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ABSTRACT A synthesis method for orthogonal beam-forming networks (BFNs) with arbitrary N inputs

and N outputs is presented. Compared to those formerly developed, the new method allows the design of

a BFN in order to not only generate arbitrary N orthogonal beams and N inputs but also to make the 180◦

hybrids less. This skill is obtained by means of a new approach to decompose the matrices Q1 and Q2

which are mentioned by Sodin. The solution of such a design problem can be carried out by applying QR

decomposition based on Givens transformations. Such a design method also takes into account the computer

programming realization. Numerical results are obtained through the commercial simulator to prove the

correctness of the method. The ease, accuracy, and efficiency of this synthesis method for the design of BFN

make it very useful in modern applications of multi-beam antenna arrays.

INDEX TERMS Orthogonal beam-forming network, butler matrix, arbitrary N beams, QR decomposition,

Givens transformations.

I. INTRODUCTION

Multiple-beam antennas (MBAs) are antenna arrays that

connect beam-forming networks (BFNs) [1]. With the

advantages of transmitting or receiving multiple beams

simultaneously in prefixed directions, MBAs can mitigate

multipath fading, increase channel capacity, and enhance

system performance [2], [3]. Therefore, MBAs have been

broadly applied in satellite communications, adaptive nulling,

electronic countermeasures, multi-target radars and so

on [4]–[7]. Once the antenna arrays are determined, the

BFNs are the key point in designing MBAs. Thus, the need

for designing a proper BFN has arisen.

The profitable BFN used for multiple beams with a linear

array is the Butler matrix [8]. It can form orthogonal beams

with the advantages of lossless property, high beam crossover

and easy design. Compared to the Blass matrix [9] and the

Nolen matrix [10], the Butler matrix requires less microwave

couplers. However, the biggest problem of the Butler matrix

is that it can only allow N=2m inputs and N=2m outputs,

where m is a positive integer.

Recently, many refinements of Butler matrices have been

reported to extend the number of beams/antenna elements to

arbitrary number [11]–[14]. By adding a particular hybrid

junction to the conventional Butler network, [11] increases

the number of antenna ports from 2n to any number. In [12],

a reduced side-lobe four-beam N-element antenna array fed

by 4×N butler matrices is presented. However, the beams

in [11] and [12] are not orthogonal. Reference [13] describes

a new kind of Butler matrices with the number of N=2l3m4n,

where l, m and n are integers using 2×2, 3×3 and 4×4

junctions. Though the number of matrices is extended, it is

limited.

A method of synthesizing an orthogonal BFN with

arbitrary number of beams is presented in [14]. The BFN is

represented by a cascade connection of elementary matri-

ces containing one 180◦ hybrid or several 90◦ phase

shifters. Unfortunately, as mentioned in [14], the decom-

posing method using elementary matrices may not be the

optimum one. Hence, finding a new method to reduce the

number of hybrids required for building BFN becomes a

matter of significance.

Based on the mentioned problems above, this paper has

proposed a new synthesis method to design orthogonal BFNs

with arbitrary N inputs and N outputs. The main purpose is

to decompose the matrices Q1 and Q2 which are mentioned

in [14]. This new technique is based on QR decomposition
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which is computed with a series of Givens matrices. It has

two primary advantages over [14]: one is that it can find the

less number of 180◦ hybrids for building matricesQ1 andQ2;

the other is that it can be realized by computer programs.

By theory analysis and formula derivation, two key results

are concluded: one is that a Givensmatrix can be presented by

a 180◦ hybrid; the other is that any square, real, symmetric,

and orthogonal matrix can be expressed as a product of

several transposed Givens matrices. Hence, matrices Q1 and

Q2 can be represented by a cascade connection of Givens

matrices.

By changing the order of QR decomposition, the reduced

number of non-unity Givens matrices is found out. With the

help of computer program, the procedure is illustrated using

examples of synthesizing orthogonal BFN for 9 inputs and

9 outputs, which is one less component than [14]. With the

increasing size of BFN, the less number of components is

required comparing to [14].

The remainder of this paper is organized as follows. Two

key conclusions are described in Section II. In Section III,

the synthesis method of the BFN is introduced. An example

of synthesizing the BFN for N=9 is proposed in Section IV.

Section V validates the method described in Section IV using

commercial simulation software Keysight Advanced Design

System (ADS). Finally, a summary and conclusions are given

in Section VI.

II. TWO KEY THEORIES

A. ANALYSIS OF THE GIVENS MATRICES

At first, let us consider the characteristic of the transmission

matrix of a 180◦ hybrid. It is worth noting that the 180◦

hybrid is a four port network with two inputs and two outputs.

As mentioned in [14], the transmission matrix of 180◦ hybrid

is expressed as:

Th =

[

a b
−b a

]

(1)

or

Th =

[

a b
b −a

]

(2)

where a and b are real and they satisfy a2 + b2 = 1.

Normally, according to [11], a Givens matrix can be

expressed as:

G (i, j, θ) =









































1 · · · 0 · · · 0 · · · 0
. . .

... 1
...

0 c · · · s 0
1

...
...

. . .
...

...
1

0 −s · · · c 0
... 1

...
. . .

0 · · · 0 · · · 0 · · · 1









































(i)

(j)

[i] [j]

(3)

where c=cosθ and s=sinθ appear at the intersections ith and

jth rows and columns. That is, for fixed i > j, the non-zero

elements of Givens matrix are given by:

gkk = 1 for k 6= i, j

gkk = c for k = i, j

gji = −gij = −s (4)

Getting rid of the unity elements and zero elements in Eq. (3),

the rest elements of gii, gjj, gij, and gji satisfy the conditions of

the 180◦ hybrid transmissionmatrix in Eq. (1). Thus, a Givens

matrix can be presented by a 180◦ hybrid with output powers

ratio of p=(c/s)2.

On the other hand, if we rotate the position of gii, gjj, gij,

and gji in Eq. (3) clockwise, the Givens matrix is modified as:

G (i, j, θ)′ =















































1 · · · 0 · · · 0 · · · 0

. . .

... 1
...

0 c · · · s 0

1
...

...
. . .

...
...

1

0 s · · · −c 0
... 1

...

. . .

0 · · · 0 · · · 0 · · · 1















































(i)

(j)

[i] [j]

(5)

where c=cosθ and s=sinθ appear at the intersections ith and

jth rows and columns. Likewise, for fixed i>j, the non-zero

elements of the modified Givens matrix are given by:

gkk = 1 for k 6= i, j

gii = −gjj = c

gji = gij = s (6)

Similarly, the non-unity elements and non-zero elements in

Eq. (5) have the same characteristics of the 180◦ hybrid

transmission matrix in Eq. (2). Thus, the modified Givens

matrix can be presented by a 180◦ hybrid with output powers

ratio of p=(c/s)2.

In particular case, when s=0 and c=1, Eq. (3) and (5) are

degenerated into the unity matrix. Considering the four port

network with two inputs and two outputs, it means inputs are

directly connected to the corresponding outputs without any

hybrids.

B. QR DECOMPOSITION OF A SQUARE, REAL,

SYMMETRIC, AND ORTHOGONAL MATRIC

USING GIVENS MATRICES

Based on QR decomposition solved by Givens matrices [15],

any real square matrix A of size N×N can be decomposed as:

A = Q0R (7)
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where R is a nonsingular upper triangular matrix andQ0 is an

orthogonal matrix which satisfies

QT0Q0 = Q0Q
T
0 = I (8)

Then, Q0 can be represented as a product of several Givens

matrices

Q0 = GT = (GMGM−1 · · ·Gi · · ·G2G1)
T (9)

with

M = (N − 1)N/2 (10)

where Gi is a Givens matrix of size N×N for i=1−M.

Owing to the symmetry and orthogonality of matrix Q0,

Matrix R can be expressed as

R = QT0 A (11)

Let matrix A be a square, real, symmetric, and orthogonal

matrix, it has the characteristic as

ATA = AAT = I (12)

Applying Eq. (8), (11) and (12), one gets

RTR = (QT0 A)
TQT0 A

= ATQ0Q
T
0 A

= I (13)

Therefore, we conclude that R is an orthogonal matrix.

Because R is an upper triangular matrix, it is demonstrated

that R is a unit matrix.

R = I (14)

Submitting Eq. (9) and (14) into (7), we have

A = Q0R = Q0

= (GMGM−1 · · ·G2G1)
T

= GT1G
T
2 · · ·GTM−1G

T
M (15)

Thus, by means of Eq. (15), it has been demonstrated that

when matrix A is a square, real, symmetric, and orthogonal

matrix, it can be expressed as a product of several transposed

Givens matrices. The number of Givens matrices satisfies:

M = (N − 1)N/2 (16)

where N is the size of matrix A.

Here, we give an example of how compute QR decompo-

sition of a square matrix. As shown in Fig.1, a matrix A with

size of 4×4 is decomposed using Givens matrices. At first,

we form a Givens matrix that will zero element a21. We need

to rotate the vector (a11, a21) to point along the X axis. This

vector has an angle

θ = arctan

(

−a21

a11

)

(17)

FIGURE 1. The general order of QR factorization at the 4 × 4 case.

Then, we create the orthogonal Givens matrix, G1:

G1 =









cos(θ ) − sin(θ ) 0 0

sin(θ ) cos(θ ) 0 0

0 0 1 0

0 0 0 1









(18)

The result of G1A has a zero in the a21 element.

G1A =









× × × ×

0 × × ×

× × × ×

× × × ×









(19)

We can similarly form Givens matrices G2 to G6, which

will zero the sub-diagonal elements of matrix A, forming a

triangular matrix. It is worth noting that in each new zero

element aij affects only the row with the element to be

zeroed (i) and a row above (j).

III. A NEW SYNTHESIS METHOD OF THE BFN

Reference [14] has decomposed the transmission matrix of an

orthogonal BFN into

T = YQY (20)

where matrix Y is a square, real, symmetric, and orthogonal

matrix. Q is a block-diagonal matrix and can be written as

Q =

(

Q1

iQ2

)

(21)

where matrices Q1 and Q2 are square, real, symmetric, and

orthogonal matrices.

Based on the analysis above, matricesQ1 of sizeM×M and

Q2 of size N×N can be decomposed into a product of several

transposed Givens matrices:

Q1 = GT1G
T
2 · · ·GTp−1G

T
p (22)

Q2 = GT1G
T
2 · · ·GTq−1G

T
q (23)
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where p and q are positive integers and they satisfy Eq. (16)

with the order of matrices Q1 and Q2, respectively.

p = (M − 1)M/2 (24)

q = (N − 1)N/2 (25)

Recalling theories discussed in Section II, a Givens matrix

can be presented by the corresponding 180◦ hybrid. Hence,

matrices Q1 and Q2 can be realized by cascading a series

of 180◦ hybrids which are determined by QR decomposition.

The general order of QR decomposition is shown in Fig.1.

Without any improvement, matrices Q1 and Q2 require p

and q 180◦ hybrids, respectively.

To reduce the required 180◦ hybrids in matrices Q1

andQ2, the calculatedGivensmatricesmust consist of several

identity matrices or permutation matrices. Fortunately, that

can be achieved by changing the order of zero elimination

in QR decomposition. In order to decompose a matrix of

size N×N, there are q elements to be zeroed in the lower

triangular area. Regardless of the realization of QR decom-

position and repeatability, there is a factorial of q orders to

zero elimination using Givens matrices.

q! = q× (q− 1) × · · · × 2 × 1 (26)

Under some specific orders, QR decomposition can

be computed with several identity matrices or permuta-

tion matrices. As the size of matrix Q becomes larger,

the more identity matrices are obtained by specific orders of

QR decomposition.

When the size of matrix is larger than 6×6, the better order

required to fully exploit the algorithm. In our example, the

maximum size of matrix is 5×5. Thus, the results can be

easily solved by enumerating method using MATLAB. The

detailed steps to find out the optimized solution are shown as

follows:

1) Write out matrices T and Y of the BFN for any N based

on [14].

2) Calculate the corresponding matrices Q1 and Q2 from

Eq. (19) and (20).

3) Decompose matrices Q1 and Q2 using QR decompo-

sition based on Givens matrices. The decomposition

orders are at random and all cases are calculated.

4) Find out the better decompositions that the correspond-

ing Givens matrices consist of more identity matri-

ces or permutation matrices.

IV. SYNTHESIS OF THE BFN FOR 9 INPUTS AND

9 OUTPUTS

The proposed method is used for designing orthogonal BFNs

with arbitrary N inputs and N outputs. In view of paper

length limitations and simplicity, we do not show the detailed

process for all N . As a result, an example of synthesizing

an orthogonal BFN with N=9 is proposed, which can be

compared with [14].

Matrices T and Y of the BFN are shown at the top of the

next page.

This Y matrix represents four 180◦ hybrids with equal

amplitude and one direct connection. MatricesQ1 andQ2 are

calculated from Eq. (21)

Q1 =













0.333 0.471 0.471 0.471 0.471

0.471 0.511 0.116 −0.333 −0.627

0.471 0.116 −0.627 −0.333 0.5111

0.471 −0.333 −0.333 0.667 −0.333

0.471 −0.627 0.511 −0.333 0.116













Q2 =









−0.657 0.577 −0.428 0.228

0.577 0 −0.577 0.577

−0.428 −0.577 0.228 0.657

0.228 0.557 0.657 0.428









A. SYNTHESIS OF MATRIX Q1

Matrix Q1 of size 5×5 requires 10 Givens matrices to com-

pute QR decomposition. By changing the sequence of zero

elimination in the lower triangular elements, there are up to

3 unity matrices or permutation matrices among the calcu-

lated 10 Givens matrices. Thus, we can reduce the number

of the 180◦ hybrid from 10 to 7. It is worth noting that the

optimized solutions are not unique. Here we just give one

solution.

The optimum solution for Q1 is provided as

G1
54G

1
21G

1
51G

1
43G

1
31G

1
42G

1
53G

1
52G

1
32G

1
41Q1 = I (27)

where

G1
41 =













0.577 0 0 0.817 0

0 1 0 0 0

0 0 1 0 0

0.817 0 0 −0.577 0

0 0 0 0 1













G1
32 =













1 0 0 0 0

0 0.975 0.221 0 0

0 0.221 −0.975 0 0

0 0 0 1 0

0 0 0 0 1













G1
52 =













1 0 0 0 0

0 −0.641 0 0 0.767

0 0 1 0 0

0 0 0 1 0

0 0.767 0 0 0.641













G1
53 =













1 0 0 0 0

0 1 0 0 0

0 0 0.900 0 0.435

0 0 0 1 0

0 0 0.435 0 −0.900













G1
42 =













1 0 0 0 0

0 −0.817 0 0.577 0

0 0 1 0 0

0 0.577 0 0.817 0

0 0 0 0 1












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Y =



































1 0 0 0 0 0 0 0 0

0 s 0 0 0 0 0 0 s

0 0 s 0 0 0 0 s 0

0 0 0 s 0 0 s 0 0

0 0 0 0 s s 0 0 0

0 0 0 0 s −s 0 0 0

0 0 0 s 0 0 −s 0 0

0 0 s 0 0 0 0 −s 0

0 s 0 0 0 0 0 0 −s



































T =
1

3









































1 1 1 1 1 1 1 1 1

1 ej
2
9π ej

4
9π ej

6
9π ej

8
9π ej−

8
9π ej−

6
9π ej−

4
9π ej−

2
9π

1 ej
4
9π ej

8
9π ej−

6
9π ej−

2
9π ej

2
9π ej

6
9π ej−

8
9π ej−

4
9π

1 ej
6
9π ej−

6
9π 1 ej

6
9π ej−

6
9π 1 ej

6
9π ej−

6
9π

1 ej
8
9π ej−

2
9π ej

6
9π ej−

4
9π ej

4
9π ej−

6
9π ej

2
9π ej−

8
9π

1 ej−
8
9π ej

2
9π ej−

6
9π ej

4
9π ej−

4
9π ej

6
9π ej−

2
9π ej

8
9π

1 ej−
6
9π ej

6
9π 1 ej−

6
9π ej

6
9π 1 ej−

6
9π ej

6
9π

1 ej−
4
9π ej−

8
9π ej

6
9π ej

2
9π ej−

2
9π ej−

6
9π ej

8
9π ej

4
9π

1 ej−
2
9π ej−

4
9π ej−

6
9π ej−

8
9π ej

8
9π ej

6
9π ej

4
9π ej

2
9π









































G1
31 =













1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1













G1
43 =













1 0 0 0 0

0 1 0 0 0

0 0 −0.707 0.707 0

0 0 0.707 0.707 0

0 0 0 0 1













G1
51 =













−0.577 0 0 0 0.817

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0.817 0 0 0 0.577













G1
21 =













−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1













G1
54 =















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0















Observing the calculated Givens matrices, it is seen that

they are equal to the transposed matrices of themselves.

Therefore, from the inverse transform of Eq. (27) we can

obtain the required representation for Q1:

Q1 = (G1
54G

1
21G

1
51G

1
43G

1
31G

1
42G

1
53G

1
52G

1
32G

1
41)

T

= G1T
41G

1T
32G

1T
52G

1T
53G

1T
42G

1T
31G

1T
43G

1T
51G

1T
21G

1T
54

= G1
41G

1
32G

1
52G

1
53G

1
42G

1
31G

1
43G

1
51G

1
21G

1
54

= q11q12q13q14q15q16q17p11 (28)

where

q11 = G1
41

q12 = G1
32

q13 = G1
52

q14 = G1
53

q15 = G1
42

q16 = G1
31G

1
43 =













1 0 0 0 0

0 1 0 0 0

0 0 0.707 −0.707 0

0 0 0.707 0.707 0

0 0 0 0 1













q17 = G1
51G

1
21 =













0.577 0 0 0 0.817

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−0.817 0 0 0 0.577













p11 = G1
54

Therefore, matrix q1i(i=1−7) presents the corresponding

180◦ hybrid and matrix p11 is a permutation matrix. On the

whole, for matrix Q1, only seven 180◦ hybrids are required,
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TABLE 1. Simulated amplitude and phase difference characteristics of the BFN for N=9 fed by imports 1∼9. Magnitude unit: dB, phase unit: degree.

with three (q11, q15, q17) of 4.77dB, one (q16) of 3dB, one

(q13) of 3.86dB, one (q14) of 7.22dB, and one (q12) of 13.1dB.

As matrix p11 is a permutation matrix, input ports of 4 and

5 are directly connected to the output ports of 5 and 4,

respectively.

B. SYNTHESIS OF MATRIX Q2

By the similar actions for matrix Q2, QR decomposition

needs one unity or permutation matrix and 5 Givens matri-

ces. Therefore, we can reduce the 180◦ hybrid from 6 to 5.

Likewise, the optimized solutions are not unique. Here we

just give one solution.

The optimum solution for synthesis of matrix Q2 is pro-

vided as

G2
41G

2
31G

2
21G

2
43G

2
42G

2
32Q2 = I (29)

where

G2
42 =









1 0 0 0

0 −0.707 0 0.707

0 0 1 0

0 0.707 0 0.707









G2
43 =









1 0 0 0

0 1 0 0

0 0 −0.678 0.735

0 0 0.735 0.678









G2
21 =









−0.817 0.577 0 0

0.577 0.817 0 0

0 0 1 0

0 0 0 1









G2
31 =









−0.851 0 0.525 0

0 1 0 0

0.525 0 0.851 0

0 0 0 1









G2
41 =









−0.945 0 0 0.328

0 1 0 0

0 0 1 0

0.328 0 0 0.945









G2
32 =









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1









FIGURE 2. Beam-forming network for N=9.

From the inverse transform of this relationship we can

obtain the required representation for Q2:

Q2 = (G2
41G

2
31G

2
21G

2
43G

2
42G

2
32)

T

= G2T
32G

2T
42G

2T
43G

2T
21G

2T
31G

2T
41

= G2
32G

2
42G

2
43G

2
21G

2
31G

2
41 (30)

For matrix Q2, five 180◦ hybrids are required. As matrix

G2
32 is a permutation matrix, input ports of 2 and 3 are directly

connected to the output ports of 3 and 2, respectively.
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TABLE 2. Number of required hybrids for Q1, Q2, and Q for N = 9.

Thus, for the orthogonal BFN with 9 inputs and 9 outputs,

twenty 180◦ hybrids and four 90◦ phase shifters are required

by the proposed synthesis.

V. VERIFICATION AND COMPARISON

In order to validate the method, the Keysight Advanced

Design System (ADS) simulator is used to simulate the pro-

posed BFN obtained in Section IV. The full scheme of the

device for N=9 is shown in Fig. 2. All the components are

ideal.

Simulated results demonstrate the correctness of the pro-

posed optimal solution. The simulated results in Table 1

show that the signal injected into one of the nine input ports

is divided and transferred to the nine outputs with equal

amplitude. The signals outputting from the nine output ports

have constant phase difference, i.e., their phases are 0, ±40◦,

±80◦, ±120◦, and ±160◦, respectively.

The number of the required hybrids for Q1, Q2, and Q

of our work and [14] for N=9 is summarized in Table 2.

Seven hybrids and five hybrids are required using optimal

method for matrices Q1 and Q2, respectively. In [14], eight

hybrids and five hybrids are required for matricesQ1 andQ2,

respectively. It is noted that our proposed method can find

the better solution that uses one less hybrid than that of [14]

for N=9.

VI. CONCLUSION

An improved method is presented to synthesize orthogonal

BFNs for any beam number using Givens transformation.

It reduces the components compared with method proposed

in [14]. The procedure is illustrated using examples of syn-

thesizing orthogonal BFN with 9 inputs and 9 outputs. As the

BFN ports increase, the more hybrids are reduced. It is worth

noting that as the size of matrix becomes larger, computer

algorithm is needed. On the other hand, considering the power

ratio of the hybrids and crossovers, it is important to find

out the solution that is easier to be fabricated. Based on the

synthesis method, optimal algorithm is going to be studied in

the future.
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