along (as parallel lines

in z)

% Take Euler step

for i=1:n

T(i)=T(i)+Tt(i)*h;

end

t=t+h;

(11) The loop for the nout (= 250) Euler steps is then completed and the

numerical and analytical solutions are printed before the next set of nout

Euler steps is taken (see (7) above). First, the test for the �nal time, tf, is

checked (see (6) above).

% Next Euler step

end

%

% Next output

end

%

% Next case

end

The preceding Matlab code is in

http://www.lehigh.edu/ wes1/apci/htex1.m

41

The extension of this code to systems of ODEs/PDEs is straightforward;

their time derivatives would be added, and the corresponding ODEs would

be integrated, either by the Euler method, or by a more accurate method,

e.g.,

� The modi�ed Euler method, the classical Runge Kutta method, the

Runge Kutta Fehlberg method, either �xed step or variable step

� A library integrator called where the Euler integration is programmed,

e.g., a call to RKF45, LSODE, LSODES, DASSL, a NAG ODE inte-

grator, a Matlab ODE integrator (ode23, ode45)

This modular and
exible approach to programming PDEs is termed the

method of lines (MOL). Additionally, the algorithm for calculating the spatial

derivative(s) can easily be changed (by calling another routine in place of one

of the library di�erentiators).

The output of the preceding program for ifd = 1 (three point centered FD)

is listed below (and is plotted in htex1d1.ps)

ncase = 1 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 89.93 89.85 0.081

0.50 -1.50 98.65 98.63 0.022

0.75 -1.25 99.82 99.81 0.004

1.00 -1.00 99.98 99.97 0.001

1.25 -0.75 100.00 100.00 0.000

1.50 -0.50 100.00 100.00 0.000

1.75 -0.25 100.00 100.00 0.000

2.00 0.00 100.00 100.00 0.000

2.25 0.25 100.00 100.00 0.000

2.50 0.50 100.00 100.00 0.000

2.75 0.75 100.00 100.00 0.000

3.00 1.00 100.00 100.00 0.000

3.25 1.25 100.00 100.00 0.000

42

3.50 1.50 100.00 100.00 0.000

3.75 1.75 100.00 100.00 0.000

4.00 2.00 100.00 100.00 0.000

4.25 2.25 100.00 100.00 0.000

4.50 2.50 100.00 100.00 0.000

4.75 2.75 100.00 100.00 0.000

5.00 3.00 100.00 100.00 0.000

ncase = 2 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 38.60 38.60 0.005

0.50 -1.50 49.73 49.73 0.008

0.75 -1.25 58.85 58.84 0.010

1.00 -1.00 66.31 66.30 0.011

1.25 -0.75 72.42 72.41 0.011

1.50 -0.50 77.41 77.41 -0.003

1.75 -0.25 81.37 81.51 -0.134

2.00 0.00 84.10 84.86 -0.756

2.25 0.25 85.22 84.86 0.363

2.50 0.50 85.03 84.86 0.168

2.75 0.75 84.69 84.86 -0.164

3.00 1.00 84.81 84.86 -0.047

3.25 1.25 84.90 84.86 0.039

3.50 1.50 84.81 84.86 -0.052

3.75 1.75 84.82 84.86 -0.035

4.00 2.00 84.85 84.86 -0.005

4.25 2.25 84.82 84.86 -0.036

4.50 2.50 84.83 84.86 -0.025

4.75 2.75 84.84 84.86 -0.019

5.00 3.00 84.83 84.86 -0.030

ncase = 3 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

43

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 0.000

0.75 -1.25 25.00 25.00 0.000

1.00 -1.00 25.00 25.00 0.000

1.25 -0.75 25.00 25.00 0.000

1.50 -0.50 25.00 25.00 0.000

1.75 -0.25 25.00 25.00 0.000

2.00 0.00 25.00 25.00 0.000

2.25 0.25 25.00 25.00 0.000

2.50 0.50 25.00 25.00 0.000

2.75 0.75 25.00 25.00 0.000

3.00 1.00 25.00 25.00 0.000

3.25 1.25 25.00 25.00 0.000

3.50 1.50 25.00 25.00 0.000

3.75 1.75 25.00 25.00 0.000

4.00 2.00 25.00 25.00 0.000

4.25 2.25 25.00 25.00 0.000

4.50 2.50 25.00 25.00 0.000

4.75 2.75 25.00 25.00 0.000

5.00 3.00 25.00 25.00 0.000

ncase = 4 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 0.000

0.75 -1.25 25.00 25.00 0.000

1.00 -1.00 25.00 25.00 0.000

1.25 -0.75 25.03 25.00 0.027

1.50 -0.50 25.63 25.00 0.627

1.75 -0.25 30.73 25.00 5.733

2.00 0.00 51.17 25.00 26.166

2.25 0.25 90.33 100.00 -9.665

2.50 0.50 117.36 100.00 17.363

2.75 0.75 103.95 100.00 3.951

44

3.00 1.00 88.96 100.00 -11.039

3.25 1.25 103.31 100.00 3.309

3.50 1.50 104.99 100.00 4.991

3.75 1.75 93.70 100.00 -6.300

4.00 2.00 102.14 100.00 2.136

4.25 2.25 102.54 100.00 2.540

4.50 2.50 95.71 100.00 -4.288

4.75 2.75 102.78 100.00 2.784

5.00 3.00 100.18 100.00 0.176

We can note the following points about this output:

(1) The three point centered FD approximations give good accuracy for Cases

1 to 3 which are for relatively smooth problems. In particular, the FD solu-

tion is exact for Case 3 (the constant solution is di�erentiated exactly).

(2) The centered FD approximations do not give an accurate solution for the

discontinuous solution of Case 4. This result indicates that centered approx-

imations should not be used for nonsmooth solutions of �rst order hyperbolic

PDEs.

The library di�erentiator for the three point centered FD approximations is

listed below

function [ux]=dss002(xl,xu,n,u)

%...

%... FUNCTION DSS002 COMPUTES THE FIRST DERIVATIVE, U , OF A

%... X

%... VARIABLE U OVER THE SPATIAL DOMAIN XL LE X LE XU

%...

%... ARGUMENT LIST

%...

%... XL LOWER BOUNDARY VALUE OF X (INPUT)

%...

%... XU UPPER BOUNDARY VALUE OF X (INPUT)

%...

%... N NUMBER OF GRID POINTS IN THE X DOMAIN INCLUDING THE

45

%... BOUNDARY POINTS (INPUT)

%...

%... U ONE-DIMENSIONAL ARRAY CONTAINING THE VALUES OF U AT

%... THE N GRID POINT POINTS FOR WHICH THE DERIVATIVE IS

%... TO BE COMPUTED (INPUT)

%...

%... UX ONE-DIMENSIONAL ARRAY CONTAINING THE NUMERICAL

%... VALUES OF THE DERIVATIVES OF U AT THE N GRID POINTS

%... (OUTPUT)

%...

%... THE WEIGHTING COEFFICIENTS CAN BE SUMMARIZED AS

%...

%... -3 4 -1

%...

%... 1/2 -1 0 1

%...

%... 1 -4 3

%...

%... WHICH ARE THE COEFFICIENTS REPORTED BY BICKLEY FOR N = 2, M =

%... 1, P = 0, 1, 2 (BICKLEY, W. G., FORMULAE FOR NUMERICAL DIFFER-

%... ENTIATION, MATH. GAZ., VOL. 25, 1941).

%...

%... COMPUTE THE SPATIAL INCREMENT

dx=(xu-xl)/(n-1);

r2fdx=1./(2.*dx);

nm1=n-1;

%...

%... LEFT END POINT. THE FOLLOWING CODING HAS BEEN FORMATTED

% SO THAT THE NUMERICAL WEIGHTING COEFFICIENTS CAN BE MORE

%... EASILY ASSOCIATED WITH THE BICKLEY MATRIX LISTED ABOVE)

ux(1)=r2fdx*...

(-3. *u(1) +4. *u(2) -1. *u(3));

%...

%... INTERIOR POINTS

for i=2:nm1

ux(i)=r2fdx*...

(-1. *u(i-1) +0. *u(i) +1. *u(i+1));

end

46

%...

%... RIGHT END POINT

ux(n)=r2fdx*...

(1. *u(n-2) -4. *u(n-1) +3. *u(n));

The derivation of the FD approximations will be considered in the next

section.

The preceding output for Case = 4 illustrates the �rst type of numerical dis-

tortion that is common in the numerical integration of �rst order hyperbolic

PDEs, that is, numerical oscillation. In order to eliminate this oscillation,

we consider two point upwind (noncentered) approximations, as implemented

with ifd = 2. The output of the preceding program for ifd = 2 is listed below

(and is plotted in htex1d2.ps)

ncase = 1 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 89.93 89.85 0.081

0.50 -1.50 98.65 98.63 0.022

0.75 -1.25 99.82 99.81 0.004

1.00 -1.00 99.98 99.97 0.001

1.25 -0.75 100.00 100.00 0.000

1.50 -0.50 100.00 100.00 0.000

1.75 -0.25 100.00 100.00 -0.001

2.00 0.00 100.00 100.00 -0.001

2.25 0.25 100.00 100.00 -0.001

2.50 0.50 100.00 100.00 -0.001

2.75 0.75 100.00 100.00 -0.001

3.00 1.00 100.00 100.00 -0.001

3.25 1.25 100.00 100.00 -0.001

3.50 1.50 100.00 100.00 -0.001

3.75 1.75 100.00 100.00 -0.001

4.00 2.00 100.00 100.00 -0.001

4.25 2.25 100.00 100.00 -0.001

4.50 2.50 100.00 100.00 -0.001

47

4.75 2.75 100.00 100.00 -0.001

5.00 3.00 100.00 100.00 -0.001

ncase = 2 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 38.60 38.60 0.005

0.50 -1.50 49.73 49.73 0.008

0.75 -1.25 58.85 58.84 0.010

1.00 -1.00 66.30 66.30 0.003

1.25 -0.75 72.34 72.41 -0.073

1.50 -0.50 77.00 77.41 -0.414

1.75 -0.25 80.25 81.51 -1.256

2.00 0.00 82.21 84.86 -2.644

2.25 0.25 83.22 84.86 -1.635

2.50 0.50 83.66 84.86 -1.194

2.75 0.75 83.83 84.86 -1.026

3.00 1.00 83.89 84.86 -0.971

3.25 1.25 83.90 84.86 -0.955

3.50 1.50 83.91 84.86 -0.950

3.75 1.75 83.91 84.86 -0.949

4.00 2.00 83.91 84.86 -0.949

4.25 2.25 83.91 84.86 -0.949

4.50 2.50 83.91 84.86 -0.949

4.75 2.75 83.91 84.86 -0.949

5.00 3.00 83.91 84.86 -0.949

ncase = 3 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 0.000

0.75 -1.25 25.00 25.00 0.000

1.00 -1.00 25.00 25.00 0.000

48

1.25 -0.75 25.00 25.00 0.000

1.50 -0.50 25.00 25.00 0.000

1.75 -0.25 25.00 25.00 0.000

2.00 0.00 25.00 25.00 0.000

2.25 0.25 25.00 25.00 0.000

2.50 0.50 25.00 25.00 0.000

2.75 0.75 25.00 25.00 0.000

3.00 1.00 25.00 25.00 0.000

3.25 1.25 25.00 25.00 0.000

3.50 1.50 25.00 25.00 0.000

3.75 1.75 25.00 25.00 0.000

4.00 2.00 25.00 25.00 0.000

4.25 2.25 25.00 25.00 0.000

4.50 2.50 25.00 25.00 0.000

4.75 2.75 25.00 25.00 0.000

5.00 3.00 25.00 25.00 0.000

ncase = 4 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 0.000

0.75 -1.25 25.01 25.00 0.008

1.00 -1.00 25.25 25.00 0.247

1.25 -0.75 27.24 25.00 2.243

1.50 -0.50 34.27 25.00 9.275

1.75 -0.25 47.86 25.00 22.861

2.00 0.00 64.76 25.00 39.764

2.25 0.25 79.80 100.00 -20.201

2.50 0.50 90.08 100.00 -9.924

2.75 0.75 95.76 100.00 -4.243

3.00 1.00 98.40 100.00 -1.604

3.25 1.25 99.46 100.00 -0.544

3.50 1.50 99.83 100.00 -0.168

3.75 1.75 99.95 100.00 -0.047

4.00 2.00 99.99 100.00 -0.012

49

4.25 2.25 100.00 100.00 -0.003

4.50 2.50 100.00 100.00 -0.001

4.75 2.75 100.00 100.00 0.000

5.00 3.00 100.00 100.00 0.000

We can note the following points about this output:

(1) The two point point FD approximations give good accuracy for Cases 1

to 3 which again are for relatively smooth problems. In particular, the FD

solution is exact for Case 3 (the constant solution is di�erentiated exactly).

(2) The upwind FD approximations do not give an accurate solution for the

discontinuous solution of Case 4. Although the previous numerical oscillation

has been eliminated, there is now signi�cant numerical di�usion, which is

the second common form of numerical distortion in the solution of �rst order

hyperbolic PDEs.

The library di�erentiator for the two point upwind FD approximations is

listed below. Note that the direction of the
ow is required to use upwinding

(it is the sixth input argument of the routine, v). This is a consequence of

the \
ow of information" in the solution that is taken into account by the

approximation, i.e., upwind points have a greater in
uence on the solution

than downwind points. This characteristic indicates an important feature

of hyperbolic PDEs, that is, they have a preferred direction; physically, this

preferred direction in convective systems is the direction of
ow.

Experience has indicated that some form of upwinding (to take into account

the preferred direction) is essential for strongly hyperbolic systems. In other

words, centered approximations for hyperbolic systems generally don't work

(consider the ifd = 1 results discussed previously). In order to use upwinding,

the direction of
ow must be known (which may not be easy to determine in

complex, multidimensional
ow systems). Upwinding in the wrong direction

(\downwinding") usually leads to unstable solutions.

function [ux]=dss012(xl,xu,n,u,v)

%...

%... FUNCTION DSS012 IS AN APPLICATION OF FIRST-ORDER DIRECTIONAL

50

%... DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED

%... SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY

%... FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH THE

%... SIMPLEST FORM

%...

%... U + V*U = 0 (1)

%... T X

%...

%... THE FIRST FOUR PARAMETERS, XL, XU, N AND U, ARE THE SAME AS

%... FOR FUNCTION DSS002. THE FIFTH PARAMETER, V, MUST BE PROVIDED

%... TO DSS012 SO THAT THE DIRECTION OF FLOW IN EQUATION (1) CAN BE

%... USED TO SELECT THE APPROPRIATE FINITE DIFFERENCE APPROXIMATION

%... FOR THE FIRST-ORDER SPATIAL DERIVATIVE IN EQUATION (1), U .

%... THE CONVENTION FOR THE SIGN OF V IS X

%...

%... FLOW LEFT TO RIGHT V GT 0

%... (I.E., IN THE DIRECTION (I.E., THE SIXTH ARGUMENT IS

%... OF INCREASING X) POSITIVE IN CALLING DSS012)

%...

%... FLOW RIGHT TO LEFT V LT 0

%... (I.E., IN THE DIRECTION (I.E., THE SIXTH ARGUMENT IS

%... OF DECREASING X) NEGATIVE IN CALLING DSS012)

%...

%... COMPUTE THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFERENCE

%... APPROXIMATION DEPENDING ON THE SIGN OF V IN EQUATION (1).

dx=(xu-xl)/(n-1);

if v > 0

%...

%... (1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V

ux(1)=(u(2)-u(1))/dx;

for i=2:n

ux(i)=(u(i)-u(i-1))/dx;

end

end

%...

%... (2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V

if v < 0

nm1=n-1;

51

for i=1:nm1

ux(i)=(u(i+1)-u(i))/dx;

end

ux(n)=(u(n)-u(n-1))/dx;

end

The origin of the FD approximation is evident (it can also be considered a

\stirred-tanks-in-series" approximation).

The preceding two outputs for Case = 4 illustrates the two types of numerical

error that are common in the numerical integration of �rst order hyperbolic

PDEs, that is, numerical oscillation and numerical di�usion. In order to

reduce this error, we can consider combining the two approaches, i.e., using a

biased upwind approximation (which is not fully centered or fully upwind, but

a combination of the two). This is done by executing the preceding program

with ifd = 3 for a �ve point biased upwind (5pbu) approximation coded in

function dss020 listed subsequently (note that in calling the 5pbu routine,

the direction of
ow is required since the approximations use upwinding); the

output is listed below (and is plotted in htex1d3.ps)

ncase = 1 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 89.93 89.85 0.081

0.50 -1.50 98.65 98.63 0.022

0.75 -1.25 99.82 99.81 0.004

1.00 -1.00 99.98 99.97 0.001

1.25 -0.75 100.00 100.00 0.000

1.50 -0.50 100.00 100.00 0.000

1.75 -0.25 100.00 100.00 0.000

2.00 0.00 100.00 100.00 0.000

2.25 0.25 100.00 100.00 0.000

2.50 0.50 100.00 100.00 0.000

2.75 0.75 100.00 100.00 0.000

3.00 1.00 100.00 100.00 0.000

3.25 1.25 100.00 100.00 0.000

52

3.50 1.50 100.00 100.00 0.000

3.75 1.75 100.00 100.00 0.000

4.00 2.00 100.00 100.00 0.000

4.25 2.25 100.00 100.00 0.000

4.50 2.50 100.00 100.00 0.000

4.75 2.75 100.00 100.00 0.000

5.00 3.00 100.00 100.00 0.000

ncase = 2 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 38.60 38.60 0.005

0.50 -1.50 49.73 49.73 0.008

0.75 -1.25 58.85 58.84 0.010

1.00 -1.00 66.31 66.30 0.007

1.25 -0.75 72.44 72.41 0.036

1.50 -0.50 77.34 77.41 -0.075

1.75 -0.25 81.65 81.51 0.142

2.00 0.00 84.58 84.86 -0.279

2.25 0.25 84.87 84.86 0.008

2.50 0.50 84.86 84.86 0.004

2.75 0.75 84.86 84.86 0.003

3.00 1.00 84.86 84.86 -0.003

3.25 1.25 84.86 84.86 0.002

3.50 1.50 84.86 84.86 -0.001

3.75 1.75 84.86 84.86 0.001

4.00 2.00 84.86 84.86 0.000

4.25 2.25 84.86 84.86 0.000

4.50 2.50 84.86 84.86 0.000

4.75 2.75 84.86 84.86 0.000

5.00 3.00 84.86 84.86 0.000

ncase = 3 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

53

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 0.000

0.75 -1.25 25.00 25.00 0.000

1.00 -1.00 25.00 25.00 0.000

1.25 -0.75 25.00 25.00 0.000

1.50 -0.50 25.00 25.00 0.000

1.75 -0.25 25.00 25.00 0.000

2.00 0.00 25.00 25.00 0.000

2.25 0.25 25.00 25.00 0.000

2.50 0.50 25.00 25.00 0.000

2.75 0.75 25.00 25.00 0.000

3.00 1.00 25.00 25.00 0.000

3.25 1.25 25.00 25.00 0.000

3.50 1.50 25.00 25.00 0.000

3.75 1.75 25.00 25.00 0.000

4.00 2.00 25.00 25.00 0.000

4.25 2.25 25.00 25.00 0.000

4.50 2.50 25.00 25.00 0.000

4.75 2.75 25.00 25.00 0.000

5.00 3.00 25.00 25.00 0.000

ncase = 4 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 -0.003

0.75 -1.25 24.97 25.00 -0.031

1.00 -1.00 25.26 25.00 0.256

1.25 -0.75 24.19 25.00 -0.809

1.50 -0.50 28.03 25.00 3.026

1.75 -0.25 15.27 25.00 -9.732

2.00 0.00 67.21 25.00 42.208

2.25 0.25 103.99 100.00 3.991

2.50 0.50 97.68 100.00 -2.315

2.75 0.75 101.67 100.00 1.673

54

3.00 1.00 99.05 100.00 -0.946

3.25 1.25 100.51 100.00 0.514

3.50 1.50 99.74 100.00 -0.260

3.75 1.75 100.12 100.00 0.119

4.00 2.00 99.95 100.00 -0.045

4.25 2.25 100.01 100.00 0.010

4.50 2.50 100.00 100.00 0.004

4.75 2.75 99.99 100.00 -0.008

5.00 3.00 100.01 100.00 0.008

We can note the following points about this output:

(1) The �ve point biased upwind (5pbu) FD approximations give good accu-

racy for Cases 1 to 3 which again are relatively smooth problems. In particu-

lar, the FD solution is exact for Case 3 (the constant solution is di�erentiated

exactly).

(2) The 5pbu FD approximations give an improvement over centered approx-

imations (ifd = 1) and low order upwinding (ifd = 2) by reducing both the

numerical di�usion and oscillation, but these numerical errors still persist.

This is a consequence of Godunov's theorem to be discussed subsequently.

Brie
y, we have probably done about as well as we can do with linear (FD)

approximations, i.e., computing approximations to derivatives using linear

combinations of the dependent variable, for example

ux(i)=r4fdx*...

(-1. *u(i-3)...

+6. *u(i-2)...

-18. *u(i-1)...

+10. *u(i)...

+3. *u(i+1));

We will therefore next turn to a nonlinear FD approximation as the �nal

case (ifd = 4).

The library di�erentiator for the 5pbu FD approximations (ifd = 3) is listed

below

55

function [ux]=dss020(xl,xu,n,u,v)

%...

%... SUBROUTINE DSS020 IS AN APPLICATION OF FOURTH-ORDER DIRECTIONAL

%... DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED

%... SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY

%... FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS-

%... CUSSED IN SUBROUTINE DSS012. THE COEFFICIENTS OF THE FINITE

%... DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.

%... G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL

%... GAZETTE, PP. 19-27, 1941, N = 4, M = 1, P = 0, 1, 2, 3, 4. THE

%... IMPLEMENTATION IS THE **FIVE-POINT BIASED UPWIND FORMULA** OF

%... M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE

%... ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,

%... AUGUST, 1978

%...

%... COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION

%... CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-

%... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT).

dx=(xu-xl)/(n-1);

r4fdx=1./(12.*dx);

%...

%... (1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V

if v > 0.

ux(1)=r4fdx*...

(-25. *u(1)...

+48. *u(2)...

-36. *u(3)...

+16. *u(4)...

-3. *u(5));

ux(2)=r4fdx*...

(-3. *u(1)...

-10. *u(2)...

+18. *u(3)...

-6. *u(4)...

+1. *u(5));

ux(3)=r4fdx*...

(+1. *u(1)...

56

-8. *u(2)...

+0. *u(3)...

+8. *u(4)...

-1. *u(5));

nm1=n-1;

for i=4:nm1

ux(i)=r4fdx*...

(-1. *u(i-3)...

+6. *u(i-2)...

-18. *u(i-1)...

+10. *u(i)...

+3. *u(i+1));

end

ux(n)=r4fdx*...

(+3. *u(n-4)...

-16. *u(n-3)...

+36. *u(n-2)...

-48. *u(n-1)...

+25. *u(n));

end

%...

%... (2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V

if v < 0.

ux(1)=r4fdx*...

(-25. *u(1)...

+48. *u(2)...

-36. *u(3)...

+16. *u(4)...

-3. *u(5));

nm3=n-3;

for i=2:nm3

ux(i)=r4fdx*...

(-3. *u(i-1)...

-10. *u(i)...

+18. *u(i+1)...

-6. *u(i+2)...

+1. *u(i+3));

end

57

ux(n-2)=r4fdx*...

(+1. *u(n-4)...

-8. *u(n-3)...

+0. *u(n-2)...

+8. *u(n-1)...

-1. *u(n));

ux(n-1)=r4fdx*...

(-1. *u(n-4)...

+6. *u(n-3)...

-18. *u(n-2)...

+10. *u(n-1)...

+3. *u(n));

ux(n)=r4fdx*...

(+3. *u(n-4)...

-16. *u(n-3)...

+36. *u(n-2)...

-48. *u(n-1)...

+25. *u(n));

end

The 5pbu FD approximations are derived from the Taylor series as discussed

in the next section.

To conclude this discussion of time and spatial discretization, we consider

the use of the van Leer
ux limiter to compute spatial derivatives (by setting

ifd = 4 in the preceding program). The objective is to eliminate numerical

di�usion and oscillation as much as possible (in the solution of �rst order,

hyperbolic PDEs). The output is �rst listed (and plotted in htex1d4.ps)

ncase = 1 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 89.93 89.85 0.081

0.50 -1.50 98.65 98.63 0.022

0.75 -1.25 99.82 99.81 0.004

1.00 -1.00 99.98 99.97 0.001

58

1.25 -0.75 100.00 100.00 0.000

1.50 -0.50 100.00 100.00 0.000

1.75 -0.25 100.00 100.00 0.000

2.00 0.00 100.00 100.00 0.000

2.25 0.25 100.00 100.00 0.000

2.50 0.50 100.00 100.00 0.000

2.75 0.75 100.00 100.00 0.000

3.00 1.00 100.00 100.00 0.000

3.25 1.25 100.00 100.00 0.000

3.50 1.50 100.00 100.00 0.000

3.75 1.75 100.00 100.00 0.000

4.00 2.00 100.00 100.00 0.000

4.25 2.25 100.00 100.00 0.000

4.50 2.50 100.00 100.00 0.000

4.75 2.75 100.00 100.00 0.000

5.00 3.00 100.00 100.00 0.000

ncase = 2 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 38.60 38.60 0.005

0.50 -1.50 49.73 49.73 0.008

0.75 -1.25 58.85 58.84 0.010

1.00 -1.00 66.31 66.30 0.011

1.25 -0.75 72.42 72.41 0.011

1.50 -0.50 77.42 77.41 0.011

1.75 -0.25 81.51 81.51 0.003

2.00 0.00 84.23 84.86 -0.628

2.25 0.25 84.79 84.86 -0.073

2.50 0.50 84.77 84.86 -0.087

2.75 0.75 84.77 84.86 -0.088

3.00 1.00 84.77 84.86 -0.087

3.25 1.25 84.77 84.86 -0.087

3.50 1.50 84.77 84.86 -0.087

3.75 1.75 84.77 84.86 -0.087

4.00 2.00 84.77 84.86 -0.087

59

4.25 2.25 84.77 84.86 -0.087

4.50 2.50 84.77 84.86 -0.087

4.75 2.75 84.77 84.86 -0.087

5.00 3.00 84.77 84.86 -0.087

ncase = 3 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 0.000

0.75 -1.25 25.00 25.00 0.000

1.00 -1.00 25.00 25.00 0.000

1.25 -0.75 25.00 25.00 0.000

1.50 -0.50 25.00 25.00 0.000

1.75 -0.25 25.00 25.00 0.000

2.00 0.00 25.00 25.00 0.000

2.25 0.25 25.00 25.00 0.000

2.50 0.50 25.00 25.00 0.000

2.75 0.75 25.00 25.00 0.000

3.00 1.00 25.00 25.00 0.000

3.25 1.25 25.00 25.00 0.000

3.50 1.50 25.00 25.00 0.000

3.75 1.75 25.00 25.00 0.000

4.00 2.00 25.00 25.00 0.000

4.25 2.25 25.00 25.00 0.000

4.50 2.50 25.00 25.00 0.000

4.75 2.75 25.00 25.00 0.000

5.00 3.00 25.00 25.00 0.000

ncase = 4 h = 1.000e-03

t t-zl/v T(zl,t) Ta(zl,t) diff

0.00 -2.00 25.00 25.00 0.000

0.25 -1.75 25.00 25.00 0.000

0.50 -1.50 25.00 25.00 0.000

60

0.75 -1.25 25.00 25.00 0.000

1.00 -1.00 25.00 25.00 0.000

1.25 -0.75 25.00 25.00 0.000

1.50 -0.50 25.01 25.00 0.008

1.75 -0.25 31.29 25.00 6.286

2.00 0.00 66.42 25.00 41.423

2.25 0.25 91.65 100.00 -8.351

2.50 0.50 98.61 100.00 -1.390

2.75 0.75 99.82 100.00 -0.182

3.00 1.00 99.98 100.00 -0.021

3.25 1.25 100.00 100.00 -0.002

3.50 1.50 100.00 100.00 0.000

3.75 1.75 100.00 100.00 0.000

4.00 2.00 100.00 100.00 0.000

4.25 2.25 100.00 100.00 0.000

4.50 2.50 100.00 100.00 0.000

4.75 2.75 100.00 100.00 0.000

5.00 3.00 100.00 100.00 0.000

We can note the following points about this output:

(1) The van Leer limited gives good accuracy for Cases 1 to 3 which again

are relatively smooth problems. In particular, the van Leer limiter is exact

for Case 3 (the constant solution is di�erentiated exactly).

(2) The van Leer limiter gives an improvement over centered approximations

(ifd = 1), low order upwinding (ifd = 2) and higher order biased upwinding

(ifd = 3) by reducing further the numerical di�usion and eliminating the

oscillation. Clearly,
ux limiters are e�ective, and their performance can be

improved by going to higher order limiters (e.g., van Leer is second order;

Superbee is third order).

The library di�erentiator for the van Leer limiter (ifd = 4) is listed below

(this routine is based on a Fortran routine �rst coded by WES and improved

by Alain vande Wouwer and Philippe Saucez)

function [ux]=vanl2(xl,xu,n,u,v)

61

dx=(xu-xl)/(n-1);

delta=1.0e-05;

if v >= 0.0

for i=3:n-1

if(abs(u(i)-u(i-1))<delta)

phi(i)=0.0;

else

r(i)=(u(i+1)-u(i))/(u(i)-u(i-1));

phi(i)=(r(i)+abs(r(i)))/(1.0+abs(r(i)));

end

if(abs(u(i-1)-u(i-2))<delta)

phi(i-1)=0.0;

else

r(i-1)=(u(i)-u(i-1))/(u(i-1)-u(i-2));

phi(i-1)=(r(i-1)+abs(r(i-1)))/(1.0+abs(r(i-1)));

end

flux2=u(i)+(u(i)-u(i-1))*phi(i)/2.0;

flux1=u(i-1)+(u(i-1)-u(i-2))*phi(i-1)/2.0;

ux(i)=(flux2-flux1)/dx;

end

ux(1)=(-u(1)+u(2))/dx;

ux(2)=(-u(1)+u(2))/dx;

ux(n)=(u(n)-u(n-1))/dx;

end

if v < 0.0

for i=2:n-2

if(abs(u(i)-u(i+1))<delta)

phi(i)=0.0;

else

r(i)=(u(i-1)-u(i))/(u(i)-u(i+1));

phi(i)=(r(i)+abs(r(i)))/(1.0+abs(r(i)));

end

if(abs(u(i+1)-u(i+2))<delta)

phi(i+1)=0.0;

else

r(i+1)=(u(i)-u(i+1))/(u(i+1)-u(i+2));

phi(i+1)=(r(i+1)+abs(r(i+1)))/(1.0+abs(r(i+1)));

end

62

flux2=u(i)+(u(i)-u(i+1))*phi(i)/2.0;

flux1=u(i+1)+(u(i+1)-u(i+2))*phi(i+1)/2.0;

ux(i)=(flux2-flux1)/dx;

end

ux(1)=(u(2)-u(1))/dx;

ux(n-1)=(-u(n-1)+u(n))/dx;

ux(n)=(-u(n-1)+u(n))/dx;

end

The van Leer limiter has two basic sections for positive and negative velocities

and therefore the direction of
ow is required as an input. Within each case

(positive or negative velocity),

� van Leer computes a ratio at grid point i, r(i), that is a measure of the

change in the slope of the solution

� A nonlinear limiting function, phi(i), is then applied to r(i)

� From that limited slope, the \
ux" is computed at two neighboring

grid points

� The di�erence in the two
uxes is then the numerical approximation of

the spatial derivative, ux(i), that is returned from the function to be

used in the PDE

� For phi(i) = 0, van Leer reduces to two point upwinding

� More generally, van Leer is a form of nonlinear, two point upwinding

as evident when expressed in the following way (from M. Berzins). For

the basic hyperbolic equation written in conservative form

ut + F (u)x = 0

the convective term can be approximated as:

63

F (u)x =

�
1 +

B(rj)

2
�
B(rj�1)

2rj�1

�
uj � uj�1

�x

where

B(rj) =
rj + jrjj

1 + rj
; rj =

uj+1 � uj

uj � uj�1

Note that when rj = 0; B(rj) = 0; and we have just two point upwind-

ing (ifd = 2). The nonlinearity of B(rj) is clear.

To conclude this section, we have considered strongly convective systems that

have as the basic di�erential group

ut + F (u)x

or for a constant velocity system

ut + vux

If we solve the linear advection equation

ut + vux = 0 (1)

subject to the initial and boundary conditions

u(x; 0) = f(x); u(0; t) = g(t)

and if the functions f(x) and g(t) introduce a discontinuity, e.g.,

u(x; 0) = 0; u(0; t) = 1 (2)(3)

64

we have a form of the Riemann problem.

The solution to eqs. (1), (2) and (3) is

u(x; t) = h(x� vt) (4)

where h(t) is the Heaviside function

h(t) = 0; t < 0

h(t) = 1; t > 0

In a sense, eq (4) indicates that this Riemann problem is impossible to solve

numerically since at x� vt = 0; the derivative ux is in�nite. Thus, about the

best we can do is to use an approximate Riemann solver ; and the preceding

discussion indicates that a
ux limiter is a good choice (at least as good as

we have right now). In other words, we will generally not be able to solve

problems exactly that have moving discontinuites, e.g., eq. (4).

On the other hand, we might argue that physically, there are few prob-

lems that have this characteristic; some form of smoothing (e.g., di�usion) is

generally going to occur that will reduce the numerical severity of the prob-

lem. However, problems with steep moving fronts occur in many important

applications such as adsorption and chromatography. Therefore, the con-

tinuing development of e�ective numerical methods for strongly convective

(hyperbolic) PDEs is an active area of research, particularly the testing of

algorithms, e.g., van Leer, Superbee. For example:

� Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dy-

namics, Springer, Berlin, 1st ed., (1997) has 387 references to the CFD

literature (2nd ed. appeared in 1999)

� Hirsch, C., Numerical Computation of Internal and External Flows,

Vol I: Fundamentals of Numerical Discretizations, Wiley, 1988; Vol II:

Computational Methods for Inviscid and Viscous Flows, Wiley, 1990

Finally, linear approximations can be e�ective if the problem is su�ciently

smooth, but they are limited by Godunov's theorem which states (loosely):

65

There are no linear approximations to the Riemann problem, higher than

�rst order, that are nonoscillatory. The preceding heat exchanger example

demonstrated this conclusion.

The �les pertaining to this heat exchanger example are in:

http://www.lehigh.edu/~wes1/apci/htex1.ppt

http://www.lehigh.edu/~wes1/apci/htex1.m

http://www.lehigh.edu/~wes1/apci/dss002.m

http://www.lehigh.edu/~wes1/apci/dss012.m

http://www.lehigh.edu/~wes1/apci/dss020.m

http://www.lehigh.edu/~wes1/apci/vanl2.m

Method of Lines

The preceding heat exchanger example illustrates a basic approach to the

numerical integration of PDEs generally termed the method of lines (MOL).

This is essentially a two-step process as the heat exchanger example illus-

trated:

� The spatial (boundary value) derivatives are approximated algebraically,

for example, by �nite di�erences or a
ux limiter, on a spatial grid

� The resulting system of ODEs in the initial value variable (typically

time) is then integrated by an initial value ODE integrator (e.g., Euler's

method, the modi�ed Euler method, RKF45, BDF)

The advantages of this approach are:

� The temporal and spatial integrations are separated in the sense that

they can be treated separately in the coding; this adds a very attrac-

tive degree of
exibility, including the use of library routines for the

temporal and spatial integrations

� We can build on the new developments in ODE integrators to do PDEs

66

� All of the major classes of PDEs can be accommodated (elliptic, hyper-

bolic, parabolic). Elliptic problems will generally require the addition

of a pseudo initial value derivative that is then integrated to e�ectively

zero (a steady state or equilibrium condition); this is o�er easier than

attacking the elliptic problem directly

� Systems of ODEs, DAEs and PDEs (in one, two and three spatial

dimensions plus time), linear and nonlinear, can be naturally accom-

modated within the MOL; for example, ODEs or DAEs can serve as

boundary conditions for PDEs

The MOL is not a single method of solution of ODE/DAE/PDE systems.

Rather, it is a
exible, open-ended approach that is limited only by the

ingenuity of the analyst.

To illustrate the MOL analysis of a PDE system, we return to the problem

considered in the �rst lecture (28jan00.tex, 28jan00.ps, 28jan00.pdf): A tubu-

lar reactor, as depicted in the accompanying diagram (see �le reactor.ppt),

has a signi�cant heat e�ect so that cooling at the wall is being considered to

remove the heat of reaction.

Consequently, signi�cant radial heat and concentration pro�les develop. The

reactor is therefore modeled in terms of radial position, axial position and

time; since there are three independent variables, we will use PDEs.

Our objective in this analysis is to determine what comes out of the reactor,

i.e., the average concentrations and temperature, so that we can determine

if it achieves the required operating performance. To do this, we construct a

mathematical model.

The material balance for an incremental element of length �z is (see accom-

panying diagram)

2�r�r�z
@ca

@t
= 2�r�zqmjr � 2�(r +�r)�zqmjr+�r

+2�r�rvcajz��z � 2�r�rvcajz

67

�2�r�r�zkrc
2
a

Division by 2�r�r�z and minor rearrangement gives

@ca

@t
= �

(r +�r)qmjr+�r � rqmjr

r�r
� v(

cajz � cajz��z

�z
)� krc

2
a

or in the limit r! 0;�z ! 0,

@ca

@t
= �

1

r

@(rqm)

@r
� v

@ca

@z
� krc

2
a

If we now assume Fick's �rst law for the
ux with a constant di�usivity, D

qm = �D
@ca

@r

we obtain

@ca

@t
=

D

r

@(r
@ca

@r
)

@r
� v

@ca

@z
� krc

2
a

or

@ca

@t
= D(

@
2
ca

@r2
+

1

r

@ca

@r
)� v

@ca

@z
� krc

2
a (1)

Equation (1) is the required material balance for ca(r; z; t).

The energy balance for the incremental section is

2�r�r�z�Cp

@T

@t
= 2�r�zqhjr � 2�(r +�r)�zqhjr+�r

+2�r�rv�CpT jz��z � 2�r�rv�CpT jz

��H2�r�r�zkrc
2
a

68

Division by 2�r�r�z�Cp gives

@T

@t
= �

(r +�r)qhjr+�r � rqhjr

r�r�Cp

� v
(T jz � T jz��z)

�z
�

�Hkr

�Cp

c
2
a

or in the limit �r! 0;�z ! 0,

@T

@t
= �

1

�Cpr

@(rqh)

@r
� v

@T

@z
�

�Hkr

�Cp

c
2
a

If we now assume Fourier's �rst law for the
ux with a constant conductivity,

k

qh = �k
@T

@r

we obtain

@T

@t
=

k

�Cpr

@(r
@T

@r
)

@r
� v

@T

@z
�

�Hkr

�Cp

c
2
a

or

@T

@t
=

k

�Cp

(
@
2
T

@r2
+
1

r

@T

@r
)� v

@T

@z
�

�Hkr

�Cp

c
2
a (2)

Eq. (2) is the required energy balance for T (r; z; t):

The reaction rate constant, kr, is given by

kr = k0e
�E=(RT) (3)

The variables and parameters of eqs. (1), (2) and (3) are summarized in the

following table (in cgs units)

69

Reactant concentration ca Solution to eq. (1)

Temperature T Solution to eq. (2)

Reaction rate constant kr From eq. (3)

Time t

Radial position r

Axial position z

Entering concentration ca0 0:01

Entering temperature T0 305

Wall temperature Tw 305; 355

Reactor radius r0 2

Reactor length zl 100

Linear velocity v 1:0

Mass di�usivity D 0:1

Thermal di�usivity k=(�Cp) 0:1

Liquid density � 1:0

Liquid speci�c heat Cp 0:5

Heat of reaction �H �10; 000

Speci�c rate constant k0 1:5� 109

Activiation energy E 15; 000

Gas constant R 1:987

Eq. (1) requires one initial condition (IC), two boundary conditions (BCs)

in r and one BC in z

ca(r; z; 0) = 0 (4)

@ca(0; z; t)

@r
= 0;

@ca(r0; z; t)

@r
= 0 (5)(6)

ca(r; 0; t) = ca0 (7)

Eq. (2) also requires one IC, two BCs in r and one BC in z

70

T (r; z; 0) = T0 (8)

@T (0; z; t)

@r
= 0; T (r0; z; t) = Tw (9)(10)

T (r; 0; t) = T0 (11)

The solution to this problem (and in general, to problems in ODEs and

PDEs) are the dependent variables (ca(r; z; t),T (r; z; t)) as a function of the

independent variables (r; z; t).

Since we are intertested in the exiting conditions, we will compute ca(r; zl; t); T (r; zl; t).

Also, there may be signi�cant radial pro�les at the exit, so we will also com-

pute the integrals

ca;avg(t) =

Z r0

0

2�rca(r; zl; t)dr=(�r
2
0) (12)

Tavg(t) =

Z r0

0

2�rT (r; zl; t)dr=(�r
2
0) (13)

Note that this problem includes 2-D PDEs, transcendental equations and

integrals. Because of its complexity (number of equations and their non-

linearity), an analytical solution is precluded, and we must use numerical

methods.

A MOL code for the solution of the preceding problem is listed below

% Dynamic analysis of a plug flow reactor

%

% The following equations model a plug flow reactor (PFR)

%

71

% Material balance

%

% ca = -v*ca + D*(ca + (1/r)ca) - k*ca^2 (1)

% t z rr r

%

% Energy balance

%

% T = -v*T + k*/(rho*Cp)*(T + (1/r)*T) (2)

% t z rr r

%

% - (dH*k/(rho*Cp)*ca^2

%

% kr = k0*exp(-E/(R*T)) (3)

%

% The variables and parameters for this model are (in cgs units)

%

% Reactant concentration ca (eq. (1))

%

% Temperature T (eq. (3))

%

% Reaction rate constant kr (eq. (3))

%

% Time t

%

% Radial position r

%

% Axial position z

%

% Entering concentration ca0 0.01

%

% Entering temperature T0 305

%

% Wall temperature TW 305

% 355

%

% Reactor radius r0 2

%

% Reactor length zl 100

72

%

% Linear velocity v 1

%

% Mass diffusivity D 0.1

%

% Thermal diffusivity alpha = k/(rho*Cp) 0.1

%

% Liquid density rho 1.0

%

% Liquid specific heat Cp 0.5

%

% Heat of reaction dH -10,000

%

% Specific rate constant k0 1.5e+09

% 2.0e+09

%

% Activation energy E 15,000

%

% Gas constant R 1.987

%

% Note that there are two cases, corresponding to the two

% values of the specific rate constant, k0. This is a

% sensitive parameter since it multiplies a stongly nonlinear

% term (Arrhenius temperature dependency) in eq. (3). Thus,

% two values are programmed k0 = 1.5e+09, 2.0e+09, to indicate

% the effect of k0.

%

% The solution to this system, ca(r,z,t) (from eq. (1)) and

% T(r,z,t) (from eq. (2)) is computed by a fixed step Euler

% integration in t. Also, the choice of an Euler step is

% sensitive because of the nonlinearity of eq. (3).

%

% Open output file

fid1=fopen('reactor.out','w');

%

% Model parameters (defined in the comments above)

ca0=0.01;

T0=305.0;

73

%

% Case 1: Cooled reactor wall

% Tw=305.0;

%

% Case 2: Heated reactor wall

Tw=355.0;

r0=2.0;

zl=100.0;

v=1.0;

D=0.1;

alpha=0.1;

rho=1.0;

Cp=0.5;

dH=-10000.0;

E=15000.0;

R=1.987;

%

% Grid in axial direction

nz=21;

dz=zl/(nz-1);

for j=1:nz

z(j)=(j-1)*dz;

end

%

% Grid in radial direction

nr=5;

dr=r0/(nr-1);

for i=1:nr

r(i)=(i-1)*dr;

end

drs=dr^2;

%

% Case 1: Low reaction rate constant

% rk0=1.5e+09;

%

% Case 2: High reaction rate constant

rk0=2.0e+09;

%

74

% Series of solutions for different Euler steps

for ncase=1:1

%

% Initial, final times

t=0.0; tf=300.0;

%

% Integration step, number of Euler steps for each output

if ncase==1 h=0.1; nout=100; end

%

% Initial conditions

for j=1:nz

for i=1:nr

ca(i,j)=0.0;

T(i,j)=T0;

end

end

%

% Write h

fprintf(fid1,'\n\n ncase = %5d h = %10.3e\n\n',ncase,h);

%

% Write heading

fprintf(fid1,' t ca(r,zl,t) T(r,zl,t)\n');

%

% Integrate until t = tf

while t < tf*1.0001

%

% Monitor solution by displaying t

t

%

% Write selected output (a quadrature, e.g., Simpson's

% rule, could be added here for the average output ca, T)

for i=1:nr

fprintf(fid1,'%6.1f%12.6f%10.2f\n',t,ca(i,nz),T(i,nz));

end

fprintf(fid1,'\n');

%

% Take nout Euler steps

for iout=1:nout

75

%

% Temporal derivatives

%

% Cover the nr x nz grid

%

% Entering conditions (z = 0)

for i=1:nr

ca(i,1)=ca0;

cat(i,1)=0.0;

T(i,1)=T0;

Tt(i,1)=0.0;

end

%

% Rest of reactor

for j=2:nz

%

% Centerline (r = 0)

rk=rk0*exp(-E/(R*T(1,j)));

cat(1,j)=-v*(ca(1,j)-ca(1,j-1))/dz...

+4.0*D*(ca(2,j)-ca(1,j))/drs...

-rk*ca(1,j)^2;

Tt(1,j)=-v*(T(1,j)-T(1,j-1))/dz...

+4.0*alpha*(T(2,j)-T(1,j))/drs...

-dH*rk/(rho*Cp)*ca(1,j)^2;

%

% Wall (r = r0)

rk=rk0*exp(-E/(R*Tw));

cat(nr,j)=-v*(ca(nr,j)-ca(nr,j-1))/dz...

+2.0*D*(ca(nr-1,j)-ca(nr,j))/drs...

-rk*ca(nr,j)^2;

T(nr,j)=Tw;

Tt(nr,j)=0.0;

%

% Interior, r ~= 0 and r ~= r0

for i=2:nr-1

rk=rk0*exp(-E/(R*T(i,j)));

cat(i,j)=-v*(ca(i,j)-ca(i,j-1))/dz...

+D*(ca(i+1,j)-2.0*ca(i,j)+ca(i-1,j))/drs...

76

+D*(1.0/r(i)*(ca(i+1)-ca(i-1)))/(2.0*dr)...

-rk*ca(i,j)^2;

Tt(i,j)=-v*(T(i,j)-T(i,j-1))/dz...

+alpha*(T(i+1,j)-2.0*T(i,j)+T(i-1,j))/drs...

+alpha*(1.0/r(i)*(T(i+1,j)-T(i-1,j)))/(2.0*dr)...

-dH*rk/(rho*Cp)*ca(i,j)^2;

%

% Next r

end

%

% Next z

end

%

% All temporal derivatives are computed

%

% Take Euler step

for j=1:nz

for i=1:nr

ca(i,j)=ca(i,j)+cat(i,j)*h;

T(i,j)= T(i,j)+ Tt(i,j)*h;

end

end

t=t+h;

%

% Next Euler step

end

%

% Next output

end

%

% Next case

end

We can note the following points about this program:

(1) The model parameters are �rst de�ned, including the variation in the

77

wall temperature, Tw (initially, consideration was given to cooling the wall

by keeping it at the initial temperature Tw = 305, but execution of the

program indicated that very little reaction occurred; thus, the wall in the

second case is actually heated to Tw = 355 to produce a signi�cant reaction

as re
ected in the consumption of the reactant, i.e., reduction of the entering

concentration ca(r; 0; t) = 0:01).

% Model parameters (defined in the comments above)

ca0=0.01;

T0=305.0;

%

% Case 1: Cooled reactor wall

% Tw=305.0;

%

% Case 2: Heated reactor wall

Tw=355.0;

r0=2.0;

zl=100.0;

v=1.0;

D=0.1;

alpha=0.1;

rho=1.0;

Cp=0.5;

dH=-10000.0;

E=15000.0;

R=1.987;

(2) The spatial grids in z and r are then de�ned numerically over the intervals

0 � z � zl and 0 � r � r0 (with nz = 21 and nr = 5 points, respectively)

% Grid in axial direction

nz=21;

dz=zl/(nz-1);

for j=1:nz

z(j)=(j-1)*dz;

end

78

%

% Grid in radial direction

nr=5;

dr=r0/(nr-1);

for i=1:nr

r(i)=(i-1)*dr;

end

drs=dr^2;

(3) Variation of the speci�c rate constant, k is also included (this can be

considered as a type of parameter sensitivity analysis, perhaps to compare

the model output with experimental data)

% Case 1: Low reaction rate constant

% rk0=1.5e+09;

%

% Case 2: High reaction rate constant

rk0=2.0e+09;

(4) The code provides for multiple runs, but only one run is coded. Within

each run, the parameters controlling the integration in t are set, including

the initial and �nal values of t, the euler integration step, h, and the number

of Euler steps between outputs, nout:

% Series of solutions for different Euler steps

for ncase=1:1

%

% Initial, final times

t=0.0; tf=300.0;

%

% Integration step, number of Euler steps for each output

if ncase==1 h=0.1; nout=100; end

(5) The initial conditions for the two dependent variables, ca (eq. (5)) and

T (eq. (8), are set

79

% Initial conditions

for j=1:nz

for i=1:nr

ca(i,j)=0.0;

T(i,j)=T0;

end

end

Note that there are nz x nr = 21 x 5 = 105 ODEs in the MOL approximation

of the two PDEs, eqs. (1) and (2)

(6) Headings are printed for the output

% Write h

fprintf(fid1,'\n\n ncase = %5d h = %10.3e\n\n',ncase,h);

%

% Write heading

fprintf(fid1,' t ca(r,zl,t) T(r,zl,t)\n');

(7) The integration in t starts with a test if t has reached the �nal value, tf

% Integrate until t = tf

while t < tf*1.0001

%

% Monitor solution by displaying t

t

(8) The solution is printed (including the initial conditions in the �rst pass

through this code)

% Write selected output (a quadrature, e.g., Simpson's

% rule, could be added here for the average output ca, T)

for i=1:nr

80

fprintf(fid1,'%6.1f%12.6f%10.2f\n',t,ca(i,nz),T(i,nz));

end

fprintf(fid1,'\n');

If the average exiting concentration and temperature, according to eqs. (12)

and (13), are to be included in the output, a quadrature calculation, e.g.,

Simpson's rule, could be included at this point (the radial grid has an odd

number of points, nr = 5, as required by Simpson's rule)

(9) nout Euler steps are taken (between outputs), starting with the de�nition

of the boundary conditions

% Take nout Euler steps

for iout=1:nout

%

% Temporal derivatives

%

% Cover the nr x nz grid

%

% Entering conditions (z = 0)

for i=1:nr

ca(i,1)=ca0;

cat(i,1)=0.0;

T(i,1)=T0;

Tt(i,1)=0.0;

end

Note that the entering conditions, ca(r; 0; t) and T (r; 0; t) are set according

to BCs (7) and (11). Since these entering conditions are constant, their time

derivatives are set to zero. All four of these conditions are speci�ed with the

second index set to one which is the �rst grid point in z (the entrance to the

reactor).

(10) The remaining points in z, 2 � j � nz(= 21) are then covered. The

calculations for r = 0 (with the �rst index set to one) are done �rst

81

%

% Rest of reactor

for j=2:nz

%

% Centerline (r = 0)

rk=rk0*exp(-E/(R*T(1,j)));

cat(1,j)=-v*(ca(1,j)-ca(1,j-1))/dz...

+4.0*D*(ca(2,j)-ca(1,j))/drs...

-rk*ca(1,j)^2;

Tt(1,j)=-v*(T(1,j)-T(1,j-1))/dz...

+4.0*alpha*(T(2,j)-T(1,j))/drs...

-dH*rk/(rho*Cp)*ca(1,j)^2;

The Arrhenius temperature dependency is �rst calculated (note the use of

the centerline temperature, T (0; z; t))

rk=rk0*exp(-E/(R*T(1,j)));

The temporal derivative from eq. (1)

@ca

@t

is then calculated

cat(1,j)=-v*(ca(1,j)-ca(1,j-1))/dz...

+4.0*D*(ca(2,j)-ca(1,j))/drs...

-rk*ca(1,j)^2;

We can note the following points in this coding of the temporal derivative:

(10.1) The convective derivative in eq. (1)

�v
@ca

@z

is approximated by a two point upwind FD

82

-v*(ca(1,j)-ca(1,j-1))/dz

The calculation of
@ca

@z
could also have been done by a call to function dss012

as illustrated by the preceding heat exchanger example. Note also that since

the index in z starts at j = 2, the value of ca(1,j-1) is de�ned (by BC (7),

discussed in (9) above).

(10.2) The di�usive derivatives in eq. (1)

D(
@
2
ca

@r2
+
1

r

@ca

@r
)

are approximated by three point, centered FDs, including BC (5)

+4.0*D*(ca(2,j)-ca(1,j))/drs

There is a complication at r = 0 that was taken into account in the preceding

coding. The second term at r = 0 is indetermine as a consquence of BC (5)

lim
r!0

1

r

@ca

@r
=

0

0

If we apply l'Hospital's rule to the indeterminant form by di�erentiating the

numerator and denominator with respect to r

lim
r!0

1

r

@ca

@r
= lim

r!0

1

1

@
2
ca

@r2
=

@
2
ca

@r2

Thus, at r = 0; the di�usion group becomes

D(
@
2
ca

@r2
+
1

r

@ca

@r
) = 2D

@
2
cA

@r2

with the FD approximation

83

2D
@
2
ca

@r2
�= 2D

ca(2)� 2ca(1) + ca(0)

�r2

We then eliminate the �ctitious value ca(0) using BC (5)

@ca(0; z; t)

@r

�=
ca(2)� ca(0)

2�r
= 0

or

ca(0) = ca(2)

The �nal result for the di�usion group at r = 0 is then

D(
@
2
ca

@r2
+
1

r

@ca

@r
) �= 2D

ca(2)� 2ca(1) + ca(0)

�r2
�= 4D

ca(2)� ca(1)

�r2

which is programmed as indicated above.

(10.3) The reaction term

�krc
2
a

is programmed as

-rk*ca(1,j)^2;

Note the ease with which the nonlinear, second order reaction term can be

programmed (illustrating the power of numerical methods, i.e., nonlinearities

are easily included in the analysis).

(10.4) The temporal derivative of temperature from eq. (2),

@T

@t

is programmed in the same way

84

Tt(1,j)=-v*(T(1,j)-T(1,j-1))/dz...

+4.0*alpha*(T(2,j)-T(1,j))/drs...

-dH*rk/(rho*Cp)*ca(1,j)^2;

Again, the ease of programming the nonlinear Arrhenius temperature depen-

dency in the reaction term (discussed above)

rk=rk0*exp(-E/(R*T(1,j)));

is apparent.

(11) The temporal derivatives at the wall are then programmed

% Wall (r = r0)

rk=rk0*exp(-E/(R*Tw));

cat(nr,j)=-v*(ca(nr,j)-ca(nr,j-1))/dz...

+2.0*D*(ca(nr-1,j)-ca(nr,j))/drs...

-rk*ca(nr,j)^2;

T(nr,j)=Tw;

Tt(nr,j)=0.0;

The Arrhenius temperature is �rst programmed using the wall temperature,

Tw

rk=rk0*exp(-E/(R*Tw));

The temporal derivative from eq. (1)

@ca

@t

is then calculated

85

cat(nr,j)=-v*(ca(nr,j)-ca(nr,j-1))/dz...

+2.0*D*(ca(nr-1,j)-ca(nr,j))/drs...

-rk*ca(nr,j)^2;

We can note the following points in this coding of the temporal derivative:

(11.1) The convective derivative in eq. (1)

�v
@ca

@z

is again approximated by a two point upwind FD

-v*(ca(nr,j)-ca(nr,j-1))/dz

Note the use of the subscript nr since we are now considering eq. (1) at the

wall (r = r0).

(11.2) The di�usive derivatives in eq. (1)

D(
@
2
ca

@r2
+
1

r

@ca

@r
)

are approximated by three point, centered FDs, including BC (6)

+2.0*D*(ca(nr-1,j)-ca(nr,j))/drs

To review the details, since at the wall (from BC (6)),

@ca(r0; z; t)

@r
= 0

the second term in the di�usion group is zero and only the �rst term has to

be considered

86

D
@
2
ca

@r2
�= D

ca(nr + 1)� 2ca(nr) + ca(nr � 1)

�r2

But ca(nr + 1) is a �ctitious value that can be eliminated by a FD approxi-

mation of BC (6)

@ca(r0; z; t)

@r

�=
ca(nr + 1)� ca(nr � 1)

2�r
= 0

or

ca(nr + 1) = ca(nr � 1)

and

D
@
2
ca

@r2
�= D

ca(nr + 1)� 2ca(nr) + ca(nr � 1)

�r2
= 2D

ca(nr � 1)� ca(nr)

�r2

which is programmed as indicated above.

(11.3) The reaction term

�krc
2
a

is programmed as

-rk*ca(nr,j)^2;

(again, using the subscript nr).

(11.4) The energy balance is easily programmed since the wall temperature

is constant

T(nr,j)=Tw;

Tt(nr,j)=0.0;

87

Note that the temporal derivative is zeroed since the wall temperature is

constant.

(12) The temporal derivatives of eqs. (1) and (2) at the interrior points (

with r 6= 0 and r 6= r0) are then programmed

% Interior, r ~= 0 and r ~= r0

for i=2:nr-1

rk=rk0*exp(-E/(R*T(i,j)));

cat(i,j)=-v*(ca(i,j)-ca(i,j-1))/dz...

+D*(ca(i+1,j)-2.0*ca(i,j)+ca(i-1,j))/drs...

+D*(1.0/r(i)*(ca(i+1)-ca(i-1)))/(2.0*dr)...

-rk*ca(i,j)^2;

Tt(i,j)=-v*(T(i,j)-T(i,j-1))/dz...

+alpha*(T(i+1,j)-2.0*T(i,j)+T(i-1,j))/drs...

+alpha*(1.0/r(i)*(T(i+1,j)-T(i-1,j)))/(2.0*dr)...

-dH*rk/(rho*Cp)*ca(i,j)^2;

% Next r

end

%

% Next z

end

This programming appears to be relatively complicated, but actually it is

just the systematic application of two point upwind FD approximations for

the convective derivative in z, and three point centered approximations for

the di�usive derivatives in r (no special cases have to be considered as with

r = 0 and r = r0). Note that this coding concludes the loop in z (index j)

initiated at the beginning of the programming of the temporal derivatives,

so that two end statements are required.

(13) Finally, all nz x nr dependent variables are advanced in time through

the application of Euler's method

% All temporal derivatives are computed

%

88

% Take Euler step

for j=1:nz

for i=1:nr

ca(i,j)=ca(i,j)+cat(i,j)*h;

T(i,j)= T(i,j)+ Tt(i,j)*h;

end

end

t=t+h;

(14) The time stepping is concluded, followed by the looping for output (after

nout Euler steps) and �nally the loop for di�erent cases is concluded

% Next Euler step

end

%

% Next output

end

%

% Next case

end

In summary, although the preceding coding is relatively detailed, it follows

the usual MOL two-step process:

� Evaluation of the initial value derivatives (RHSs of the PDEs), which

includes the calculation of the spatial derivatives and application of the

BCs, to produce a set of approximating ODEs

� Integration of the ODEs to produce a new set of dependent variable

values that are then used to evaluate now initial value derivatives

The output from this program is:

89

ncase = 1 h = 1.000e-01

t ca(r,zl,t) T(r,zl,t)

0.0 0.000000 305.00

0.0 0.000000 305.00

0.0 0.000000 305.00

0.0 0.000000 305.00

0.0 0.000000 305.00

10.0 0.000000 333.05

10.0 0.000000 334.51

10.0 0.000000 338.58

10.0 0.000000 344.22

10.0 0.000000 350.00

. .

. .

50.0 0.000030 349.94

50.0 0.000030 349.94

50.0 0.000030 349.96

50.0 0.000030 349.98

50.0 0.000030 350.00

. .

. .

100.0 0.003540 352.84

100.0 0.003541 352.65

100.0 0.003544 352.08

100.0 0.003547 351.18

100.0 0.003549 350.00

. .

. .

150.0 0.004622 355.44

150.0 0.004624 355.06

150.0 0.004632 353.96

150.0 0.004643 352.23

150.0 0.004649 350.00

. .

. .

90

200.0 0.004624 355.45

200.0 0.004626 355.07

200.0 0.004634 353.96

200.0 0.004645 352.23

200.0 0.004651 350.00

. .

. .

250.0 0.004624 355.45

250.0 0.004626 355.07

250.0 0.004634 353.96

250.0 0.004645 352.23

250.0 0.004651 350.00

. .

. .

300.0 0.004624 355.45

300.0 0.004626 355.07

300.0 0.004634 353.96

300.0 0.004645 352.23

300.0 0.004651 350.00

This output would be a good candidate for plotting, or better, visualization.

For example, centerline pro�les could be plotted, ca(0,z,t), T(0,z,t).

Also, some experimentation with the temporal and spatial integration should

be done, for example:

� Use a higher (than Euler) order ODE integrator such as RKF45. Also,

the Euler coding could be replaced by a library integrator such as Mat-

lab ode23, ode45. This basically amounts to p re�nement in time

� The ODE integration step h could also be varied; this amounts to h

re�nement in time

� Use a higher (than two point upwind) spatial di�erentiator. FDs would

probably be ok for the same reason that they were satisfactory in the

heat exchanger, Case = 1, 2; i.e., the solution is probably su�ciently

smooth for FDs to give give accuracy, free of numerical di�usion and

oscillation

91

{ This amounts to p re�nement in space

{ The spatial di�erentiation can be programmed with library rou-

tines rather than explicitly

{ Centered approximations should be used for the di�usion spatial

derivatives in r (there is no preferred direction)

{ Noncentered approximations should be used for the convection

derivatives in z (some form of upwinding is required; centered

approximations should not be used)

� The spatial integration intervals in r and z could be varied (the number

of grid points in r and z); the amounts to h re�nement in space

The �les pertaining to this tubular reactor example are in:

http://www.lehigh.edu/~wes1/apci/reactor.ppt

http://www.lehigh.edu/~wes1/apci/reactor.m

Finally,

\The method of lines has become the most widely used solution technique

for large-scale time-dependent partial di�erential equations", G. Fairweather

and I. Gladwell, Preface to the special issue on the method of lines, Applied

Numerical Mathematics, v. 20, 1996, pp 1-2

In the preceding examples, we have used FD approximations that were either

preprogrammed, e.g., in dss002.m, vanl2.m, or were merely stated, then used,

e.g., in the reactor application. We now consider a systematic procedure for

generating FD approximations for virtually any situation, that is, FDs of any

order for derivatives of any order, including BCs.

The �les pertaining to this heat exchanger example are in:

http://www.lehigh.edu/~wes1/apci/htex1.ppt

http://www.lehigh.edu/~wes1/apci/htex1.m

92

http://www.lehigh.edu/~wes1/apci/dss002.m

http://www.lehigh.edu/~wes1/apci/dss012.m

http://www.lehigh.edu/~wes1/apci/dss020.m

http://www.lehigh.edu/~wes1/apci/vanl2.m

Finite Di�erences

If we applying the MOL to the one-dimensional Fourier's second law in cylin-

drical coordinates,

@u

@t
=

@
2
u

@r2
+
1

r

@u

@r
(1)

or in subscript notation

ut = urr + (1=r)ur

we need a FD approximation for the �rst and second derivatiuves, ur and

urr:

Considering the �rst derivative, we de�ne a spatial grid in r with N grid

points and index i = 1; 2; � � � ; N , the left grid point corresponds to i = 1.

We can use two Taylor series centered at grid point i = 1

u2 = u1 +
du1

dr
�r +

d
2
u1

dr2

�r2

2!
+
d
3
u1

dr3

�r3

3!
+ � � �

u0 = u1 +
du1

dr
(��r) +

d
2
u1

dr2

(��r)2

2!
+
d
3
u1

dr3

(��r)3

3!
+ � � �

Subtraction of the second series from the �rst gives

u2 � u0 = 2
du1

dr

�r

1!
+ 2

d
3
u1

dr3

�r3

3!
� � �

or, since we are interested in an approximation for the �rst derivative,

93

du1

dr

�=
u2 � u0

2�r
�
d
3
u1

dr3

�r2

3!

and we therefore have the well known centered, second order FD approxima-

tion for a �rst derivative

du1

dr

�=
u2 � u0

2�r
+O(�r2) (2)

Note, however, that eq. (2) uses u0 which is outside the grid, i.e., it is u at

a �ctitious point.

We, however, can use another approach that eliminates the use of �ctitious

points, starting with Taylor series expansions based on only the boundary

and interior points. Thus,

u2 = u1 +
du1

dr
�r +

d
2
u1

dr2

�r2

2!
+
d
3
u1

dr3

�r3

3!
+ � � �

u3 = u1 +
du1

dr
2�r +

d
2
u1

dr2

(2�r)2

2!
+
d
3
u1

dr3

(2�r)3

3!
+ � � �

The derivative of interest is
du1

dr
, and we wish to drop as many terms past

this derivative as possible to achieve maximum accuracy.

If we multiply the �rst Taylor series by 4, and subtract the second Taylor

series from it, we can drop out the second derivative terms (involving
d
2
u1

dr2
)

4

�
u2 = u1 +

du1

dr
�r +

d
2
u1

dr2

�r2

2!
+
d
3
u1

dr3

�r3

3!
+ � � �

�

u3 = u1 +
du1

dr
2�r +

d
2
u1

dr2

(2�r)2

2!
+
d
3
u1

dr3

(2�r)3

3!
+ � � �

94

or

4u2 � u3 = 3u1 + 2
du1

dr
�r + 0

d
2
u1

dr2

�r2

2!
+ (�4)

d
3
u1

dr3

�r3

3!
+ � � �

or, truncating after the third derivative terms, then solving for the derivative

of interest,
du1

dr
;

du1

dr
=
�3u1 + 4u2 � u3

2�r
+
4

2

d
3
u1

dr3

�r2

3!

Note that this second order approximation for the �rst derivative requires

only boundary (u1) and interior (u2; u3) values.

A similar analysis at the right boundary (grid point i = n) gives

duN

dr
=

3uN � 4uN�1 + uN�2

2�r
+O(�r2) (3)

At the interior points, we can use the centered approximation (this follows

from eq. (2))

dui

dr
=

ui+1 � ui�1

2�r
+O(�r2) (4)

Then for the entire domain, we can form a di�erentiation matrix (or compu-

tational stencil)

du

dr
=

1

2�r

2
4 �3 4 �1

�1 0 1

1 �4 3

3
5u+O(�r2)

where row 1 is used for grid point i = 1; row 2 for i = 2 to i = N � 1, and

row 3 for i = N . Note that the matrix is antisymmetric with respect to the

center element (antisymmetric around 0).

95

To make explicit the points at which each row of the di�erentiation is used,

we can write it as

du

dr
=

1

2�r

2
4 �3 4 �1 i = 1

�1 0 1 i = 2; � � � ; N � 1

1 �4 3 i = N

3
5u+O(�r2) (5)

The di�erentiation matrix of eq. (5) is programmed in function dss002.m.

Again, note that FD approximations are linear, i.e., the derivative at each

grid point is calculated as a weighted sum of the neighboring dependent

variable values, as illustrated by eqs. (3) and (4).

To obtain a FD approximation for the second derivative in eq. (1), we can

use the same two Taylor series as before (but now written at a grid point i

to give a general result)

ui+1 = ui +
dui

dr
�r +

d
2
ui

dr2

�r2

2!
+
d
3
ui

dr3

�r3

3!
+ � � �

ui�1 = ui +
dui

dr
(��r) +

d
2
ui

dr2

(��r)2

2!
+
d
3
ui

dr3

(��r)3

3!
+ � � �

Adding these two series (rather than subtracting them as before) gives

ui+1 + ui�1 = 2ui + 2
d
2
ui

dr2

�r2

2!
+ 2

d
4
ui

dr4

�r4

4!

Solving for the second derivative, we have

d
2
ui

dr2
�=

ui+1 � 2ui + ui�1

�r2
� 2

d
4
ui

dr4

�r2

4!

or

d
2
ui

dr2
�=

ui+1 � 2ui + ui�1

�r2
+O(h2) (6)

96

which is the well known centered, second order, FD approximation for the

second derivative.

Note again that eq. (6) references u0 when i = 1, so we would have to

somehow provide this �ctitious value, generally through a BC at i = 1: An

alternate approach is to use a noncentered di�erence for the second derivative

at i = 1 that requires only the boundary and interior points. The derivation

is a bit more involved than for �rst derivatives, but it has been done and

programmed in library spatial di�erentiators.

For example, the code is given below for a spatial di�erentiation routine

(dss042.m):

function [uxx]=dss042(xl,xu,n,u,ux,nl,nu)

%...

%... FUNCTION DSS042 COMPUTES A SECOND-ORDER APPROXIMATION OF A

%... SECOND-ORDER DERIVATIVE, WITH OR WITHOUT THE NORMAL DERIVATIVE

%... AT THE BOUNDARY.

%...

%... ARGUMENT LIST

%...

%... XL LEFT VALUE OF THE SPATIAL INDEPENDENT VARIABLE (INPUT)

%...

%... XU RIGHT VALUE OF THE SPATIAL INDEPENDENT VARIABLE (INPUT)

%...

%... N NUMBER OF SPATIAL GRID POINTS, INCLUDING THE END

%... POINTS (INPUT)

%...

%... U ONE-DIMENSIONAL ARRAY OF THE DEPENDENT VARIABLE TO BE

%... DIFFERENTIATED (INPUT)

%...

%... UX ONE-DIMENSIONAL ARRAY OF THE FIRST DERIVATIVE OF U.

%... THE END VALUES OF UX, UX(1) AND UX(N), ARE USED IN

%... NEUMANN BOUNDARY CONDITIONS AT X = XL AND X = XU,

%... DEPENDING ON THE ARGUMENTS NL AND NU (SEE THE DE-

%... SCRIPTION OF NL AND NU BELOW)

97

%...

%... UXX ONE-DIMENSIONAL ARRAY OF THE SECOND DERIVATIVE OF U

%... (OUTPUT)

%...

%... NL INTEGER INDEX FOR THE TYPE OF BOUNDARY CONDITION AT

%... X = XL (INPUT). THE ALLOWABLE VALUES ARE

%...

%... 1 - DIRICHLET BOUNDARY CONDITION AT X = XL

%... (UX(1) IS NOT USED)

%...

%... 2 - NEUMANN BOUNDARY CONDITION AT X = XL

%... (UX(1) IS USED)

%...

%... NU INTEGER INDEX FOR THE TYPE OF BOUNDARY CONDITION AT

%... X = XU (INPUT). THE ALLOWABLE VALUES ARE

%...

%... 1 - DIRICHLET BOUNDARY CONDITION AT X = XU

%... (UX(N) IS NOT USED)

%...

%... 2 - NEUMANN BOUNDARY CONDITION AT X = XU

%... (UX(N) IS USED)

%...

%... GRID SPACING

dx=(xu-xl)/(n-1);

%...

%... CALCULATE UXX AT THE LEFT BOUNDARY, WITHOUT UX

if nl==1

uxx(1)=((2.)*u(1)...

+(-5.)*u(2)...

+(4.)*u(3)...

+(-1.)*u(4))/(dx^2);

%...

%... CALCULATE UXX AT THE LEFT BOUNDARY, INCLUDING UX

elseif nl==2

uxx(1)=((-7.)*u(1)...

+(8.)*u(2)...

+(-1.)*u(3))/(2.*dx^2)...

+(-6.)*ux(1) /(2.*dx);

98

end

%...

%... CALCULATE UXX AT THE RIGHT BOUNDARY, WITHOUT UX

if nu==1

uxx(n)=((2.)*u(n)...

+(-5.)*u(n-1)...

+(4.)*u(n-2)...

+(-1.)*u(n-3))/(dx^2);

%...

%... CALCULATE UXX AT THE RIGHT BOUNDARY, INCLUDING UX

elseif nu==2

uxx(n)=((-7.)*u(n)...

+(8.)*u(n-1)...

+(-1.)*u(n-2))/(2.*dx^2)...

+(6.)*ux(n) /(2.*dx);

end

%...

%... CALCULATE UXX AT THE INTERIOR GRID POINTS

for i=2:n-1

uxx(i)=(u(i+1)-2.*u(i)+u(i-1))/dx^2;

end

Similar routines are available for fourth, sixth, eighth and tenth order approx-

imations of a second derivative, including Dirichlet and Neumann boundary

conditions at the boundaries.

We now all of the spatial derivative approximations required to convert eq.

(1) into a system of ODEs (using the approach of the MOL)

dui

dt
= (

ui+1 � 2ui + ui�1

�r2
) +

1

ri
(
ui+1 � ui�1

2�r
) (7)

where i = 2; 3; � � � ; N � 1. For i = 1 and i = N , we use noncentered

approximations so that �ctitious points are avoided. Also, we have to provide

two BCs in the programming of the ODEs, one at i = 1 and one at i =

N . The preprogramming of the FD approximations for �rst and second

99

derivatives in library routines (such as dss002.m and dss042.m) makes the

implementation of BCs straightforward.

We can use more grid points in the approximations, buy starting with more

Taylor series for neighboring grid points, to arrive at higher order FD ap-

proximations. For example, if we use �ve points (rather than three) in the

FD approximations, the di�erentiation matrix is (note: the spatial variable

is now z rather than r)

du

dz
=

2
66664
�50 96 �72 32 �6

�6 �20 36 �12 2

2 �16 0 16 �2

�2 12 �36 20 6

6 �32 72 �96 50

3
77775u +O(�z4)

We can now assign various combinations of grid points to the rows. For

example, if we use

Grid point(s) Weighting coe�cients

1 �50; 96;�72; 32;�6

2 �6;�20; 36;�12; 2

3; � � �N � 2 2;�16; 0; 16;�2

N � 1 �2; 12;�36; 20; 6

N 6;�32; 72;�96; 50

then we have used primarily centered approximations, which would be ap-

propriate for di�usion problems, such as for the �rst derivative in eq. (1).

If we use

Grid point(s) Weighting coe�cients

1 �50; 96;�72; 32;�6

2 �6;�20; 36;�12; 2

3 2;�16; 0; 16;�2

4; � � � ; N � 1 �2; 12;�36; 20; 6

N 6;�32; 72;�96; 50

100

these are the biased upwind approximations in dss020.m discussed in the

heat exchanger example. In other words, the di�erentiation matrix is the

basis for a spectrum of FD approximations (and their coding follows directly

from the di�erentiation matrix).

Finally, all of the preceding discussion has been for equally spaced grids. If

the grid is unequally spaced, for example, to concentrate the grid points in

regions of large spatial variation of the solution, analogous approximations

can be derived which have the same mathematical form, i.e., weighted sums

of the dependent variable at neighboring points. The derivation of these

nonuniform approximations is a bit more involved (the Taylor series is not

as easy to use for this case, and the starting point is therefore usually the

Lagrange interpolation polynomial).

Fortunately, all of this has been done by Bengt Fornberg in a very compact

algorithm that is programmed in a variety of languages, e.g., Fortran, Math-

ematica, Maple: Fornberg, B., Calculation of Weights in Finite Di�erence

Formulas, SIAM Review, v. 40, no. 3, pp 685-691, Sept., 1998. The small

Fortran subroutine, weights.for, that accompanies this algorithm is widely

used in PDE numerical analysis. It can produce the FD weighting coe�-

cients for

� Derivatives of any order m (
d
m

dzm
)

� Approximations of any order p (O(�zp))

� Approximations at any grid point, i = 1; :::; n (centered and noncen-

tered to avoid �ctitious points)

� Uniform and nonuniform grids (�z does not have to be constant), so

that the grid points can be concentrated where the solution changes

rapidly in z; further if the code does this automatically, we have adap-

tive mesh re�nement (r re�nement or amr).

To conclude, we select approximations based on the general characteristics of

the PDEs (hyperbolic, parabolic, elliptic). Here are some general guidelines

101

� Centered approximations are appropriate for elliptic and parabolic PDEs

since there is no preferred direction

� Parabolic PDEs will generally \di�use" away discontinuities so that,

for example, incompatibilites between initial and boundary conditions

will not cause numerical di�culties

� Elliptic problems, which have no initial value derivatives, can be ac-

commodated by converting them to parabolic PDEs (by adding pseudo

time derivatives, then integrating until these derivatives essentially go

to zero)

� Hyperbolic PDEs are the most di�cult to solve numerically because

they propagate discontinuities

� Centered approximations for hyperbolic problem generally don't work

(they usually produce unrealistic oscillations)

� Noncentered approximations must be used for hyperbolic PDEs that

take into account the preferred direction (the direction of
ow); in

general, hyperbolic PDEs require some form of upwinding

� Thus, we have to know the direction of
ow so we can then select the

direction for the upwinding

� Using higher order approximations does not guarantee better accuracy;

for example, higher order centered approximations applied to hyper-

bolic problems actually produces more oscillation

� The choice of an approximation(s), particularly for a high order, non-

linear PDE problem, is as much art as science; thus we should be aware

of and consider the use of a variety of approximations, e.g., FDs, FVs,

FEs, least squares,
ux limiters, ENO (essentially nonoscillatory), TVD

(total variation diminishing), etc. approximations

� These approximations originated in the CFD �eld, primarily to mini-

mize numerical distortion and error such as numerical di�usion and os-

cillation; typically, CFD applicatiuons require the solution of strongly

hyperbolic PDEs systems, e.g., the Euler and Navier Stokes equations

102

� Numerical methods for PDEs is a very active �eld of research, with

new methods and associated software continuously being announced

� Much of the impetus for new, high speed (supercomputers) comes from

applications requiring the solution of systems of nonlinear, multidimen-

sional, time dependent PDEs, e.g., CFD, aircraft design, geophysics,

atmospheric modeling, numerical general relativity.

We now consider brie
y some other forms of spatial discretization.

Weighted Residuals

The method of weighted residuals requires more analytical work than the FD

approach to PDEs, and the analytical work is rather speci�c for the problem

at hand (and thus, generally has to be repeated for each new problem). To

give an idea of this approach, if we consider Fourier's second law in Cartesian

coordinates

@u

@t
=

@
2
u

@x2
(1)

u(x0; t) = 0;
@u(xL; t)

@x
= 0 (2)(3)

u(x; 0) = 1 (4)

we assume a series solution of the form

u(x; t) �=

NX
i=1

ci(t)�i(x) (5)

Note that the RHS of eq. (5) is a product or separated, which makes substi-

tuion into the problem equations relatively easy.

For example, if we compute the derivatives in eq. (1),

103

@u

@t

�=

NX
i=1

c
0

i(t)�i(x)

@
2
u

@x2
�=

NX
i=1

ci(t)�
00

i (x)

and then substitute these derivatives in eq. (1), we have

NX
i=1

c
0

i(t)�i(x) =

NX
i=1

ci(t)�
00

i (x) (6)

Since eq. (5) is only an approximate solution, it generally will have an error

or a residual, R(x; t): Eq. (6) can be written in residual form as

NX
i=1

c
0

i(t)�i(x)�

NX
i=1

ci(t)�
00

i (x) = R(x; t) (7)

If we could make the residual zero everywhere, we would have the exact

solution. Generally, this is not possible, so we try to approximate this con-

dition by applying a weighting function, w(x), to the residual according to

the integral

Z xu

x
l

w(x)R(x; t)dx = 0 (8)

This is the basis of the method of weighted residuals. Several well known

methods then follow from eq. (7), depending on the form of the weighting

function.

� Setting the residual to zero at a series of values of x is the collocation

method. The expectation, then, is that the residual will be small at

points in between those points where it is set to zero. Fort example,

104

if we select points xl < x1 < x2 < x3 < xu as collocation points, then

from eq. (7), with N = 3

NX
i=1

c
0

i(t)�i(x1)�

NX
i=1

ci(t)�
00

i (x1) = 0

NX
i=1

c
0

i(t)�i(x2)�

NX
i=1

ci(t)�
00

i (x2) = 0

NX
i=1

c
0

i(t)�i(x3)�

NX
i=1

ci(t)�
00

i (x3) = 0

The �rst equation is

c
0

1(t)�1(x1) + c
0

2(t)�2(x1) + c
0

3(t)�3(x1)� c1(t)�
00

1(x1)� c2(t)�
00

2(x1)� c3(t)�
00

3(x1) = 0

This is a linearly implicit ODE with coupling coe�cients �1(x1); �2(x1); �3(x1).

This, we can use the Cash code discussed previously for the 3�3 prob-

lem.

The BCs are accommodated according to the choice of the basis func-

tions, �i(x). Typically, these basis functions are chosen to identically

satisfy the boundary conditions. If the collocation points are chosen

as the roots of an orthogonal polynomial, we then have orthogonal col-

location (OC). This choice of the collocation points gives some error

minimizing qualities to the solution.

The weighting function for collocation in eq. (8) can be considered a

delta function, i.e.,

Z xu

x
l

�(x� x1)R(x; t)dx = R(x1; t) = 0

105

so the residual is set to zero at x = x1 as above.

� If the weighting function is taken as a basis function,

Z xu

xl

�i(x)R(x; t)dx = 0 (10)

This is the Galerkin method. The essential idea is that the basis func-

tions are orthogonal to the residual. Again, this has certain error mini-

mizing qualities for the solution of the PDE through eq. (5) (it does not

make the residual zero for all x but rather, makes it small, on average

over the interval xl � x � xu). If the Galerkin criterion (10) is applied

to the N weighting functions, we again arrive at linearly implicit ODEs

(or DAEs depending on how the BCs are handled).

Finite Elements

Finite elements (FE) is a vast subject, and we can only mention here a few

basic ideas. If in the method of weighted residuals as summarized by eq.

(8), we choice the basis functions, �i(x), to have compact support, that is, to

have nonzero values only over a �nite interval in x, these \elements" then

serve as the basis of the assumed solution such as eq. (5). The elements can

have any mathematical form (and many have been proposed and used); a

common choice is the so-called \hat function" or \chapeau function", which

makes the evaluation of the integrals in the FE method relatively easy. Thus,

if we substitute the residual for the preceding PDE problem in eq. (10)

Z xu

x
l

�j(x)R(x; t)dx =

Z xu

x
l

�j(x)

(
NX
i=1

c
0

i(t)�i(x)�

NX
i=1

ci(t)�
00

i (x)

)
dx = 0

Note now that when the integration in x is performed (e.g., by interchanging

the orders of integration and summation, and using integration by parts), the

result is a function of t only, and we again arrive at linearly implicit ODEs.

For example, using hat functions as the FEs, we obtain the implicit ODE

106

(1=6)c0i+1 + (4=6)c0i + (1=6)c0i�1 = D

�
ci+1 � 2ci + ci�1

�x2

�
(11)

Eq. (11) is of the same form as the FD approximation of eq. (1) using second

order, central FDs. Note, however, that in using the FE method, we

� Had to do a substantial amount of analytical work, even for the modest

problem of eqs. (1) to (4).

� Used FEs which are only linear (rather than the higher order polyno-

mials that are the basis of the higher order FDs)

Thus, we might expect we would have to use a relatively large number of

FEs (and therefore grid points and ODEs) to achieve accuracy in the PDE

solution comparable to a higher order FD. These conclusions also apply to

orthgonal collocation (OC is relatively di�cult to apply, and its performance

is probably not any better than when using carefully selected FDs).

The principal utility of the FE method is the spatial discretization on ir-

regular geometries, for which the FD method becomes di�icult to apply.

Thus, body �tted coordinates are a very active area of research, and the

grid that results from this analysis (based on triangles, for example), is then

used within the FE framework. Computer codes that accommodate irregu-

lar geometries are therefore generally based on the FE method, and a key

consideration in designing and using these codes is the choice of the basic

�nite element shapes. A spectrum of �nite elements has been developed and

analyzed, particularly for 2- and 3-D PDE systems. This is the basis of the

Matlab PDE toolbox, for example (it is a 2-D FE code).

Finite Volumes

Another approach to spatial discretization (in addition to FDs and FEs) is

the �nite volume (FV) formulation. Brie
y, this method is based on the use

of conservation principles such as the conservation of mass and conservation

of energy, as applied to a �nite or incremental volume of the system to be

107

analyzed. To illustrate this approach, we again consider the analysis of a

system modeled by the one-dimensional heat conduction equation, and we

then subdivide the spatial coordinate into a grid, corresponding to a series of

contiguous volumes. An energy balance wtitten on one of the �nite volumes

is then

Vi�iCpi

dui

dt
= Ai�1qi�1 � Aiqi (12)

which is interpreted to conserve eneregy exactly by the proper choice of the

uxes, qi and qi�1:

For example, the
uxes could be computed as

qi = ki;i+1(
ui � ui+1

�xi=2 + �xi+1=2
)

where ui is interpreted as the mid-cell (or mid-volume) temperature. Thus,

we end up again with a system of ODEs, so that the FV method can be

considered as a variant of the MOL, with a di�erent spatial discretization

(than FDs or FEs). The challenge, in general, in using the FV approach is

to calculate the intercell
uxes in such a way that conservation is preserved.

This becomes more di�cult for multidimensions, irregular geometries and

coordinate systems other than Cartesian coordinates. Thus, a substantial

e�ort has recently been devoted to the FV method in cylindrical and spher-

ical coordinates so that conservation is maintained, e.g., in the solution of

Maxwell's equations for calculating EM �elds in communications systems

with arrays (antennas) with non-Cartesian shapes.

In summary, the use of the FV method is a very active �eld, with the at-

tractive feature of maintaining conservation of basic physical quantities, so

that the discretizied (approximated) PDEs in fact maintain the conservation

implied by the PDEs themselves.

Adaptive Grids

The equidistribution principle uses a monitor function based on the curvature

of the solution.

108

At the time level tk+1, the nodes x
k+1
i ; i = 1; : : : ; N are located such that

Z xk+1
i

x
k+1

i�1

m(u(x; tk+1))dx =

Z xk+1
i

x
k+1

i�1

�
�+

@2u(x; tk+1)@x2

1

�1=2

dx = constant

where u(x; tk+1) is the PDE solution which has been advanced to the time

tk+1 using the �xed grid x
k
i ; i = 1; : : : ; N

MOL Formulation:

� Finite di�erence approximations (Fornberg)

� Time integration with the implicit BDF solver LSODI (Hindmarsh) or

the implicit RK solver RADAU5 (Hairer, Wanner)

� Parameters

{ Scaling factor �

{ Limiting factor �

{ Updating frequency Nadapt

� Adaptive grids require parameter tuning

� There is no universal method ... yet!

� Our Fortran codes are generally available, e.g, subroutine AGE

� The contributions of Dr. Alain Vande Wouwer and Dr. Philippe

Saucez, Polytechnique Mons (Belgium) are gratefully acknowledged

References and Software

Sources of mathematical software include:

Name: Transactions on Mathematical Software (TOMS), Association for

Computing Machinery (ACM)

109

� Features: An extensive library of high quality, public domain mathe-

matical software

� Reference: http://www.acm.org/dl/search.html

Name: Netlib (Internet Library) - accessed 74,280,550 times by 22APR00

� Features: An extensive library of high quality, public domain PDE

mathematical software

� Reference:

http://www.netlib.org/liblist.html

Select pde

netlib@ornl.gov (whois, send index, send index from toms)

Name: NA-Digest (Numerical Analysis Digest; an electronic newsletter)

� Features: A free, weekly newsletter edited by Dr. Cleve Moler, the

author of Matlab; to subscribe and get information:

na.digest@na-net.ornl.gov

na.whois@na-net.ornl.gov

na.help@na-net.ornl.gov

� Reference: All past issues of NA-Digest are in Netlib (and they can be

searched by subject and author)

� Example:

From: DEAL <deal@hermes.iwr.uni-heidelberg.de>

Date: Tue, 18 Apr 2000 10:42:32 +0200 (MET DST)

Subject: DEAL, C++ Finite Element Library

Version 3.0 of the deal.II object-oriented �nite element library is avail-

able on the deal.II home-page at

http://gaia.iwr.uni-heidelberg.de

110

deal.II is a C++ program library targeted at adaptive �nite elements

and error estimation. It uses state-of-the-art programming techniques

of the C++ programming language to o�er you a modern interface to

the complex data structures and algorithms required for adaptivity and

enables you to use a variety of �nite elements in one, two, and three

space dimensions, as well as support for time-dependent problems.

The library is written for research purposes and o�ers many features:

- Support for one, two, and three space dimensions, using a uni�ed

interface that enables writing programs almost dimension independent.

- Handling of locally re�ned grids, including di�erent adaptive re�ne-

ment strategies based on local error indicators and error estimators.

- Support for a variety of �nite elements, including Lagrange elements

of order one through four, and discontinuous elements.

- Extensive documentation: all documentation is available online in a

logical tree structure to allow fast access to the information you need. If

printed it comprises about 200 pages of tutorials, several reports, and

far more than 1,000 pages of programming interface documentation

with explanations of all classes, functions, and variables.

- Modern software techniques that make access to the complex data

structures and algorithms as transparent as possible. The use of ob-

ject oriented programming allows for program structures similar to the

structures in mathematical analysis.

- Fast algorithms that enable you to solve problems with up to several

millions of degrees of freedom quickly. As opposed to programming

symbolic algebra packages the penalty for readability is low.

- Support for several output formats, including some common formats

for visualization of scienti�c data.

111

- Support for a variety of computer platforms, including multi- proces-

sor machines.

- Free source code under an Open Source license, and the invitation to

contribute to further development of the library.

Wolfgang Bangerth, Guido Kanschat, the deal.II team

From: Tom Goodale <goodale@aei-potsdam.mpg.de>

Date: Thu, 20 Apr 2000 16:13:55 +0200 (CEST)

Subject: Cactus, Parallel Code for PDEs

This is to announce the release of beta 7 of Cactus 4.0.

Cactus is a general, modular, parallel code for solving systems of par-

tial di�erential equations. The code has been developmented over many

years by a large international collaboration of numerical relativity and

computational science research groups and can be used to provide a

portable platform for solving any system of partial di�erential equa-

tions. The code compiles and runs on a variety of di�erent platforms,

from laptops running Linux or NT to clusters of workstations, to large

T3Es, with no modi�cations needing to be made to the application

codes.

As an example, one set of modules (thorns) can be used to solve prob-

lems in numerical relativity, for example black hole or neutron star

collisions. The design of the code and the thorns means that general

routines can be written, for example to locate the position of the event

horizon, which can then be made generally available and used for other

problems.

The code is available from

http://www.cactuscode.org

112

Notes for this release can be found at

http://www.cactuscode.org/Development/beta7.txt

For further information, please email

cactusmaint@cactuscode.org

The NAG library has a spectrum of PDE software, much of it developed by

Martin Berzins, University of Leeds

Chapter D03 - Partial Di�erential Equations

D03EAF - Elliptic PDE, Laplace's equation, 2-D arbitrary domain

D03EBF - Elliptic PDE, solution of �nite di�erence equations by SIP, �ve-

point 2-D molecule, iterate to convergence

D03ECF - Elliptic PDE, solution of �nite di�erence equations by SIP for

seven- point 3-D molecule, iterate to convergence

D03EDF - Elliptic PDE, solution of �nite di�erence equations by a multigrid

technique

D03EEF - Discretize a 2nd order elliptic PDE on a rectangle

D03FAF - Elliptic PDE, Helmholtz equation, 3-D Cartesian co-ordinates

D03MAF - Triangulation of a plane region

D03PCF - General system of parabolic PDEs, method of lines, �nite di�er-

ences, one space variable

D03PDF - General system of parabolic PDEs, method of lines, Chebyshev

C0 collocation, one space variable

D03PEF - General system of �rst order PDEs, method of lines, Keller box

discretisation, one space variable

D03PFF - General system of PDEs, convection-di�usion in conservative form,

method of lines, one space variable

D03PHF - General system of parabolic PDEs, coupled DAEs, method of

lines, �nite di�erences, one space variable

D03PLF - PDEs, general system, one space variable, method of lines, com-

pute interpolant in spatial direction

D03PJF - General system of parabolic PDEs, coupled DAEs, method of lines,

Chebyshev C0 collocation, one space variable

113

D03PKF - General system of �rst order PDEs, coupled DAEs, method of

lines, Keller box discretisation, one space variable

D03PPF - General system of parabolic PDEs, coupled DAEs, method of

lines, �nite di�erences, remeshing, one space variable

D03PRF - General system of �rst order PDEs, coupled DAEs, method of

lines, Keller box discretisation, remeshing, one space variable

D03PSF - General system of PDEs, convection-di�usion in conservative form,

method of lines, coupled DAEs, remeshing, comprehensive one space variable

D03PUF - General system of PDEs, appropriate Riemann solver for Euler

equations, method of lines, Roe's scheme, one space variable

D03PVF - General system of PDEs, appropriate Riemann solver for Euler

equations, method of lines, Osher's scheme, one space variable

D03PWF - Modi�ed HLL Riemann solver for Euler equations in conservative

form, for use with D03PFF, D03PLF and D03PSF

D03PXF - Exact Riemann Solver for Euler equations in conservative form,

for use with D03PFF, D03PLF and D03PSF

D03PYF - PDEs, spatial interpolation with D03PDF or D03PJF

D03PZF - PDEs, spatial interpolation with D03PCF or D03PHF

D03RAF - General system of second order PDEs, method of lines, �nite dif-

ferences, remeshing, two space variables, rectangular region

D03RBF - General system of second order PDEs, method of lines, �nite dif-

ferences, remeshing, two space variables, rectilinear region

D03RYF - Check initial grid data in D03RBF

D03RZF - Extract grid data from D03RBF

D03UAF - Elliptic PDE, solution of �nite di�erence equations by SIP, �ve-

point 2-D molecule, one iteration

D03UBF - Elliptic PDE, solution of �nite di�erence equations by SIP, seven-

point 3-D molecule, one iteration Chapter D04 - Numerical Di�erentiation

D04AAF - Numerical di�erentiation, derivatives up to order 14, function of

one real variable

114

