
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Electrical and Computer Engineering Faculty
Patents Electrical and Computer Engineering

8-22-2000

Method of Testing and Diagnosing Field Programmable Gate Method of Testing and Diagnosing Field Programmable Gate

Arrays Arrays

Miron Abramovici

Eric Seng-Kar Lee
University of Kentucky

Charles Eugene Stroud
University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/ece_patents

 Part of the Electrical and Computer Engineering Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation

Abramovici, Miron; Lee, Eric Seng-Kar; and Stroud, Charles Eugene, "Method of Testing and Diagnosing

Field Programmable Gate Arrays" (2000). Electrical and Computer Engineering Faculty Patents. 9.

https://uknowledge.uky.edu/ece_patents/9

This Patent is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge.
It has been accepted for inclusion in Electrical and Computer Engineering Faculty Patents by an authorized
administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_patents
https://uknowledge.uky.edu/ece_patents
https://uknowledge.uky.edu/ece
https://uknowledge.uky.edu/ece_patents?utm_source=uknowledge.uky.edu%2Fece_patents%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=uknowledge.uky.edu%2Fece_patents%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/ece_patents/9?utm_source=uknowledge.uky.edu%2Fece_patents%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu

US006108806A

United States Patent [19] [11] Patent Number: 6,108,806

Abramovici et al. [45] Date of Patent: *Aug. 22, 2000

[54] METHOD OF TESTING AND DIAGNOSING 5,090,015 2/1992 Dabbish et al. 371/22.5

FIELD PROGRAMMABLE GATE ARRAYS 5,107,208 4/1992 Lee 324/158 R

371/52

[75] Inventors: Miron Abramovici, Berkeley Heights,
N.J.; Eric Seng-Kar Lee, Allentown,
Pa.; Charles Eugene Stroud,
Lexington, Ky.

[73] Assignees: Lucent Technologies Inc., Murray Hill,
N.J.; University of Kentucky Research
Foundation, Lexington, Ky.

[*] Notice: This patent is subject to a terminal dis

claimer.

[21] Appl. No.: 09/059,552

[22] Filed: Apr. 13, 1998

Related US. Application Data

[63] Continuation-in-part of application No. 08/729,117, Oct. 11,
1996, Pat. No. 5,991,907, which is a continuation-in-part of
application No. 08/595,729, Feb. 2, 1996, abandoned, which
is a continuation-in-part of application No. 08/974,799, Nov.
20, 1997, Pat. No. 6,003,150, which is a continuation of
application No. 08/595,729, Feb. 2, 1996, abandoned.

[51] Int. Cl.7 G01R 31/28

[52] US. Cl. 714/725; 395/500.17

[58] Field Of Search 714/724, 725,

714/737, 733, 736; 326/10, 38, 40, 28;
395/50002, 500.05, 500.17, 500.18, 500.34,

500.36

[56] References Cited

U.S. PATENT DOCUMENTS

Re. 34,445 11/1993 Hayes et al. 371/21.1

4,414,669 11/1983 Heckelman et al. 371/49

4,757,503 7/1988 Hayes et al. 371/21

4,817,093 3/1989 Jacobs et al. .. 371/25

5,051,996 9/1991 Bergeson et al. 371/22.4
5,081,297 1/1992 Lebel et al. 395/325

5,179,561 1/1993 IZawa et al.

5,260,946 11/1993 Nunally 714/724
5,278,841 1/1994 Myers 371/20.6

5,347,519 9/1994 Cooke et al. 371/22.1

5,361,264 11/1994 Lewis 714/733

5,425,036 6/1995 Lie et al. 371/23

5,430,734 7/1995 Gilson 714/725

5,475,624 12/1995 West 395/500.36

5,488,612 1/1996 Heybruck 714/725
5,508,636 4/1996 Mange et al. .. 714/725

5,623,501 4/1997 Cooke etal.1. 371/222

OTHER PUBLICATIONS

Stroud et al.; Using ILA Testing for Bist in FPGAs; Intern.

Test Conference; Oct. 20, 1996.

Stroud et al.; Bist—Based Diagnostics of FPGA Logic

Blocks; International Test Conference; Nov. 3, 1997.

Primary Examiner—Emmanuel L. Moise

Attorney, Agent, or Firm—King and Schickli, PLLC

[57] ABSTRACT

A method of testing ?eld programmable gate arrays

(FPGAs) includes establishing a ?rst group of program
mable logic blocks as test pattern generators or output

response analyzers and a second group of programmable

logic blocks as blocks under test. This is followed by

generating test patterns and comparing outputs of two blocks
under test with one output response analyZer. Next is the

combining of results of a plurality of output response

analyzers utiliZing an iterative comparator in order to pro
duce a pass/fail indication. The method also includes the

step of recon?guring each block under test so that each block

under test is tested in all possible modes of operation.

Further, there follows the step of reversing programming of
the groups of programmable logic blocks so that each

programmable logic block is con?gured at least once as a

block under test.

15 Claims, 6 Drawing Sheets

REVERSING PROGRAMMING OF THE FIRST AND SECOND GROUPS
SO THAT THE FIRST GROUP IS ESTABLISHED AS A OF PLBS

PLURALITY OF BLOCKS UNDER TEST AND THE SECOND GROUP IS
ESTABLISHED AS AT LEAST ONE AND MORE PREFERABLY TWO

TEST PATTERN GENERATORS AND AT LEAST TWO OUTPUT
RESPONSE ANALYZERS

I
INITIATING THE BUILT-IN SELF~TEST BY GENERATING TEST
PATTERNS WITH THE TEST PATTERN GENERATORS INCLUDING

COMMUNICATING TEST PATTERNS GENERATED BY A FIRST OF THE
TEST PATTERN GENERATORS TO A FIRST GROUP OF BLOCKS
UNDER TEST AND COMMUNICATING TEST PATTERNS GENERATED

BY A SECOND OF THE TEST PATTERN GENERATORS TO A SECOND
GROUP OF BLOCKS UNDER TEST

I
REPEATEDLY RECONFIGURING EACH BLOCK UNDER TEST TO TEST

EACH COMPLETELY IN ALL MODES OF OPERATION

I
COMMUNICATING OUTPUTS FROM TWO BLOCKS UNDER TEST TO

ONE OF THE OUTPUT RESPONSE ANALYZERS

ANALYZING THE OUTPUTS FROM THE BLOCKS UNDER TEST TO
PRODUCE A PASS/FAIL INDICATION BY COMPARING THE OUTPUTS
OF THE BLOCKS UNDER TEST AND COMBINING RESULTS FROM A
PLURALITY OF THE OUTPUT RESPONSE ANALYZERS UTILIZING AN

ITERATIVE COMPARATOR

U.S. Patent Aug. 22, 2000 Sheet 1 of6 6,108,806

FIG. 1

121 / [16
UUTPUT

FPS ’ LOGIC '

14]

FIG. 2

20 20

2B / j
— TPB ‘~.

L22 T T T T T 1 I /22 E1\ TPGs f~20
BUT BUT 22/“ BUT BUT R§\ BUTS “B22

PASS/ \ r~24

-- ORA —- ORA —-- .- ORA UBA E5\USE ASNEEUEU T T 22 T T Fix BUYS "~33

BUT BUT / 22f BUT BUT 417/ /_,22

Q i Q Q 22 T BB/

U.S. Patent Aug. 22,2000 Sheet 2 0f6 6,108,806

FIG. 3

FIG. 4A FIG. 48

20
R1 TPGs 1 R1 BUTs ~/~22
R2 BUTs ~/*22 R2 ORAs ~/~24
R3 ORAs R3 BUTs \/~22
R4 BUTs H4 ORAs ~/*24
R5 ORAs H5 BUTS ~/~22
Rs BUTs HB ORAs ~/24
R7 ORAs \/~24 R7 BUTs \/~22
RB / BUTs RB TPGs ~ 20

6,108,806

2% 3% 2% 2% 2%

FIG. 5B

2% 2%

22 24 22 24 22 24 22 20

22222222

2%

Sheet 3 0f 6

3% 2% 3%

Aug. 22, 2000

2% 2%

FIG. 5A

2% 3%

20 22 24 22 24 22 24 22

22222222

mun:

U.S. Patent

FIG. 6B

/
TPG

CS1 CS2 [:83 CS4 CS5 CS5 CS7 CS8 CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8
FIG. 5A

FIG. SE

5th GU22

U.S. Patent Aug. 22,2000 Sheet 4 0f6 6,108,806

FIG. 7A
DIAGNOSTIC SESSION NE

BISI BISI
SESSION NS SESSION SN

DIAGNOSTIC SESSION EN

FIG. 7B
DIAGNOSTIC SESSION NE

BISI BISI
SESSION NS SESSION SN

DIAGNOSTIC SESSION EN

U.S. Patent Aug. 22,2000 Sheet 5 0f6 6,108,806

FIG. 8

CONFIGURING THE PLBs OF AN FPGA FOR COMPLETING A BUILT-IN
SELF-TEST BY CONFIGURING/ESTABLISHING A FIRST GROUP OF
PLBs TO INCLUDE AT LEAST ONE AND MORE PREFERABLY TWO

TEST PATTERN GENERATORS AND AT LEAST TWO OUTPUT
RESPONSE ANALYZERS AND A SECOND GROUP OF PLBS TO

INCLUDE A PLURALITY OF BLOCKS UNDER TEST

T
INITIATING THE BUILT-IN SELF-TEST BY GENERATING TEST
PATTERNS WITH THE TEST PATTERN GENERATORS INCLUDING

COMMUNICATING TEST PATTERNS GENERATED BY A FIRST OF THE
TEST PATTERN GENERATORS TO A FIRST GROUP OF BLOCKS
UNDER TEST AND COMMUNICATING TEST PATTERNS GENERATED

BY A SECOND OF THE TEST PATTERN GENERATORS TO A SECOND
GROUP OF BLOCKS UNDER TEST

T
REPEATEDLY RECONFIGURING EACH BLOCK UNDER TEST TO TEST

EACH COMPLETELY IN ALL MODES OF OPERATION

T
COMMUNICATING OUTPUTS FROM TWO BLOCKS UNDER TEST TO

ONE OF THE OUTPUT RESPONSE ANALYZERS

T
ANALYZING THE OUTPUTS FROM THE BLOCKS UNDER TEST TO

PRODUCE A PASS/FAIL INDICATION BY COMPARING THE OUTPUTS
OF THE BLOCKS UNDER TEST AND COMBINING RESULTS FROM A
PLURALITY OF THE OUTPUT RESPONSE ANALYZERS UTILIZING AN

ITERATIVE COMPARATOR

T
CONTINUED IN FIG. 8A

U.S. Patent Aug. 22,2000 Sheet 6 0f6 6,108,806

FIG . BA

REVERSING PROGRAMMING OF THE FIRST AND SECOND GROUPS
OF PLBs SO THAT THE FIRST GROUP IS ESTABLISHED AS A

PLURALITY OF BLOCKS UNDER TEST AND THE SECOND GROUP IS
ESTABLISHED AS AT LEAST ONE AND MORE PREFERABLY TWO

TEST PATTERN GENERATORS AND AT LEAST TWO OUTPUT
RESPONSE ANALYZERS

T
INITIATING THE BUILT-IN SELF-TEST BY GENERATING TEST
PATTERNS WITH THE TEST PATTERN GENERATORS INCLUDING

COMMUNICATING TEST PATTERNS GENERATED BY A FIRST OF THE
TEST PATTERN GENERATORS TO A FIRST GROUP OF BLOCKS
UNDER TEST AND COMMUNICATING TEST PATTERNS GENERATED

BY A SECOND OF THE TEST PATTERN GENERATORS TO A SECOND
GROUP OF BLOCKS UNDER TEST

T
REPEATEDLY RECONFIGURING EACH BLOCK UNDER TEST TO TEST

EACH COMPLETELY IN ALL MODES OF OPERATION

T
COMMUNICATING OUTPUTS FROM TWO BLOCKS UNDER TEST TO

ONE OF THE OUTPUT RESPONSE ANALYZERS

T
ANALYZING THE OUTPUTS FROM THE BLOCKS UNDER TEST TO

PRODUCE A PASS/FAIL INDICATION BY COMPARING THE OUTPUTS
OF THE BLOCKS UNDER TEST AND COMBINING RESULTS FROM A

PLURALITY OF THE OUTPUT RESPONSE ANALYZERS UTILIZING AN
ITERATIVE COMPARATOR

6,108,806
1

METHOD OF TESTING AND DIAGNOSING

FIELD PROGRAMMABLE GATE ARRAYS

This application is a continuation-in-part of (a) US.
application Ser. No. 08/729,117, ?led Oct. 11, 1996, US.
Pat. No. 5,991,907, a continuation-in-part of US. applica

tion Ser. No. 08/595,729, ?led Feb. 2, 1996, abandoned, and
(b) US. application Ser. No. 08/974,799, ?led Nov. 20,
1997, US. Pat. No. 6,003,150, a continuation of US.

application Ser. No. 08/595,729, ?led Feb. 2, 1996, aban
doned.

TECHNICAL FIELD

The present invention relates generally to the ?eld of

testing of integrated circuit devices and, more particularly, to
a method of diagnostic testing applicable to ?eld program

mable gate arrays.

BACKGROUND OF THE INVENTION

A ?eld programmable gate array (FPGA) is a type of
integrated circuit consisting of an array of programmable

logic blocks (PLBs) interconnected by programmable rout
ing resources and programmable I/O cells. Programming of
these logic blocks, routing resources and I/O cells is selec
tively completed to make the necessary interconnections that

establish a con?guration thereof to provide desired system

operation/function for a particular circuit application.

As is Well knoWn, it is desirable to complete diagnostic
testing of all types of integrated circuits including FPGAs.
ToWard this end, the present inventors have recently devel
oped tWo methods of built-in self-testing for FPGAs. These

methods are set out in detail in US. Pat. No. 5,991,907 and

US. Pat. No. 6,003,150 referenced above. The full disclo

sures in these patent applications are incorporated herein by
reference.

In each of these methods, the reprogramability of an

FPGA is exploited so that the FPGA is con?gured exclu

sively With built-in self-test logic during the testing. In this
Way, testability is achieved Without overhead. The built-in

self-test logic simply “disappears” When the circuit is recon
?gured for its normal operation. The only cost for these
testing methods is the additional memory for storing the data
required for recon?guring the FPGA but this may be made

a part of the test machine environment e. g. automatic testing

equipment (ATE), central processing unit (CPU) or mainte
nance processor not involving FPGA resources.

While both of these earlier methods provide reliable

diagnostic testing, they could be improved upon. The ?rst
test method, disclosed in US. Pat. No. 6,003,150, utiliZes
signi?cant amounts of global routing. The second test

method, disclosed in US. Pat. No. 5,991,907 utiliZes an

iterative logic array (ILA) architecture Where most signals
can be routed locally. HoWever, the test time is approxi

mately 33% longer than the ?rst method.

SUMMARY OF THE INVENTION

The built-in self-testing of FPGAs is improved, in accor

dance With one aspect of the invention, by providing a neW,
hybrid method that utiliZes only a very limited amount of

global routing to provide complete diagnostic testing of an
FPGA in substantially the same time frame as the earlier

method described in US. Pat. No. 6,003,150. In accordance

With another aspect of the invention a plurality of defective

programmable logic blocks may be accurately located at the
intersection of failing roWs and columns of the FPGA.

10

15

20

25

30

35

40

45

55

60

65

2
Failed, individual programmable logic blocks may be
readily identi?ed by means of a 90° re-orientation diagnostic

approach.
In accordance With the principles of the present invention

a method of testing an FPGA includes the step of con?guring

a ?rst group of programmable logic blocks to include at least

one test pattern generator and at least tWo output response

analyZers. Next is the designating of a second group of

programmable logic blocks as a plurality of blocks under

test. This is folloWed by the steps of generating test patterns

With the test pattern generators, comparing outputs of tWo of
the blocks under test With one of the output response

analyZers and combining results of a plurality of the output
response analyZers utiliZing an iterative comparator in order
to produce a pass/fail indication.

In accordance With further aspects of the present

invention, the method also includes repeatedly recon?guring
each of the blocks under test in order to test each of the

blocks under test completely in all possible modes of
operation. Additionally, the method includes the step of
exchanging functional roles of the ?rst and second groups of

programmable logic blocks so that the ?rst group is desig
nated as a plurality of blocks under test and the second group

is con?gured as at least one test pattern generator and at least

tWo output response analyZers. Still further, the method
includes repeatedly recon?guring each of the neW blocks
under test in order to test each completely in all modes of

operation.
Stated another Way, the present method includes the

con?guring of the programmable logic blocks for complet
ing a built-in self-test by establishing a ?rst group of

programmable logic blocks as at least tWo separate test

pattern generators and at least tWo output response analyZers
and establishing a second group of the programmable logic
blocks as a plurality of blocks under test. This is then

folloWed by the generating of test patterns With the tWo

separate test pattern generators. Next is the communicating
of the test patterns generated by the ?rst of the test pattern

generators to a ?rst group of blocks under test and then

communicating of the test patterns generated by the second
of the test pattern generators to a second group of blocks

under test. Next is the communicating of the outputs from

the ?rst and second blocks under test to one of the output

response analyZers and the analyZing of the outputs from the
blocks under test in order to produce a pass/fail indication.

The method may also be further de?ne to include the

repeated recon?guring of each block under test in order to

test each of the blocks under test completely and in all

possible modes of operation. Further, the method may
include the exchanging of the functional roles of the ?rst and

second groups of the programmable logic blocks so that the

?rst group of programmable logic blocks are established as

a plurality of blocks under test and the second group of

programmable logic blocks are established as at least tWo

separate test pattern generators and at least tWo output

response analyZers. Once recongifured, the neW blocks
under test are recon?gured in order to test each completely

in all possible modes of operation. Further, it is preferred
that the analyZing is performed by iterative comparing of the
outputs from the ?rst and second groups of blocks under test.

In accordance With yet another aspect of the present

invention, the method of testing an FPGA may be de?ned as

selectively con?guring the programmable logic blocks as
test pattern generators, output response analyZers and blocks
under test for completion of a built-in self test. This is

folloWed by the communicating of test patterns generated by

6,108,806
3

the test pattern generators to the blocks under test by global
routing and the communicating of the outputs of the blocks
under test to the output response analyzers by local routing.
This is followed by the analyzing of the outputs by iterative
comparison in order to produce a pass/fail indication.

Still further, the method of the present invention provides
for the testing an N><N FPGA including a plurality of
programmable logic blocks in N roWs and N columns. The
method includes the con?guring of a ?rst group of roWs of

the programmable logic blocks as at least one test pattern

generator and at least tWo output response analyZers. Next is
the establishing of a second group of roWs of programmable

logic blocks as a plurality of blocks under test. This is

folloWed by the generating of test patterns With the test
pattern generators. Next is comparing outputs of the blocks
under test With the output response analyZers using failing
test results to identify a faulty roW or a plurality of faulty

roWs. This is folloWed by the exchanging of the functional
roles of the roWs of programmable logic blocks and the
con?guring of a third group of columns of the program

mable logic blocks as at least one test pattern generator and

at least tWo output response analyZers. Next is the estab
lishing of a fourth group of columns of the programmable
logic blocks as a plurality of blocks under test. This is

folloWed by the generating of test patterns With the test
pattern generators and the comparing of outputs of the
blocks under test With the output response analyZers. Then
comes the exchanging of the functional roles of the columns

of programmable logic blocks and the using of the failing
test results to identify a faulty column or a plurality of faulty

columns. This is folloWed by the combining of the identi?ed

faulty roWs With the identi?ed faulty columns to identify
individual faulty programmable logic blocks. Preferably,
each of the blocks under test is repeatedly recon?gured in
order to test each completely and in all possible modes of

operation.
In accordance With yet another aspect of the present

invention an FPGA is con?gured to include a test pattern

generator, at least tWo output response analyZers, a plurality
of blocks under test and an iterative comparator for com

paring outputs of tWo of the blocks under test With each

output response analyZer and combining results of those
output response analyZers in order to produce a pass/fail
indication. The FPGA further includes a memory for storing

test patterns and con?gurations as necessary to provide

exhaustive testing of each block under test. Advantageously
this is accomplished Without any system overhead as the

FPGA does not include any dedicated circuitry for built-in

self-testing applications.

BRIEF DESCRIPTION OF THE DRAWING

The accompanying draWing incorporated in and forming
a part of the speci?cation, illustrates several aspects of the

present invention and together With the description serves to

explain the principles of the invention. In the draWing:

FIG. 1 is a schematical block diagram shoWing the

structure of a typical programmable logic block (PLB) of a

?eld programmable gate array (FPGA);
FIG. 2 is a schematical block diagram shoWing a ?oor

plan of an 8x8 FPGA and its structure as temporarily

programmed for purposes of diagnostic testing in accor

dance With the method of the present invention;

FIG. 3 is a schematical illustration of an iterative com

parator With error locking as utiliZed in the present invention

to combine the results of several output response analyZers;

FIGS. 4a and 4b are schematical block diagrams shoWing

the ?oor plans for tWo test sessions utiliZed to completely

test every programmable logic block in an 8x8 FPGA;

10

15

20

25

30

35

40

45

60

65

4
FIGS. 5a and 5b are schematical block diagrams shoWing

the ?oor plans reorientated 90° to provide tWo additional
“diagnostic” test sessions and enabling one to speci?cally
identify any individual faulty programmable logic block;

FIGS. 6a—6d are schematical block diagrams illustrating
the application of the present built-in self-test method to an

ORCA FPGA;
FIGS. 7a—7b graphically illustrate the results of built-in

self-test based diagnostic sessions for tWo faulty ORCA

2C15A devices; and

FIGS. 8 and 8a When considered in combination represent

a schematical block diagram of the present method.

Reference Will noW be made in detail to the present

preferred embodiment of the invention, an example of Which
is illustrated in the accompanying draWing.

DETAILED DESCRIPTION OF THE

INVENTION

The method of the present invention for diagnostic testing
of FPGAs Will noW be described in detail. The method

comprises a sequence of test phases With each phase con

sisting of a series of simple steps (see FIGS. 8 and 8a). The
?rst of these steps is the con?guring of the programmable

logic blocks (PLBs) of an FPGA for completing a built-in

self-test (BIST). This is accomplished by con?guring/
establishing/designating a ?rst group of PLBs to include at

least one test pattern generator or output response analyZer

and a second group of PLBs to include a plurality of blocks

under test (BUT). Preferably, tWo separate test pattern
generators are established.

Next is the initiating of the BIST by generating test
patterns With the test pattern generators. Speci?cally, the test

pattern generated by the ?rst of the tWo separate test pattern
generators is communicated to a ?rst BUT While the test

pattern generator by the second of the tWo test pattern

generators is communicated to a second BUT. The outputs

of the tWo BUTs are then communicated to one of the output

response analyZers and the outputs of the tWo BUTs are then

analyZed in order to produce a pass/fail indication.

Speci?cally, the outputs are compared and the results of the

plurality of the output response analyZers are combined

utiliZing an iterative comparator in order to produce a

pass/fail indication.
It should be appreciated that the FPGA is con?gured, the

BIST is initiated and the results are all read by operation of

a test controller Which may take the form of automatic test

equipment (ATE), a central processing unit (CPU) or a
maintenance processor. Typically, an ATE of the type knoWn

in the art is utiliZed for Wafer/package testing. Typically, a

CPU or maintenance processor of a type also Well knoWn in

the art is utiliZed for board/system testing. More speci?cally,
the test controller interacts With the FPGA to be tested to

con?gure the FPGA logic. This is done by retrieving a BIST
con?guration from the con?guration storage of the test
controller and loading it into the FPGA.

Once the PLBs are fully con?gured in the tWo groups, the

test controller initiates the BIST. The test strategy relies

upon pseudoexhaustive testing. Accordingly, every subcir
cuit of the FPGA is tested With exhaustive patterns. This

results in maximal fault coverage Without the explicit fault
model assumptions and fault simulations that must neces

sarily be developed With prior art testing approaches. Of
course, many FPGAs contain RAM modules for Which

exhaustive testing is impractical. For these modules, the test
controller utiliZes standardiZed state of the art RAM test

sequences Which are knoWn to be exhaustive for the fault

models speci?c to RAMs.

6,108,806
5

Reference is noW made to FIG. 1 showing a PLB,

generally designated by reference numeral 10. The PLB 10
comprises a memory block 12, a ?ip-?op block 14 and a
combinational output logic block 16. Such a structure is, for
example, featured in the Lucent ORCAprogrammable func
tion unit, in the Xilinx XC4000 con?gurable logic block and
the in ALTERA FLEX 8000 logic element. The memory
block 12 may be con?gured as RAMs or combinational

look-up tables (LUTs). The ?ip ?ops in the ?ip ?op block 14
may also be con?gured as latches although other program
ming options dealing With synchronous and asynchronous
Set and Reset, Clock Enable, etc. could be provided.
Usually, the output block or cell 16 contains multiplexers
(MUX) to connect different signal lines to the output of the
PLB 10. Usually this cell has no feed back loops and the ?ip
?ops can be directly accessed by-passing the LUT (as shoWn
by the dashed line in draWing FIG. 1). Advantageously, the
inputs and outputs of every subcircuit in this type of simple
structure are easy to control and observe. This simpli?es the

pseudoexhaustive testing of the cell.
Advantageously, the present testing method is particularly

adapted to perform output response analysis by means of
comparison With the expected response. Such an approach is
difficult to utiliZe in most prior art BIST applications

because of the expense involved in storing the reference
response or in generating it from a copy of the circuit under

test. In accordance With the present method, hoWever, the
circuits under test are identical PLBs 10 and all that is

needed is to create the output response analyZers to compare
their outputs.

Unlike signature-based compression circuits used in most
other BIST applications, comparator-based output response
analyZers do not suffer from the aliasing problem that occurs
When some faulty circuits produce the good circuit signa
ture. Essentially, as long as the BUTs being compared by the
same output response analyZer do not fail in the same Way

at the same time, no aliasing is encountered With the

comparison-based approach of the present invention. Prob
lems caused by faults in test pattern generators are avoided
in the present invention by having different test pattern
generators feed the BUTs being compared by the same
output response analyZer. Of course, all test pattern genera
tors must be synchroniZed to generate the same test pattern
at the same time.

An important goal of the testing strategy is to minimiZe
the number of test sessions and thereby minimiZe the testing
time and effectively reduce testing costs. An FPGA con?g
ured for a test session in accordance With the method of the

present invention is illustrated in FIG. 2. For purposes of this

illustration, an 8x8 FPGA is shoWn. It should be appreciated,

hoWever, that the principles of the present invention are

equally applicable to any N><N FPGA.

The ?oor plan for the ?rst test session involves establish

ing the PLBs 10 in the ?rst roll R1 as test pattern generators

20. The test pattern generators 20 Work as binary counters in

order to supply exhaustive test patterns to the m-input blocks

under test in most of the test con?gurations. Since each PLB

10 has more inputs than outputs, several PLBs are required

to construct a single m-Bit counter. Of course, When the

memory block 12 is con?gured as RAM, the test pattern
generators 20 Work as p-bit state machines Wherein p>m in

order to generate standard RAM test sequences. Importantly,

tWo individual test pattern generators 20 are provided from

the PLBs 10 forming the ?rst roW R1. The second, fourth,
sixth and eighth roWs R2, R4, R6 and R8 of PLBs 10 are
established as blocks under test 22 (BUTs). In accordance

With the present method, each block under test 22 (BUT) is
repeatedly recon?gured in order to test it in all modes of

operation.

10

15

20

25

30

35

40

45

50

55

60

65

6
The third and seventh roWs of PLBs in each FPGA being

tested are initially con?gured or established as output

response analyZers 24. As shoWn, each output response
analyZer 24 compares tWo blocks under test 22 that receive

test patterns from different test pattern generators 20 (note
lead lines 26 and 28 from the test pattern generators). This

approach eliminates any aliasing problem that might other
Wise occur When some faulty circuits produce good circuit

signatures. This approach also alloWs one to identify faults

in the PLBs 10 forming the test pattern generators 20.

In order to combine results of several output response

analyZers 24 an iterative comparator 30 is utiliZed. In

particular, an iterative comparator 30 based upon one pro

posed by Sridhar and Hayes in “Design of Easily Testable
BIT-Sliced Systems”,IEEE Trans. on Computers, Vol. C-30,

No. 11, pp. 842—54, November, 1981. Such an iterative
comparator 30 is shoWn in the dashed lines in FIG. 3. In this

application, each output response analyZer 24 compares
corresponding outputs from 2 BUTs 22 to produce a local

mismatch signal (LMN) Which is ORed With the previous
mismatch signal (PMN) from the previous output response
analyZer to generate the output response analyZer mismatch
(MM). The ?ip-?op 32 is used to record the ?rst mismatch
encountered during the BIST sequence. The feedback from

the ?ip ?op output to the ?rst output response analyZer 24
disables further comparisons after the ?rst error is recorded.

Except for this feedback signal, all the other output response
analyZers signals propagate like in an iterative logic array,
using only local routing resources.

While the test patterns from the test pattern generators 20

feed all BUTs 22 in parallel, the global routing that is
utiliZed is easily scalable because the usage of global routing
resources required for distributing the test patterns does not

change With the siZe of the FPGA. Also, since each output

response analyZer 24 compares the outputs of its tWo neigh
bor BUTs 22 all signals from the BUTs 22 to the output

response analyZer can use local routing resources. Thus, this

regular structure alloWs the architecture of the present
invention to be constructed and interconnected algorithmeti

cally as a function of the siZe (N) of the FPGA.

In accordance With the present method as set forth and

shoWn in FIG. 2, the ?fth roW R5 of the PLBs 10 is extra and

may be used as needed or desired for fan out drivers,

additional test pattern generators 20, additional output
response analyZers 24 or left unused.

FIGS. 4a—4b illustrate the ?oor plans for the ?rst tWo test

sessions Which alloW one to completely test every PLB 10

in an 8x8 FPGA. In the ?rst test session shoWn in FIG. 4a,

the direction of the ?oW of test patterns is top to bottom and

the extra PLBs in roW R5 are utiliZed as extra output

response analyZers. The ?oor plan for the second test session
shoWn in FIG. 4b is obtained by ?ipping the ?oor plan for
the test session shoWn in FIG. 4a around the horiZontal axis

shoWn as a horiZontal line betWeen roWs R4, R5 in the

middle of the array. An important feature of the this archi

tecture is that any FPGA may be completely tested in only
tWo test sessions. This is a signi?cant improvement over the

iterative logic array based approach disclosed in US. Pat.

No. 6,003,150, entitled “Method for Testing Field Program
mable Gate Arrays” Which required three test sessions. Thus,
substantial test time savings result.

It should be appreciated that a faulty PLB 10 in a test

pattern generator 20 or an output response analyZer 24 may

not produce an error if the fault does not effect the operation

of the test pattern generator or the output response analyZer.

In this situation, a fault in that PLB 10 is only detected in the

6,108,806
7

session When the PLB is con?gured as a BUT 22. In the

architecture of the present invention, all BUTs 22 (except
those in the ?rst and last roW of BUTs) are compared by tWo
different output response analyzers 24. As a result, a fault in
one of the middle roWs of BUTs 22 produces errors at tWo

output response analyZer 24 While faults in the ?rst or last
roW of BUTs 22 produces an error in only one output

response analyZer. Thus, a defective BUT 22 in roW R4 Will

cause errors at the adjacent output response analyZers 24 in

roWs R3 and R5 in the ?rst test session illustrated in FIG. 4a.

This is because the outputs of the BUT 22 are compared by

the output response analyZers in those tWo roWs. In contrast,

a defective BUT 22 in roW R1 is detected only at the adjacent

output response analyZer in roW R2 in the second test session
shoWn in FIG. 4b. The results of the tWo test session analysis

for an 8x8 FPGA are presented in Table 1 beloW under the

heading “Without ORA/TPG Failures”. The tWo test ses

sions are called NS and SN to suggest the direction of the

How of the test patterns. The outputs of the output response

analyZers roWs R3, R5 and R7 used in the ?rst test session NS

are denoted by O3, O5 and O7, and the outputs of the output
response analyZers roWs R2, R4 and R6 used in the second
test session SN are denoted by O2, O4 and O6, respectively.
Errors at the output response analyZer outputs are marked by
X. It should be appreciated that one can readily observe that

the error pattern of every faulty roW is unique.

TABLE 1

Errors during BIST for a Single Faulty RoW PLBs

Without ORA/I'PG Failures

Function Function

Faulty Session Session Session NS Session SN

RoW NS SN O3 O5 O7 O2 O4 O6

1 TPG BUT X

2 BUT ORA

3 ORA BUT X X

4 BUT ORA X

5 ORA BUT X

6 BUT ORA X X

7 ORA BUT X

8 BUT TPG X

With ORA/T PG Failures

Function Function

Faulty Session Session Session NS Session SN

RoW NS SN O3 O5 O7 O2 O4 O6

1 TPG BUT (X X X) X
2 BUT ORA X (X)
3 ORA BUT X X

4 BUT ORA X X 5 ORA BUT (X) X X

6 BUT ORA X X (X)

7 ORA BUT (X) X

8 BUT TPG X (X X X)

In certain situations, some faults in a PLB 10 may be

detected When that PLB is con?gured as an output response

analyZer 24 or a test pattern generator 20. The results of such

an analysis are presented in Table 1 under the heading “With

ORA/T PG Failures”. A fault in an output response analyZer

24 may cause an error only in that output response analyZer

When it reports a mismatch although all compared pairs of

output values agree. Thus, in addition to the error at the

10

15

20

25

30

35

40

45

55

60

65

8
output response analyZer in roW R3 during the ?rst test
session shoWn in FIG. 4a, a fault in a PLB 10 in roW R2 may

also cause an error at the output response analyZer in roW R2

in the second test session as shoWn in FIG. 4b. This error is

marked by “(X)” to denote a potential error. Afault in a test

pattern generator roW may cause the tWo test pattern gen

erators to produce different patterns, thus generating mis
matches in every comparator and resulting in errors at all

output response analyZer outputs in that session:
accordingly, in roWs 1 and 8, We use “(XXX)” to denote a

potential group of three errors. It should be appreciated that

the pattern of every faulty roW is unique and, accordingly,
only tWo BIST sessions as described are necessary to

accurately locate the roW in Which the faulty PLB 10 resides.

The speci?c faulty PLB in a particular roW R may be

identi?ed by further diagnostic testing. Speci?cally, as
shoWn in FIGS. 5a and 5b, the testing process may be
repeated after rotating the test sessions by 90° so that the

How of test patterns is horiZontal along roWs instead of

vertical along columns. This neW arrangement alloWs one to

identify a faulty column instead of a faulty roW, then the

faulty BUT 10 is located at the intersection of the faulty roW

With the faulty column.

More speci?cally, in the ?rst test session, column C1 is
con?gured as test pattern generators 20 While columns C3

and C7 are con?gured as output response analyZers 24.

Additionally, in the illustration, the extra column C5 is also
con?gured as output response analyZers 24 although as

discussed above, the PLBs in this column could be utiliZed

as fan out drivers, additional test pattern generators or even

left unused. The remaining columns in the ?rst text session,

columns C2, C4, C6 and C8 are con?gured as BUTs 22. After
completion of exhaustive testing of each BUT 22, in this ?rst
diagnostic test session shoWn in FIG. 5a, the ?oor plan is
?ipped around the vertical axis shoWn as the line betWeen

columns C4 and C5 at the middle of the array. NoW each

column previously con?gured as a test pattern generator 20

or an output response analyZer 24 is con?gured as a BUT 22

(i.e. the functional roles of the PLBs is exchanged or

reversed). Thus, columns C1, C3, C5 and C7 are con?gured
as BUTs 22 While the PLBs in column C8 are con?gured as

test pattern generators 20 and the PLBs in columns C2 and

C6 are con?gured as output response analyZers 24. Again,
the “extra” PLBs 10 in column C4 are also shoWn as being

con?gured as output response analyZers 24 although these
may serve other purposes as indicated above.

Of course, it should be appreciated that Table 1 shoWs

only the failing sessions While the errors are actually

recorded during a speci?c phase of each session. Thus, it is
possible to signi?cantly shorten the length of the diagnostic
session by utiliZing adaptive diagnosis strategy Wherein
subsequent tests are applied based upon the results obtained

so far. In this Way, it is possible to achieve full resolution in

many instances Without completing both additional horiZon

tal test sessions as shoWn in FIGS. 5a and 5b. In some cases,

it Will even be possible to identify the individual faulty PLB

10 after the ?rst diagnostic test phase shoWn in FIG. 5a

Without having to run the second diagnostic test phase

shoWn in FIG. 5b. In the Worst case, hoWever, both diag

nostic test phases Will need to be performed.

Of course, diagnosis of multiple faulty PLBs 10 is also
possible. A revieW of Table 1 makes it clear that multiple
PLBs in the same roW or column are easily identi?ed.

Another large class of multiple faulty PLBs 10 that may be
precisely diagnosed are PLBs in roWs or columns that are

observed by disjoint sets of output response analyZers 24.
For example, faults in roW 7 may be detected only at O6 and

6,108,806
9

O7 While faults in roW 2 may be detected at only O2 and O3.

Accordingly, any combination of faulty PLBs 10 in roWs 2
and 7 may be diagnosed. This class of multiple faulty PLBs
10 is large since in an N><N array of PLBs there Will be N/2-1

output response analyZer output signals and faults in roW i 5

can be observed at O(i—1) and O(i+1) for i=3, 4, . . . N-2

When i is a roW of BUTs 22 and potentially at Oi When i is

a roW of output response analyZers 24.

Most combinations of faulty roWs that affect overlapping

sets of output response analyZers 24 can also be diagnosed. 10

Let {i, j, . . . } denote a set of faulty roWs. For example, it

may be shoWn that {2,4} and {4}, Which have O3 as a

common output response analyZer output, may never have

the same pattern of errors. If the faults in roWs 2 and 4 do

not cause errors at O3 in exactly the same BIST phases, then 15

{2,4} and {4} can be distinguished at O3. If the faults in
roWs 2 and 4 affect corresponding BUTs 22 (that are

compared by the same ORA), and they alWays have the
same responses, then {2,4} Will not have any errors at O3

While {4} Will. Although there exist some multiple faulty 2O
PLBs 10 that cannot be accurately diagnosed, it appears that
the corresponding fault situations are very unlikely to occur

in practice. For example, assume that faulty output response
analyZers 24 and test pattern generators 20 do not produce

failures, and consider {4, 6} and {2, 8}; their error patterns

10
by the same output response analyZer 24. OtherWise, a

defective single test pattern generator 20 may not supply the

patterns needed to detect a fault in a BUT 22, but this Will

not cause any mismatch because all BUTs 22 still receive the

same patterns. With tWo separate test pattern generators 20,

a fault affecting one test pattern generator Will cause an error

at every output response analyZer 24, since half of the BUTs

22 Will receive test patterns from the faulty test pattern

generator.

EXAMPLE 1

The present BIST-based diagnostic approach Was utiliZed

in the testing and diagnosis of knoWn defective ORCA

FPGAs. The test consisted of 14 phases, summariZed in

Table 2 in terms of the modes of operation of the look-up

tables (LUTs) and ?ip-?op/latch circuits of the PLB 10

tested during every test phase. The ?rst 9 BIST phases are

used to test all ORCA series FPGAs, While the last 5 BIST

phases are added to test the 2CA series (see Field Program

mable Gate Arrays Data Book, Lucent Technologies, Octo

ber 1996). The number of PLB outputs for each BIST phase

is shoWn in the last column.

TABLE 2

Summary of BIST Phases for BUTs

Flip-Flop/Latch Modes & Options

FF/ Set/ Clk Flip-Flop Data LUT No.
Phase No. Latch Reset Clock Enable In Mode Outs

1 — — — — — Async. RAM 4

2 — — — — — Adder/ 5

subtractor

3 — — — — — 5-variable MUX 4

4 — — — — — 5-variable XOR 4

5 Flip-Flop Async Falling Active LUT Count Up 5
Reset Edge LoW Output

6 Flip-Flop Async Falling Enabled PLB Count Up/ 5
Reset Edge Input DoWn

7 Latch Sync. Active Active LUT Count DoWn 5

Set LoW High Output
8 Flip-Flop Sync. Rising Active PLB 4-variable 4

Reset Edge LoW Input
9 Latch — Active Active LoW Dynamic 4-variable 4

High Select
10 — — — — — Multiplier 5

11 — — — — — Greater/ 5

Equal to Comp
12 — — — — — Not Equal to 5

Comp
13 — — — — — Synchronous 4

RAM

14 — — — — — Dual Port RAM 4

Would be identical only if the folloWing conditions occur
simultaneously: 1) the faults in roWs 4 and 6 affect corre

sponding BUTs Which alWays have the same responses (this
Would eliminate the errors at O5); 2) faults in roWs 2 and 4
cause errors at O3 in exactly the same BIST phases; 3) faults

in roWs 6 and 8 cause errors at O7 in exactly the same BIST

phases. Similar analyses shoW that in general, the BIST 6O
architecture of the present invention imposes very restrictive
conditions necessary for multiple faulty PLBs 10 to produce
identical error patterns.

Although a single test pattern generator 20 is suf?cient for

The ORCA PLB 10 has ?ve outputs used in many of its

modes of operation as a BUT 22, While only four pairs of
outputs can be compared by a single PLB con?gured as an

output response analyZer 24. As a result, during the BIST
test sessions, the “used as needed” or “extra” roW is used to

compare the ?fth output from up to eight roWs of BUTs 22
in those con?gurations Which use all ?ve outputs. The

grouping of BUTs 22 and output response analyZers 24 With
respect to the normal four outputs and the extra ?fth output
is a function of the siZe of the FPGA as illustrated in FIGS.

6a—6d. The minimum array siZe for most FPGAs is N=8, in

completely testing all PLBs 10, We can obtain better diag- 65 Which case the “used as needed” roW is used to compare the

nostic resolution by having tWo different (but synchroniZed)
test pattern generators 20 feed the BUTs 22 being compared

?fth output from four BUTs 22. As N increases, the groups

of four outputs from adjacent BUTs are compared pairWise

6,108,806
11

by the roWs labeled ORA4, While the ?fth outputs are
grouped and compared by the roWs labeled ORAS. For
N=16, the basic con?guration of FIG. 6a can be used twice,
either With tWo sets of test pattern generators 20 to reduce

loading on the test pattern generator outputs, or With an

ORA4 in place of the second set of test pattern generators.

For 16<N<32, combinations of the arrangements shoWn in
FIG. 7 can be used until the arrangement in FIG. 6a is

replicated three times for N=32. For the second test session,

the connection arrangement is rotated about the points
indicated in FIGS. 6a—6d, so that every roW of PLBs 10 are

BUTs 22 in one test session.

Next it is necessary to consider the BIST phases in Which

all ?ve outputs of the PLB 10 are tested. As a result of the

regular BIST sequence, it Was determined Which phase or

phases fail, as Well as Whether the error Was at one of the

four outputs or at the ?fth output. At that point four

diagnostic test phases Were run based on the failing output:

either a diagnostic test phase for the four outputs or a

diagnostic test phase for the ?fth output With output
response generators 24 comparing adjacent BUT outputs.
Each of the four diagnostic test phases used a different PLB

assignment With respect to roWs and columns as illustrated

in FIGS. 4a and 4b and FIGS. 5a and 5b (here, FIG. 4a and

FIG. 4b represent diagnostic test phases rather than com

plete BIST sessions). From these results, it Was possible to
identify the faulty PLBs 10 in the FPGA in the same manner

as Was done in the case of the four output phases described

above. As a result, at most four additional diagnostic test

phases are required (as opposed to tWo additional diagnostic
test phases in the case of the four output phases), for an

increase in test time of about only 14%.

In addition to the 28 BIST con?gurations (14 for each test

session), tWo diagnostic test phases Were generated for each
of the seven BIST phases Which test the PLB 10 in opera

tional modes Which use only four outputs, for another 14

con?gurations. Eight diagnostic test phases Were also gen
erated for each of the seven BIST phases Which test the PLB

10 in operational modes that use ?ve outputs, for another 56

con?gurations. Four of the eight diagnostic test phases Were
used to diagnose the four PLB outputs in each of the four

directions shoWn in FIGS. 4a, 4b, 5a and 5b, While the other
four diagnostic test phases Were used to diagnose the ?fth

PLB output in each of the four directions. As a result, a total

of 98 con?gurations (28 BIST phases and 70 diagnostic test
phases) Were generated of Which only 30 or 32 con?gura
tions Were used to identify a single faulty PLB as a result of

the adaptive diagnostic approach.
The device targeted for experimentation With this BIST

based diagnostic approach Was the ORCA 2C15A Which

required the full set of 14 test phases for each test session to

completely test all 400 PLBs in the 20x20 array. We Were

provided With ?ve 2C15A devices by Lucent Technologies
Microelectronics Group in AllentoWn, Pa. From manufac
turing test results, three of these parts Were knoWn to be

fault-free and tWo Were knoWn to be defective. Applying the

complete BIST sequence (tWo test sessions of 14 phases
each), the defective FPGAs Were successfully identi?ed.

Then, using the diagnostic phases, the faulty PLB(s) in the
tWo failing devices Were identi?ed. The block under test

output response analyZer interconnections for the 2C15A
consisted of tWo sets of connections shoWn in FIG. 6b, but

With the second set of test pattern generators 20 replaced by

an ORA4 roW. As a result, there Were nine output response

analyZer outputs for each test con?guration of the 2C15A
With the 5th and 15th roWs comparing the ?fth PLB outputs

during the ?rst BIST session, and the corresponding rows/

10

15

25

35

45

55

12
columns used in the second BIST session and the subsequent

diagnostic phases.
FIG. 7a summarizes the diagnosis results for the ?rst

faulty device. No errors Were detected in session one NS and

errors at O2 and O4 in phases 5 through 9 Were detected in

session tWo SN. These results indicate that roW 3 is faulty,

and that its faults are not detected When roW 3 is an output

response analyZer. Reapplying one of the faulty phases tWice
as diagnosis sessions, no errors Were detected in session

three WE illustrated in FIG. 5a, and errors at O17 and O19

Were detected in session four EW. These results indicate that

roW 18 is faulty, and that its faults are not detected When roW

18 is an output response analyZer. When the results of the

BIST phases and diagnostic test phases are combined, a
single faulty PLB is identi?ed in roW 3 and column 18 of the

20x20 array. From Table 2, it may also be inferred that the

fault is probably located in the ?ip-?op/latch logic of the
defective PLB, because all the failing phases (5 through 9)
test this subcircuit. This is an eXample of hoW the present

method may be utiliZed to locate a faulty module in a PLB

Whether that module is a LUT/RAM block, a ?ip-?op latch

block or an output logic block.

For the second faulty device, Whose results are summa

riZed in FIG. 7b, errors Were detected at O15 and O17 in

phases 1 and 6 of the ?rst session NS and no errors Were

detected in the second session SN. During the corresponding
diagnostic test phases, errors Were obtained at O14, O16,

and O18 in the third session WE and no errors Were obtained

in the fourth session EW. This combined set of error patterns

identi?es tWo faulty PLBs: one in roW 5 and column 15 and

the other in roW 5 and column 17.

The foregoing description of a preferred embodiment of

the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit

the invention to the precise form disclosed. Obvious modi

?cations or variations are possible in light of the above

teachings. The embodiment Was chosen and described to

provide the best illustration of the principles of the invention
and its practical application to thereby enable one of ordi

nary skill in the art to utiliZe the invention in various

embodiments and With various modi?cations as are suited to

the particular use contemplated. All such modi?cations and

variations are Within the scope of the invention as deter

mined by the appended claims When interpreted in accor
dance With the breadth to Which they are fairly, legally and

equitably entitled.
What is claimed is:

1. A method of testing a ?eld programmable gate array

including a plurality of programmable logic blocks, com
prising steps of:

con?guring a ?rst group of said programmable logic
blocks to include at least one test pattern generator and

at least tWo output response analyZers;

designating a second group of said programmable logic

blocks, said second group including a plurality of
blocks under test;

generating test patterns With said test pattern generators;

comparing outputs of tWo of said blocks under test With

one of said output response analyZers; and

combining results of a plurality of said output response

analyZers utiliZing an iterative comparator in order to
produce a pass/fail indication.

2. The method set forth in claim 1, including repeatedly
recon?guring each of said blocks under test in order to test

each of said blocks under test completely in all possible

modes of operation.

6,108,806
13

3. The method set forth in claim 2, including exchanging
functional roles of said ?rst and second groups of said

programmable logic blocks so that said ?rst group of said

programmable logic blocks is designated as a plurality of
blocks under test and said second group of programmable

logic blocks is con?gured as at least one test pattern gen

erator and at least tWo output response analyZers.

4. The method set forth in claim 3, including repeatedly
recon?guring each of said blocks under test in order to test

each of said blocks under test completely in all possible 10

modes of operation.
5. A method of testing a ?eld programmable gate array

including a plurality of programmable logic blocks, com
prising steps of:

con?guring said programmable logic blocks for complet
ing a built-in self-test by establishing a ?rst group of

said programmable logic blocks as at least tWo separate

test pattern generators and at least tWo output response

analyZers and establishing a second group of said

programmable logic blocks as a plurality of blocks

under test;

generating test patterns With said tWo separate test pattern

generators;

communicating said test patterns generated by a ?rst of

said tWo separate test pattern generators to a ?rst group

of blocks under test;

communicating said test patterns generated by a second of

said tWo separate test pattern generators to a second

group of blocks under test;

communicating outputs from said ?rst and second groups

of blocks under test to one of said output response

analyzers; and

analyZing said outputs from said blocks under test in order

to produce a pass/fail indication.

6. The method set forth in claim 5, including repeatedly
recon?guring each of said blocks under test in order to test

each of said blocks under test completely in all possible

modes of operation.
7. The method set forth in claim 5, including exchanging

functional roles of said ?rst and second groups of said

programmable logic blocks so that said ?rst group of said

programmable logic blocks is established as a plurality of

blocks under test and said second group of programmable

logic blocks is established as at least tWo separate test

pattern generators and at least tWo output response analyZ
ers.

8. The method set forth in claim 7, including repeatedly
recon?guring each of said blocks under test in order to test

each of said blocks under test completely in all possible

modes of operation.
9. The method set forth in claim 5, Wherein said analyZing

is performed by iterative comparing of said outputs from
said ?rst and second groups of blocks under test.

10. A method of testing a ?eld programmable gate array

including a plurality of programmable logic blocks, com
prising steps of:

selectively con?guring ones of said ?eld programmable

logic blocks as test pattern generators, output response
analyZers and blocks under test for completion of a

built-in self-test;

15

25

35

45

55

14
communicating test patterns generated by said test pattern

generators to said blocks under test by global routing;

communicating outputs from said blocks under test to said

output response analyZers by local routing; and

analyZing said outputs by iterative comparison in order to
produce a pass/fail indication.

11. A method of testing an N><N ?eld programmable gate

array including a plurality of programmable logic blocks in
N roWs and N columns, comprising steps of:

con?guring a ?rst group of roWs of said programmable

logic blocks as at least one test pattern generator and at

least tWo output response analyZers;

establishing a second group of roWs of said programmable

logic blocks as a plurality of blocks under test;

generating test patterns With said test pattern generators;

comparing, outputs of said blocks under test With said

output response analyZers and using the failing test
results to identify a faulty roW or a plurality of faulty

roWs;

exchanging functional roles of said roWs of program

mable logic blocks;

con?guring a third group of columns of said program

mable logic blocks as at least one test pattern generator

and at least tWo output response analyZers;

establishing a fourth group of columns of said program

mable logic blocks as a plurality of blocks under test;

generating test patterns With said test pattern generators;

comparing outputs of said blocks under test With said

output response analyZers; and

exchanging functional roles of said columns of program

mable logic blocks and using the failing test results to
identify a faulty column or a plurality of faulty col

umns; and

combining the identi?ed faulty roW or roWs With the

identi?ed faulty column or columns to identify a faulty

programmable logic block or blocks.

12. The method set forth in claim 11, including repeatedly
recon?guring each of said blocks under test in order to test

each of said blocks under test completely in all possible
modes of operation.

13. A ?eld programmable gate array con?gured to com

prise:
a test pattern generator;

at least tWo output response analyZers;

a plurality of blocks under test; and

an iterative comparator for comparing outputs of tWo of

said blocks under test With each of said output response

analyZers and combining results of said output response
analyZers in order to produce a pass/fail indication.

14. The ?eld programmable gate array con?guration set
forth in claim 13, further including a memory for storing test

patterns and con?gurations to provide exhaustive testing of
each block under test.

15. The ?eld programmable gate array con?guration set
forth in claim 13, having a substantial absence of dedicated

circuitry for built-in self-testing applications.

* * * * *

	Method of Testing and Diagnosing Field Programmable Gate Arrays
	Recommended Citation

	US6108806.pdf

