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Abstract. The phase-screen (split-step) method is widely used for the 

modeling of wave propagation in inhomogeneous media. Most known is 

the method of flat phase screens. An optimized approach based on 

cylindrical phase screen was introduced for the 2-D modeling of radio 

occultation sounding of the Earth’s atmosphere. In this paper, we propose a 
further generalization of this method for the 3-D problem of propagation of 

diverging beams. Our generalization is based on spherical phase screens. In 

the paraxial approximation, we derive the formula for the vacuum screen-

to-screen propagator. We also derive the expression for the phase thickness 

of a thin layer of an isotropic random media. We describe a numerical 

implementation of this method and give numerical examples of its 

application for the modeling of a diverging laser beam propagating on a 25 

km long atmospheric path. 

1 Introduction  

The method of phase screens has been widely used for the numerical simulation of the 

wave propagation of various nature in inhomogeneous media, including the modeling of the 

optical (laser) radiation propagation in a turbulent atmosphere [1–5] and the decimeter 

waves propagation during radio occultation sounding of the atmosphere [6–8]. This method 

is referred to as split-step. This name reflects the fact that the entire inhomogeneous 

medium in this method is represented as a sequence of thin layers, and the propagator 

describing the propagation of a wave through each layer is approximately written as the 

composition of an infinitely thin layer that forms phase distortions of the wave and a 

vacuum propagator describing diffraction. 

The phase screen method has a fundamental limitation: it does not account for 

backscattering. The method of phase screens can also be considered as a finite-dimensional 

approximation of the path integral [9]. In problems of modeling of laser radiation in turbulent 

media, especially in order to describe the effect of isotropic turbulence, 2-dimensional phase 
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screens are used. In modeling of radio occultation experiments, however, significant 

optimization of computational costs is achieved by employing the approximation of one-

dimensional phase screens, because in most cases atmospheric inhomogeneities with vertical 

scales from hundreds of meters to kilometers are taken into account, while their horizontal 

scales significantly exceed the horizontal size of the Fresnel zone. 

In the classical version of the method, flat phase screens are used. This leads to 

excessive computational costs when describing a diverging wave: the increasing angle 

between the screen and the wavefront at the edges of each screen results in oversampling. 

In the two-dimensional (2D) modeling of radio occultation experiments, it turned out to be 

quite simple to write down a solution for cylindrical 1-dimensional phase screens [7], 

which takes into account the shape of the phase front of the incident wave. 

In this paper, we generalize this approach and develop the method of spherical phase 

screens, using the paraxial approximation. In the Section 2, we derive the basic relations 

using the technique of angular spectra [10]. The main result here is the formula for the 

propagator in spherical coordinates in the small angle approximation. In Section 3, we show 

that the numerical implementation of this method is no more complicated than the case of 

flat phase screens, and we give examples of numerical modeling using the model of 

isotropic turbulence. In Section 4, we offer our conclusions. 

2 Conclusion of basic relations  

2.1 Vacuum propagator 

As an example, we will use the beam parameters specified for the DELICAT project 

(DEmonstration of LIdar based Clear Air Turbulence detection, Demonstration of clear sky 

turbulence detection using lidar) [11, 12]: wavelength  354.84 nm, divergence 

2  0.3mrad. The described method can also be used for other beam parameters, within 

the framework of the applicability conditions of the approximation used. 

We will consider the Cartesian coordinates  , ,x y z  and the spherical coordinates 

 , , ,r    interconnected as follows:  

 

cos cos ,

cos sin ,

sin .

x r

y r

z r

  
  
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  (1) 

Let us consider a wave field in space  , ,u x y z  with an imposed radiation condition 

that implies waves propagating in the direction of the axis x . We denote the boundary 

condition for the field in the plane 0x   as  0 ,u y z . Hereinafter, we use the Fourier 

transform in the following normalization: 
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where 2 /k     is the wave number. Then the wave field in vacuum is written as follows: 

      0, , , exp , , ; , ,
2

k
u r u ikS r d d                (3) 
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where  , , ; ,S r      is phase function, having the following form: 

    2 2, , ; , 1 cos cos cos sin sin .S r r              (4) 

The maximum absolute values  ,  ,  , and   are estimated by the value of the half 

beam divergence of   0.15×10−3. The propagation distance r  is estimated at 30 km. 

We can write the following approximate expression for the phase function: 

  
2 2 2 2

, , ; , 1 .
2 2

S r r
      

         
   

  (5) 

Our numerical solution for the field in an inhomogeneous medium will be based on the 

split-step method. In the framework of this method, the medium is split in spherical layers, 

represented by phase screens centered at the wave source. We will calculate the field on the 

next screen using the vacuum propagator and multiplying the resulting field by the factor 

that describes the influence of the random medium: 
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  (6) 

where  , , ,r r     is the phase thickness of the phase screen, and  , ; ,P r r    is the 

vacuum propagator. In the paraxial approximation, the following expression can be derived: 

      2 2, ; , exp 1 .
2

r r
P r r ik r

r r r r

  
              

  (7) 

This formula follows the standard split-step method of phase screens. Propagation of the 

field from screen to screen is performed in the following steps: 1) The spatial spectrum of 

the field in the initial phase screen is calculated. 2) The spectrum is multiplied by the 

vacuum propagator. 3) The inverse Fourier transform is taken producing the field on the 

next phase screen, without taking into account the medium. 4) The field is multiplied by the 

phase factor that takes into account the phase perturbation in the medium between the 

screens. 

The multiplier  exp ik r can be omitted because it provides a constant phase addition 

in each screen. In this case, the vacuum propagator can be written as follows: 

      2 2, ; , exp .
2

r ikr r
P r r

r r r r

  
      

    
  (8) 

We rewrite the formula (6) in the operator form:  

      ˆ, , , , , ,u r r P r r u r            (9) 

where  ˆ ,P r r  is the operator describing the screen-to-screen propagation of the field and 

possessing the natural group property: 
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      2 23 1 12 1 13
ˆ ˆ ˆ, , , .P r r P r r P r r      (10) 

It follows from the accuracy of the group property that this propagator is an exact 

solution of the approximate form of the parabolic equation, in which /y r  and /z r  are 

used as transverse coordinates, and the regular decrease in the amplitude of the spherical 

wave as 1/ r  is taken into account. An alternative approach to accounting for wave 

divergence is possible using lens coordinates [13–15]. Nevertheless, in the referenced 

papers, the lens coordinates are used to describe beams in a homogeneous nonlinear 

dispersive medium. The possibility of applying this transformation to an arbitrary 

heterogeneous medium requires additional research. 

The method of spherical phase screens can also be used to study focused and self-

focused beams. Propagator (7) at describes not a diverging, but a converging beam. 

2.2 Phase raid in a thin spherical layer 

Each layer of a random medium thick r  between phase screens r  and r r  is described 

by the function  , , ,r r    , which is the realization of a 2D random field as a function 

of ,   for given r  and r . Consider a realization of the 3-D field of the refractive index 

 , ,N x y z . Then  , , ,r r     is expressed as follows: 

    , , , cos cos , cos sin , sin .

r r

r

r r N r r r dr



            (11) 

To calculate this function, we will use the paraxial approximation. Since 2r = 0.675 

mm, the values of the second order can be neglected. Thus, we arrive at the following 

approximate expression: 

    , , , , , .

r r

r

r r N r r r dr



         (12) 

We will neglect the regular part of the refractive index, considering it a constant, 

producing in each screen a constant phase shift. The field  , ,N x y z  will be considered a 

3-D statistically homogeneous and isotropic random field with spectral density 

   N N  κ , where  , ,x y z   κ  is the three-dimensional vector of spatial 

frequencies, and   κ . For the correlation function, the standard relation holds: 

        * 3
1 2 1 2exp .NN N i d    r r κ r r κ κ   (13) 

Expressing explicitly the correlation of the phase path    , , , , , ,r r r r            

and inserting yr    and zr   , we arrive at the expression for the spectral density 

of the phase path: 

  
2

2

2
sinc , , .

2

x
N x x

rr
d

r rr

 


           
   

μ   (14) 

This formula is written in the approximation of a thin layer of a medium with r r , 

neglecting the beam broadening. For a layer of a medium with a thickness of the order of 
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the external scale, the formula can be approximately rewritten like the corresponding 

formula for a flat layer [1,2]: 

  
2

2
0, , .N

r

r rr

 


 
    

 
μ   (15) 

3 Numerical modeling 

3.1 Numerical modeling method 

For turbulent fluctuations of the refractive index, we assume the Kolmogorov–Karman 

spectrum: 

    11/6
2 2 2 2 2

0( ) 0.033 exp / ,N n mC


          (16) 

where 2
nC  is the structural constant, 0 02 / L   , 0L  is the external scale, 05.92 /m   , 

and 0  is the internal turbulence scale. 

The numerical algorithm is similar to the case of flat phase screens. Since the vacuum 

propagator (8) is written as a multiplier in the Fourier-transformed space, it is numerically 

implemented using the fast Fourier transform. 

To generate realizations of random uncorrelated phase screens, we use the discrete form 

of relation the correlation of the phase path [16]: 
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22
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2 2

2 2
exp ,

4 4
j l jljl

j l

jj ll
i i
N NN N N N


 
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     
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   (17) 

where  ,j l j l        and jl  are discrete Fourier transform of j l  : 

 
2 2

exp .jl j l

j l

jj ll
i i
N N

 
   

   
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Thus, jl  are uncorrelated random variables with random phases and rms values: 

 
 

2
2 4

.jl jl

N N  
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
  (19) 

To take into account the fact that the same discretization step according to angular 

coordinates for different radiuses corresponds to different spatial scales, we use adaptive 

discretization. On each phase screen, the required sampling step is estimated in angular 

coordinates, and if the current sampling step exceeds this estimate, the resolution is 

doubled. To this end, the Kotelnikov interpolation is used: in the space of Fourier 

transforms. The frequency grid is enlarged, keeping the frequency resolution, and 

increasing the maximum frequency twice. In the added grid nodes, the Fourier image of the 

field is set to 0. After the inverse Fourier transform, we get a field interpolated to the spatial 

grid with a half-step discretization. 
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Fig. 1. The distribution of the amplitude in the beam cross section is divergent 32 0.3 10    rad for  
1 2/32 52.5 10 mnC
   at a distance of 2 km from the source. 

 

Fig. 2. The distribution of the amplitude in the beam cross section is divergent 32 0.3 10    rad for  
1 2/32 52.5 10 mnC
   at a distance of 16 km from the source. 
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3.2 Results 

Fig. 1–2 show examples of a numerical calculation of the amplitude distributions of a 

Gaussian laser beam with a wavelength of 354.84  nm with divergence 32 0.3 10    

rad at different points of the path long is 24 km for 315 2/2.5 10 m  . The figures show the 

formation of speckles. The step between the phase screens is 100 m. 

4 Conclusions 

In this work, we developed a new modification of the phase-screen method, which provides 
a reduction in computational costs when modeling the propagation of diverging wave 
beams. The method utilizes spherical phase screens that better conform with the shape of 
unperturbed wave fronts. In the paraxial approximation, we obtained the expression for the 
vacuum propagator describing the propagation from screen to screen. We also obtained a 
formula relating the spectral density of isotropic fluctuations of the phase thickness of a 
spherical phase screen in an isotropic random medium. The formula is similar to the flat 
layer formula. The numerical implementation of the method of spherical phase screens is 
very close to the numerical implementation of the method of flat screens. Numerical 
examples of the calculation of fluctuations of a laser beam propagating along a path 25 km 
long in the weak and strong fluctuation modes are presented. 

 
This work was carried out with financial support of the Russian Foundation for Basic Research 

(grant No. 18-35-00368). 
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