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This is a survey of the present state of the method of the generating functional 
which makes it possible to effectively study distributions of point random measures 
on a complete, separable metric space. The principal attention is devoted to the 
study of distributions of configurations of infinite systems of statistical phys- 
ics -- Gibbs distributions. 

INTRODUCTION 

For a long time classical equilibrium statistical physics was the consumer only of triv- 
ial ideas and methods of probability theory. The situation changed in principle when after 
the classical works of Onsager [43], Bogolyubov [5], Van Hove [45], Minlos [23], Dobrushin 
[12, 14], and Lanford and Ruelle [40] models of infinite systems entered statistical physics. 
The rigorous mathematical study of such systems led to the creation of a large class of sub- 
stantive probabilistic models whose investigation required the creation of new mathematical 
methods or considerable development of those already available. At present methods of study- 
ing the mathematical models of statistical physics find ever greater application in prob- 
ability theory, thus enriching it. The present survey is devoted to one of them -- the method 
of the generating functional. 

The generating functional (GF) was introduced by Bogolyubov [5] in classical statistical 
physics as a generalization of generating functions of discrete random variables. In this 
work infinite systems were considered (then formally), and various types of equations for the 
GF of such systems were obtained. Mathematical problems of this method were considered in 
[7]. The main substantive results were obtained for system of small density. A summary of 
these investigations is given in [6]. 

For a long time the method of the GF was used in statistical physics to obtain exact 
and approximation equations of various types for ,correlation functions [i, 2]. Such work 
continues at present [9, 31]. The regeneration of interest in mathematical problems of the 
method of the GF is connected with the active study of the thermodynamic limit transition 
(the limit transition to infinite systems). In a series of works [25, 26, 28] mathematical 
justification for the method of the GF is given, and the equivalence of this method to the 
presently widely used method of random Gibbs fields is proved [27]. The possibilities of 
the method of the GF for solving mathematical problems of statistical physics is demonstrated 
in [29]. 

Mathematical development of the method of the GF proceeded in parallel with the "physi- 
cal" line of development. The object of the method in probability theory became point random 
processes (branching processes, infinitely divisible processes) [17, 35]. A sur~nary of the 
development of the method of the GF for point processes is given in [46, 47]; there is also 
an extensive bibliography there. Considerable broadening of the range of application of the 
method was carried out in [41]. It is interesting that, proceeding from this form of de- 
velopment of the method of the GF, it was again introduced into statistical physics in the 
works of Ryazanov [33, 34]. 

Both lines of development of the method of the GF enriched it. The Bogolyubov equation 
is the main tool for investigating properties of measures in the method of the GF. Use of 
this equation makes it possible to invoke methods of functional analysis to solve traditional 
problems of probability theory. It is just this that makes the method of the GF effective. 

In this work the method of the GF and its application in statistical physics are de- 
scribed. In Sec. I facts regarding measures on configuration space of systems of point par- 
ticles are collected. Here a generally adopted terminology does not always exist, and we have 
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taken it upon ourselves to introduce terms which have justified their necessity in probability 
theory or statistical physics. Section 2 is devoted to generating functionals. The defini- 
tion and a characterization of GF as well as methods of recovering measures on the basis of 
the GF are presented. It should be noted that at present there is no remotely complete dic- 
tionary "properties of a measure -- properties of its GF." In Sec. 3 configuration measures 
of finite systems of classical equilibrium statistical physics are considered. Here the 
Bogolyubov equation is first introduced, and it is proved that it completely characterizes 
the GF of the measures in question. Infinite systems of statistical physics are considered 
in Sec. 4. Here characteristics of configuration measures of these systems in terms of their 
GF are presented. The equivalence of various definitions of Gibbs distributions is proved. 
Section 5 is devoted to the problem of equivalence of ensembles in statistical physics and 
its solution by the method of the GF. Section 6 is devoted to the characterization of vari- 
ous conditions of weakening of correlations (conditions of regularity) in terms of continuous 
dependence of the GF on an external field. 

There are also other examples of application of the method of the GF for solving specific 
problems of statistical physics: construction of various types of expansions of the GF in 
terms of parameters introduced into the Bogolyubov equation, the study of symmetry of thermo- 
dynamic states, etc. We shall concentrate attention on application of the method of the GF 
in equilibrium classical statistical physics, leaving aside its applications in quantum statis- 
tical physics and quantum field theory and also in nonequilibrium thermodynamics. A descrip- 
tion of the entire range of application of the method of the GF should form the topic of a 
separate survey. 

The author takes this opportunity to thank R. A. Minlos under the influence of conversa- 
tions with whom the author's views on the probabilistic meaning of the GF congealed, S. G. 
Krein with whom the author discussed several times the analytic properties of the GF, O. G. 
Smolyanov for numerous discussions on topological aspects of the method of the GF, and co- 
workers of the Department of Higher Mathematics of Tyumen University N. S. Kasimov, A. F. 
Nyashin, and S. N. Romanyuk who offered considerable help in preparation of the manuscript. 

I. Configuration Measures 

Phase space of a single particle E is the basic building block for the mathematical model 
used both in the theory of stochastic processes and in statistical physics. E is a complete, 
separable metric space with the natural o-algebra of Borel sets ~, a measure ~, and a ring 
of bounded sets ~oC::~ �9 (A more general situation is considered in [41].) Points x~E are 
interpreted as sites where events can occur; for simplicity an event is understood to mean 
finding the particle at the given point. If the state of a particle (event) is not com- 
pletely characterized by its position, then a marking space S (or a space of spins as is said 
in statistical physics) is further introduced. An event in this case is characterized by an 
ordered pair (x, s), and phase space is the direct product E = E x S. Assuming S to be a 
metric space (with distance 02), E can be metrized in the standard way, 

0 (Ix, s], [~, s~) = ~1 (x, ~) + p2 (s, ~), 

where 01 i s  t he  m e t r i c  i n  E. I f  S i s  a c o m p l e t e ,  s e p a r a b l e  s p a c e ,  t h e n  E i s  a l s o  c o m p l e t e  

and s e p a r a b l e .  Moreove r ,  by  p a s s i n g ,  i f  n e c e s s a r y ,  t o  t he  t o p o l o g i c a l l y  e q u i v a l e n t  m e t r i c  

p2(1 + p2) - x ,  i t  may be assumed t h a t  t he  mark ing  space  i s  bounded .  In  t h i s  c a s e  a s e t  / ~ c ~  

i s  bounded  i f  and o n l y  i f  i t s  p r o j e c t i o n  M ~ = { x :  (x, s ) ~ }  i s  bounded  in  E. Thus ,  t he  v e r y  

i m p o r t a n t  p r o p e r t y  o f  b o u n d e d n e s s  o f  s e t s  i s  d e t e r m i n e d  c o m p l e t e l y  by the  space  of  p o s i t i o n s  

E. 

The most  used  phase  s p a c e s  in  t he  t h e o r y  o f  p o i n t  p r o c e s s e s  and s t a t i s t i c a l  p h y s i c s  a r e  

R v ( c o n t i n u o u s  mode l s )  and Z ~ ( d i s c r e t e  and l a t t i c e  m o d e l s ) .  

We s h a l l  c o n s i d e r  p u r e l y  p o i n t  m e a s u r e s  [30] r on E (by a measure  we mean a n o n n e g a t i v e  

m e a s u r e ;  e x c e p t i o n s  w i l l  be s p e c i a l l y  m e n t i o n e d ) .  We e l i m i n a t e  p a t h o l o g i c a l  m e a s u r e s  by r e -  

q u i r i n g  t h a t  ~ be bounded  on ~0 , and m e a s u r e s  w i t h  t h i s  p r o p e r t y  we c a l l  l o c a l l y  f i n i t e .  Le t  

M be t h e  s e t  o f  i n t e g r a l ,  l o c a l l y  f i n i t e  m e a s u r e s  on [E, ~ ] .  The s i m p l e s t  r e p r e s e n t a t i v e  o f  M 

i s  t h e  D i r a c  measu re  6 , : V X E ~  6 , ( X ) = I ,  i f  x6X, and i s  e q u a l  to  z e r o  o t h e r w i s e .  A l l  measu re s  

i n  M a r e  c o n s t r u c t e d  f rom t h e s e  s i m p l e s t  m e a s u r e s .  

D e f i n i t i o n  1 .1 .  A s u b s e t  XcE i s  c a l l e d  l o c a l l y  f i n i t e  i f  i t  has  o n l y  f i n i t e  i n t e r s e c -  

t i o n  w i t h  each  YB~0 �9 
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It is obvious that a locally finite set is countable. 

LEMMA 1.1 [17]. In order that ~6A4 it is necessary and sufficient that there exist a 
locally finite set Xt~E and functions 9~:X~--~N such that 

~=~(x)ax. (1.1) 
xEx~ 

Thus, each measure ~EM can be thought of as a means of separating out points X~ of the 
set E and assigning to e&ch such point a multiplicity ~(x)=~({x}) . Another interpretation 
of ~, adopted not only in statistical physics, is that the measure ~ determines the configura- 
tion of a system (infinite) of identical particles situated at points of X~=supp~ , whereby 
~(x) is the number of particles at the point x (the occupation number). Measures ~EM, for 
which 0~.~1, are called simple. Such measures are uniquely characterized by the locally 
finite set X~. 

We denote by CE the set of locally finite subsets of E and by M1 the subset of simple 
measures in M. It is obvious that there is a one-to-one correspondence between these sets: 

~= ~ 6x. (1.2) 
x6x~ 

Elements of C E are naturally called simple, locally finite configurations. The form 
(1.2) can be given to relation (1.I) if a more general concept of a configuration is intro- 
duced. Using the fact that ~ assumes only natural-number values, we rewrite the sum (1.1) 
in the form 

~: ~ 8x, (1.3) 
x6X ~ 

where X~ is the full "list" of elements of X~, whereby each element is repeated in the list 
as many times as its multiplicity q~(x). No structure for X, is assumed [this is not needed 
for (1.3)]. Thus, X~ is a system of points in XcC~, taken without particular order and with 
possible repetitions defined by the function ~. We call X, a locally finite configuration, 
while supp~ we call the support of the configuration. This definition is a natural general- 
ization of a configuration of n particles which are considered a point of the space E n, where- 
by in a system of identical particles there is no need to consider the order of their arrange- 
ment. 

Relation (1.3) establishes a one-to-one correspondence between M and CE" -- the set of 
locally finite configurations. By historical tradition in statistical physics probabilistic 
models are constructed using C~' (or CE), while in the theory of point processes M is used. 
It is natural to use both these realizations, choosing in a specific problem the one which 
leads to the simpler solution. Where it causes no confusion we shall identify the measure 
and the configuration corresponding to it. 

The value of ~(V) for V6~0 is interpreted as the number of particles in the configuration 
X~, lying in V. For this reason elements of the set M are called counting measures [17]. 
A structure of a measurable space in M is introduced by means of cylinder sets of the form 

C~-----{~@M: ~(a)----a, A6~o}, n=0, ], 2 . . . .  (I .4) 

The set C~ consists of configurations containing exactly n particles in the set A6E. The 
minimal o-algebra generated by all sets C~ we denote by ~. A probability measure P on the 
measurable space [/14, ~] is called a configuration measure with phase space E. Together with 
the sets (1.4) ~ also contains sets 

C., , . , , .  ...... "k ={~6M:  ~ (a~) = n~, A ~ o } ,  A, fl a j =  ~ ( 1 .5 )  
A,,A, , ~ :  . . . . .  A k 

generating algebras of cylinder sets. It can be proved in the usual way that a measure P 
can be uniquely recovered from its restriction to a system of generators (1.5) [37, 47]. How- 
ever, it is not always convenient to define a measure by its restriction to the system (1.5), 
since this system is too "coarse." A finer system of subsets can be constructed as follows. 

We denote by ~A the minimal o-algebra of subsets of M generated by the system C~ with 
AcAc~0.. A configuration measure P can be uniquely recovered from its restrictions to~-~A. 

THEOREM 1.1 [41]. Let Al, A2,... be an expanding sequence of sets A~E~0Aa#E and suppose 
the probability measures Pk on [/14, ~}a~] (k = I, 2,...) are such that for m > kthe restriction 
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of Pm to ~a~ is consistent (coincides) with Pk- Then there exists a measure P on [M, ~], 

whose restriction to ~A; is equal to Pk. 

There is a constructive method of defining measures on ~I^ which is constantly used in 
statistical physics. We denote by ~(A) the set of finite configurations of co particles in 
A~n. ~(A) is a subset of configurations C~ with support in A. ~(A) can be represented 
by a decomposition into nonintersecting sets 5r ) , 

,3~ (A) = ~ ,Wm (A), ,Tf m (A) =-= {Co(~3~" (A): I C0 ] = r/~}, ( 1 . 6 )  
t l~O 

where Icoi  is the number of particles in configuration Co. ~n(1\) consists of one element -- 
the empty set ~. We denote ~f(E) by ~. Let bm:Em-+~m be the mapping annihilating the 
order of arrangement of coordinates of points (x~, x~ ..... xm)~E,n. The mapping bm carries the 

measurable structure of E m to ~f~ and that of tJ Em to ~. We denote by ~^m the u-algebra 
m=0 

of measurable sets in ~m(A), by ~A those in ~(A), by ~m those in ~fm, and by ~ those in 
~f. Let p be a measure on E, let Pm be a measure on Em, and let 

be a measurable set in ~. 

whereby I(~) = I by definition. 
In particular, 

o o  

~2= U ~2m (Q,,E~Am) (1 .7 )  
m = 0 

We obtain a measure I on [~, ~] by setting 

~' ( f~)= m'~--o I_.] ~m (b~'(am)), ( 1.8 ) 

The same relation introduces a measure I on .~(A) (for f2~^). 

m,, (A ' )  ~ (AW,  ;L (~  (A)) = e~,(^) ( 1 . 9 )  X(~',.(A))= m, = . , ,  

Thus ,  t h e  m e a s u r e s  ~ o b t a i n e d  on YY(A) a r e  f i n i t e .  A s s i g n i n g  to  each  c o n f i g u r a t i o n  X, i t s  
part contained in A~0 (it is defined by the restriction of ~ to A), we obtain a mapping 

~'A:C~ --~ ~r (A). 

It is obvious that ~(C~)=~m(A), and hence 

�9 ~ (~A) = ~,,-, ( I. 1 o) 

i.e., the measurable structures on [M,~R^] and IX(A), ~A] are consistent; hence, any measure 
on [~(A), ~^] can be carried over to |M, ~A]. The o-algebra ~^ consists of sets of the form 
C~=~% I(~) ~A), which are called cylinder sets [24]. A rather broad class of measures on 
I.~(A), .thAI is given by measures which are absolutely continuous with respect to the measure 
I. Each such measure OA is determined by nonnegative functions h m which are integrable on 
{oA(xi, x2,...,Xm)} and are symmetric in all arguments, 

2'I c a  (9) = ,I oh (Co) d;'. (co) = ~ oa (x~ . . . . .  x~)  d ~ ,  ( I. 11 ) 
m=0 

where Q.E~^, and the collection of functions {OA(Xl, x2,...,Xm)} is considered as a function 
OA(C0) on 3~'(.\) [this is possible, since OA(X m) are symmetric functions]. 

Definition 1.2 [44]. The family of nonnegative symmetric functions {oA(xp xo_ ..... ~r 
(AE~0) is called a system of densities of a distribution if oA(x:,...,x m) are integrable on 
A m and satisfy the conditions 

n-~ OA(Xl . . . . .  x,,,)d~m ~ 1 ,  ( 1 . 1 2 )  
n 

o~ (x~ . . . . .  x . , )  = .:. ,J^ (x~ . . . . .  x . , ,  x . , . l  . . . . . . . .  

n=O (A\A)n 

(1 .13 )  

VA~0 such that A~A. 
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It is natural to consider a system of densities of a distribution as a system of non- 
negative functions oh(c0) on fig(A). Corresponding to this, conditions (1.12) and (1.13) can 
be rewritten in the form 

o^ (Co) d~ (Co) - =  I, 
.7/'(A) 

oA (Co) = ] % (Co U c,) d;~-~(cO, 
~'CX) 

(1.14) 

(1.15) 

where AcA and K=-A\A. 
THEOREM 1.2. A system of densities of a distribution defines a system of consistent 

probability measures Ph on [A4,~^]. 

Proof. According to (1.11) the functions oh(c0) define measures o h on fig(A). The measure 
o h is "carried over" to ~a by the relation 

PA (C~) = % (~) ---- ] % (Co) d~ (Co). (1 .16)  
Q 

C o n s i s t e n c y  of  t h e  measures  o h d e t e r m i n i n g  the  c o n s i s t e n c y  of  PA f o l l o w s  from ( 1 . 1 3 ) .  
I n d e e d ,  i f  A i N A 2 ~  , t h e n  

[fig (~ u a:), ~,u~,l = IX (a,), ~,1 • pc (a:), ~,1, 

i.e., the measurable space [~g(AIUA2),~A,Ua,] is the product of the measurable spaces lfig(a0, 

~A,] and [3~7(A2), ~a,]. In exactly the same way the measure ka,Ua, is the product of measure 

%51 and XA2. It is now obvious that the restriction of the measure ~a to [~f(A),~a] CaCA 

is defined by the density 

o~(co)= [ %(CoUCOaX~,(cO, A ~ = A \ A ,  
X(~,) 

which by (1.15) coincides with the density ~A(c0) defining the measure o A (the configuration 
in the argument of the function oh is broken into two parts: co with supports in A and ci 
with support in Al). 

2. Generating Functionals of Configuration Measures 

To simplify notation we shall denote by c locally finite configurations in the space C~. 
By introducing marks for each x in a configuration rEC~ (for example, the index of a par- 
ticle), the configuration c is converted into a set. The usual operations with sets can thus 
be extended to configurations c which also considerably simplifies the notation. This was 
actually already used in Sec. I. In place of the decomposition (1.3) we now have 

-----2 6x" (2. I) 
x6c 

Where convenient we shall assume a configuration measure to be defined on C~. For simplicity 
we assume that E = R v. We consider a measure ~ as an element of the space of generalized 
functions ~)' . The space of test functions ~) consists of regular, compactly supported func- 
tions [30]. Using the relation of duality between these spaces 

( % ~) = ~ ) d ~ ) =  S ~ ( y ) ~ 6 ( x - y ) d y = ~  ~(x), (2 .2)  
xEc ~Ec 

we w r i t e  t he  c h a r a c t e r i s t i c  f u n c t i o n a l  [10] of  t he  c o n f i g u r a t i o n  measure  P 

For f u n c t i o n s  ~E~O the  sum (2 .2 )  i s  f i n i t e .  

In a n a l o g y  w i t h  t he  c h a r a c t e r i s t i c  f u n c t i o n a l ,  f o r  a measure  P w i t h  an a r b i t r a r y  phase 

space E we consider the functional 

Bp (u)-- ~ I [  u (x) dP (c) (2.3) 
xEr 
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A functional of this type was first considered by Bogolyubov [5] who introduced for it the 
term "generating functional," since the functional (2.3) is the natural generalization of 
generating functions of discrete random variables. Later the functional B appeared in works 
on random point processes [42, 46, 47] and random measures [41]. We shall call the functional 
(2.3) a generating functional of the configuration measure P or, when it causes no confusion, 
a generating functional (GF). 

We begin the study of a GF with the question of its domain ~2~ �9 The set ~ should be 
large enough that the GF uniquely determines the measure P: coincidence on ~ of the genera- 
ting functionals of two measures Pz and P2 implies that the measures PI and P2 are identical. 
Extension of the domain ~ , as a rule, simplifies reconstructing properties of the measure 
on the basis of properties of its GF (in any case this affords additional possibilities). An 
example of this are generating functions of discrete random variables which can be considered 
as the analytic continuation to the interior of the unit disk (with center at zero) in the 
complex plane of characteristic functions defined only on its boundary. In exactly the same 
way extension of the domain of a GF makes it possible to utilize more fully its analytic prop- 
erties in investigating the configuration measures it represents. 

The set of complex-valued Borel functions u(x) = I + t(x) on E for which the products 

I I  tt ( x ) = I I  (1 .-t- t (x))=(tl t)  (c) (2 .4)  

converge  a b s o l u t e l y  VcEC~ we denote  by ~ ( E ) .  By (2 .4)  f u n c t i o n s  in ~ (E)  d e f i n e  c o n f i g u r a -  
t i o n s  cEC~. Absolu te  convergence  of  p roduc t  (2 .4)  i s  e q u i v a l e n t  to the  c o n d i t i o n s  

i t (x)l=3"li(x)lct~< + oo, 
xEc 

i.e., the functions t(x) must be integrable with respect to all measures ~EM. The set of 
functions t with this property we denote by if(E). It is obvious that ~(E)=|q-~-(E). Let 

~-! (El ={tEff (E) : supp tE~0} 

be the set of compactly supported functions in if(E). It is easy to show that 

~- (E) = ~ i  (~). 

Functions in ~ form the basic reservoir from which various domains of GF 
are composed. This set can be broadened somewhat by admitting convergence of the product 
(2.4) to zero. Further extension of ~ is possible only by considering specific proper- 
ties of the measure P [for example, requiring the existence of functions (2.4) only almost 
everywhere on CE �9 with respect to the measure P or considering only simple measures in MI]. 

The domain of existence of the GF is one of the essential characteristics of a measure 
P, since it determines the store of functions of the form (2.4) which are integrable with 
respect to the measure P. The broader the domain of existence of the GF, the narrower the 
class of measures they determine, and the richer the properties of these measures. 

o21~i(E ) contains the subset 

91/(E) = {uE@/v (E):[ u (x) l~< lVxEE}, 

which by (2 .4)  d e f i n e s  f u n c t i o n s  on C2 i n t e g r a b l e  wi th  r e s p e c t  to any measure P. ~ 
c o n t a i n s ,  in p a r t i c u l a r ,  the  domain of  the  c h a r a c t e r i s t i c  f u n c t i o n a l .  From t h i s  i t  i s  c l e a r  
that it suffices to uniquely determine the configuration measure P on the basis of the GF. 
For this purpose a smaller set o2/i.,I suffices which consists only of nonnegative Borel func- 
tions on E: 

~ , ,  (E) = {uE~a / (E):0-.< u (x) ~< I, VxEE}. 

THEOREM 2.1 [41] .  I f  f o r  c o n f i g u r a t i o n  measures  Pz, P2 wi th  phase space E 

Bp , (u )=Bp,  (u) VuE~{., (E), 

then PI = P2. 

Proof. For any k pairwise nonintersecting sets Al ..... AkE~0 

u= = alXA, + a2~A, + . . .  q- ak'~% + ~-E~.,' ,  (2.5) 
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k 

where 0 ~ al,-..,ak ~ I, XAi are the indicators of the set Ai, and ~=E\ U A~. 
of u a into (2.4) gives t=t 

_% 
Be (ur "~ aT,a~, a"kP {C" .... "1, ~, "'" . ~ a .... %) 

i l l ,  . . .  , t l k  

Substitution 

(2.6) 

where C" .... % are the cylinder sets (1.5). From the coincidence of the functionals (2.6) of 
At . . . h~  

the two measures PI and P2 it obviously follows that 

..... = ( c : : : : Z ) ,  

w h i c h  g u a r a n t e e s  t h a t  t h e  m e a s u r e s  P1 and  P2 c o i n c i d e .  

The GF Bp on f u n c t i o n s  ( 2 . 5 )  d e f i n e s  t h e  g e n e r a t i n g  f u n c t i o n  o f  t h e  r a n d o m  v e c t o r  ({ x 

(hl), g(hi) .... ,g(hk)). Indeed, by ( 1 . 1 9 )  

(A,) = 2~ xa, (x). 
x~c 

The generating function of the vector (g(Al),...,r is the mathematical expectation of 
the random variable 

k k 
xAt (x) 

I I . ,  �9 
1~1 x ~ e  1~1 

F o r  a v e c t o r  a = ( a l , . . . , a  k )  w i t h  p r o j e c t i o n s  0 ~< a i  ~< 1 t h e  f u n c t i o n  

k 

(2.7) 

(2.8) 

coincides with the function ua of (2.5). Thus, (2.6) defines the generating function of the 
vector (~(AI),...,~(Ak)) for real ai" Since the coefficients of the expansion (2.6) do not 
exceed one, by extending this expression to the interior of the unit polydisk (with center 
at zero) of the complex plane C k, we obtain the generating function 

\At  . . . . . .  

The distributions of the vectors (~(Ai),...,g-(Ak)) are finite-dimensional distributions of 
the measure P. They can be recovered on the basis of the functional Bp 

( % )  . . . ~  p c"L'.'y = 1 I  (n,t)-, . . . . .  B, 
~ n t t ~ n l  ~Nnt~ A k 

1~I ~ 1  ~ 2  . . . . .  k 

This implies that the domain of the functional Bp can be restricted to the set of func- 
tions (2.5). 

In [41] characteristic properties of GF with domain ~{.r are found. 
corresponding theorem we define the set 

~ ( E ) = { u E ~ t ( E ) : s u p p u E ~ o } = l - - ~ { . t ( E )  

and the operator of first difference A[h] 

(A D] *) (x) = ,  ( x +  h) - -  ~ (x),  ( '~. 1 1 ) 

where ~:X § Y, X, Y are linear spaces. 

THEOREM 2.2. In order that a functional B(u) defined on ~ be the GF of a con- 
figuration measure P with phase space E it is necessary and sufficient that 

I) for a nondecreasing sequence UaE~{.r(E) converging to one 

lira B (un)  = 1. 

2) Vh 1 . . . . .  hkf~o1(E) a n d  Vu6~[r(E)  s u c h  t h a t  u + k t + : ~ . + h k f ~ { , r ( E )  

(A [hll A [ k d . . ,  ~ [h~l B) (u) > o :  

To formulate the 

(2.10) 

(2.12) 

( 2 . 1 3 )  
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The domain of the GF can be extended [41] to the set 

�9 ~j,r ----- { . t t~  (E):O ~< tt -.< l } :D~ , t .  

In this case to the characteristic properties (2.12) and (2.13) there is added a further one: 
for any nonincreasing sequence UnE~l,r(~) converging pointwise to UE~I.r (E), 

lira B (un)=-B (tt). (2 .14 )  
n - ~ o o  ' 

The g e n e r a t i n g  f u n c t i o n s  (2 .9 )  of  f i n i t e - d i m e n s i o n a l  d i s t r i b u t i o n s  o f  t he  random measure  
P a r e  c o n s t r u c t e d  on t h e  b a s i s  o f  t h e  GF on ~ In  o r d e r  t h a t  t h e s e  f u n c t i o n s  be o b t a i n e d  
directly from the functionals B) its domain should be extended to ~176 But this 
is little. The method of the generating functional will be effective if it is possible to 
use in it the well developed machinery of analytic mappings [36]. A minimal necessary con- 
dition for this is that the domain of the GF be a finitely open set of some linear space. 
~-I(E) is a linear space, but in it ~r'it(~)=~ is not finitely open. Considering 
these circumstances, we take as the domain of the GF the entire space ~-t(E) and the GF cor- 
responding to this we denote by Bp(t). 

Extension of the domain of the GF to ~-t(E) restricts the class of random measures for 
which Bp(t) exists. Nevertheless, this class is not empty, since it contains, for example, 
random measures describing mathematical models of statistical physics. For the sequel we 
shall require some concepts and results from the theory of analytic mappings. We present 
them here in the form they will be used in the present work. General definitions and results 
can be found in the classical monograph [36]. 

Let X and Y be Banac/h spaces over the field of complex numbers with norms II llx and U 112. 

Definition 2. I. We call a mapping f:X -> Y G-differentiable (Gateaux differentiable) if 
Vx, h6X the abstract function f(x + ah) of the complex variable a is defined which at the 
point ~ = 0 has the Zfferivative 

d 
a.= f (X+ cth)l~=o=6 f (x; h). (2 .15)  

6f(x; h) for fixed x is a linear mapping in h from X to Y called the first variation (the 
Gateaux different ial). 

THEOREM 2.3. A G-differentiable mapping f has variations (differentials) 

0n 
6nf (X; hl, h2 . . . . .  h,,)= dcLl...d:,;, ' f (x-{-alh~--]- " "  +a,,hn)[~l=0 (2 .16 )  

of all orders which are symmetric, n-linear forms in hl,...,h n G-differentiable with respect 
to x for fixed hi,...,h n. A G-differentiable mapping f can be expanded in the Taylor series 

f ( x + h ) = ~  I n -~-f6 f ( x ,  h), (2 .17 )  
n = O  

which converges VX, hEX in the norm II If2 of the space Y; here 

6nf  (x; h)-----f"f (x; hi . . . . .  hn)ltq=n- (2 .18)  

Definition 2.2. A mapping f is called locally bounded if Vxn~X there exists a number 
r(x0) > 0, q(x0) > 0 'such that Uf(x)ll2 ~< q(x0) whenever llx --x01[l 6 r(x0). 

Definition 2.3. A G-differentiable and locally bounded mapping f is called an analytic 
mapping. 

THEOREM 2.4. An analytic mapping f is strongly (Frechet) differentiable and its varia- 
tions of n-th order are continuous, n-linear forms, whereby 

1[ 6nf  (x; hi . . . . .  hn) H "-< rtlq (x)11 h~ ]1... 11 hn [[ (r (x)"n). (2 .19)  

For f i x e d  h l , . . . , h  n ,  6 n f ( x ,  h l , . . . , h n )  i s  an a n a l y t i c  mapping in  x and 

8 (6nf (x; ht . . . . .  hn), h,,~l)=O"+lf (x; hi . . . . .  hnd)- (2 .20)  

THEOREM 2 . 5 .  Le t  { f k ( x ) }  be a sequence  o f  a n a l y t i c  and l o c a l l y  u n i f o r m l y  bounded map- 
pings of X into Y. If in some sphere llx --x011x ~< r there exists the pointwise limfi(x) (in 

~-*oo 

the norm of the space Y), then this limit f(x) exists everywhere in X and is an analytic 
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mapping, whereby 

6nf (x; h)=l im 6nfk (x; h). (2.21) 
k-.~ oo 

All definitions and formulations of theorems are presented for the space X in precisely 
the form they are required. In order to better understand what analytic properties are to 
be required of a GF, we consider the class of configuration measures concentrated on the 
space Mz -- simple measures on Z ~. A measure concentrated on MI we call a simple configura- 
tion measure P. 

THEOREM 2.6. The GF Bp of simple configuration measures with phase space Z ~ are analytic 
functionals on L'(Zg). 

Proof. For simple measures $ on Z 9 

~lt(x)la~= ~ [t(x)l~< ~ It(x)l=;Itll, 
xfic x(~zv 

where lltll is the norm of t in the space L'(Z ~) of functions absolutely summable on Z ~. Thus, 
$'(ZV)=L ' ( z  v) . S i n c e  

Y Jr(x)[ 

IxI~Ec(l.+l(x))[..<eXEC ..< elltl,, (2.22) 

by (2.4) a mapping ~ is defined acting from L'(E ~) into the space of functions on MI (or CE) 
which are integrable with respect to a simple configuration measure P. This explains why 
L'(Z ~) is taken as the domain of the GF. It follows from (2.22) that 

IBv(t)I=IS (II t) (~) dP (~) l<~xp {If t II}, (2.23) 

i.e., the GF is locally bounded on L'(Z~). To prove analyticity of Bp(t) it remains to prove 
analyticity in the whole complex plane of the function Bp(t+ah), Vt, h6L'(Z'). This latter 
follows trivially from the fact that the series 

II ,,,c., II 
xfc ]c~ xfc. x~.c\c. 

is majorized by the series 

ellt,r ~ [u ],c0, ([ co If) -l I] h lilt,,-- exp {If t ]] q- I a I II k]I } . 
[c~ 

The properties of GF of simple configuration measures with phase spaceZ ~ serve as astan- 
dard making it possible to distinguish an entire class of measures which should be called 
analytic -- these are configuration measures with GF analytic on L'(E, ~). Since the over- 
whelming majority of results in the method of the GF have been obtained for these measures, 
we shall concentrate attention just on them. Having in mind applications to statistical 
physics, we consider two classes of measures: with phase space Z ~ (discrete models) and with 
phase space R ~ and Lebesgue measure ~ (continuous models). Practically all results obtained" 
for configuration measures of continuous models carry over automatically to configuration 
measures of discrete models. To be specific, we therefore consider configuration measures 
with phase space R ~. 

THEOREM 2.7 [28]. A functional A(t) analytic on L'(R ~) has the form 

ZffiO 1 = 1  

(2.24) 

where a ( x ) , = a ( x i  . . . . .  xs)6L" (~v), t (x)ELt(Rv), d(x)s denotes  i n t e g r a t i o n  wi th  
besgue measure on R Vs. 

Proof. By Theorem 2.3 A(t) can be represented by the expansion (2.17) 

A (t)= {, 6,A (o o ,  
$ ~ 0  '. 

respect to Le- 

2867 



where 6SA(0; t) are continuous (bounded) s-linear forms on L'(RV). For s = I diA(0; t) is a 
continuous linear functional on L'(R v) which, as is known, has the form 

6'A (0; t )=~  a(x)  t (x) ax,  

where a(x)EL~(Rv). Let s C) be the space of bounded, bilinear forms on L'(R v) x L'(RV). 
Using the construction of the tensor product, each bilinear form on ~2~, C) can be iden- 
tified with a continuous linear functional in .~{Lt~L ~, C) , where L~L ~ is the completion of 

Lt(~)| v) in the strong cross norm [19] .  Since Lt(RV)@L'(Rv)-=L'(R2V), it follows that 

.o~ (L'@L', C)-----.o~ ~ '  (R~D, C ) = L '  (R2~ * = L "  (R~). 

From this it follows that each form in ~t, C) has integral form. This goes also for 
the quadratic form corresponding to it. Thus, 

6'A (0; t) = ~ a (x, V) t (x) t (v) ctxay. 

Similarly, ~s(L',C) -- the space of bounded s-linear forms -- can be identified with 
L=(RVS), and each s-linear, bounded form on L'(R v) has integral form, whereby for symmetric, 
polylinear forms the kernels a(X)s are symmetric functions. The proof of the theorem is com- 
plete. 

Thus, each functional analytic on L'(R v) generates ("produces") a collection of functions 
{a(X)s}~. If the point of the expansion is not zero, then in place of (2.24) we have 

$ 

A (t + h)= ~ ~ ~,= (t; (x),) 1-[ h (x,)a (x),. (2 125 ~ 

l = I  

Definition 2.4 [28]. The kernel a(t; (x) s) defining the differential of s-th order of a 
functional A(t) analytic on L'(R v) 

6sA (t; h) ~--- ~ a (/; (x)s) I I h  (x~) cl (x)s, (2.26) 

is called the functional derivative of A(t) of s-th order (at the point t) and is written 

a (/; (X)s) = ~ (X)s A ( t ) ~ - ~  (xt . . . . .  xs) A (/). ( 2 . 2 7 )  

We a g r e e  to  w r i t e  ~(X)oA(t)mA(t). The c o l l e c t i o n  o f  f u n c t i o n a l  d e r i v a t i v e s  of  a f u n c t i o n a l  
A( t )  a n a l y t i c  on L'  (R v) can be c o n s i d e r e d  a f u n c t i o n  9O(co)A(t) on t h e  space  of  f i n i t e  con-  
f i g u r a t i o n s  ~g*. With c o n s i d e r a t i o n  o f  t h i s  the  e x p a n s i o n  (2 .25)  can be w r i t t e n  i n  t he  form 

A (t-~-h)= y ~ (Co) A (t) I I  h (x)dL (c 0. (2 .28)  
OC xECo 

By Theorem 2.4 each functional derivative :~(x)~A(t) is an analytic mapping from L' (R ~) 
into L=(R~S), and for it there is the expansion 

(Co) A (t + h) = ~ ~ (c o U Ct) 1-[ k (~) d~ (cz). ( 2 . 2 9  ) 
X xE~, 

The next theorem gives the most important property of analytic configuration measures. 

THEOREM 2.8. On each o-algebra ~A(A@~0) a configuration measure P with a GF Bp(t) 
analytic on L'(R v) is given by the system of the densities 

~A (C~--~ ~ (C~ Bp ( - -  %A), (2 .30)  

where • is the indicator of the set AE~0. 

Proof. For the proof it suffices to consider the measure P on the generators (1.5) of 
the algebra ~'~A.. On these sets by (2.9) the measure is determined by the restriction of the 
GF to functions (2.5). Since 

CX&(x) = l + ~__ I) Xa (X), (2 .3  1 ) 

the functions of (2.5) us can be written in the form 
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and 

k 

u~ (x) = I I  [l + ( a , -  1) za, (x)l 
t--1 

(2.32) 

Bp(u=)=BaC=fIt[l+(at_l)x~l]_l)" (2.33) 

Computing the derivatives with respect to ei of this expression, we obtain by (2.9) 

k nl 

n (2.34) 
1=1 l=n/--I 

where AtcA and A~nAt-----O, i--/=l, ~----0, n=~nl, which proves that on ~A 

by the density (2.30). From (2.34) by the nonnegativity of the measure P it follows that 

~(co)Bp(--Xa)>/O, YA(~ o, VCo(~,TC. (2.35) 

Remark.  I t  i s  o b v i o u s  t h a t  a c o n f i g u r a t i o n  m e a s u r e  w i t h  p h a s e  s p a c e  R ~ (and L e b e s g u e  
measure ~) whose restriction to ~A is given by densities ~A(C0) is simple. Hence, analytic 
configuration measures with phase space R ~ (and Lebesgue measure ~) are simple configuration 
measures. 

The property of the GF of an analytic configuration measure of determining its densities 
is characteristic. 

THEOREM 2.9 [27]. In order that a functional B(t) analytic on L'(R 9) be the GF of a 
configuration measure P with phase space R ~ it is necessary and sufficient that the following 
conditions be satisfied: 

B (0)= | ,  (2.36) 

(Co) B (-- XA) >i 0, VAE~50, Vr u 6~. (2.37 ) 

Proof. The necessity of (2.37) has already been proved. (2.36) follows trivially from 
definition (2.3) with consideration of the representation (2.4). Conversely, if conditions 
(2.36) and (2.37) are satisfied, then we define the nonnegative functions on 

o A (Co) = ~ (Co) B ( - -  X^), VAE~0, ( 2 . 3 8 )  

and show that they satisfy the conditions of consistency and normalization (1.14), (i.15), 
i.e., they are densities of the distribution 

[ 1I ~., (x) a~ (Co)=B (o)= I. .. aA (Co) dA (Co) = ~ (Co) B ( - -  XA) 
,W(A) 

Further, for Ac-'A. and A=A\A we have by (2.29) 

oa (c0)=~ (co) B (--Z~)=~ (c4 B (--~+ Z;) 

the measure is given 

= ] ~ (co u c,) B (-- xA) II zr(x) a~ (cO = ] oA (Co u c,) a~ (c,) 
x6cI~ ~(E) 

By Theorem 1.2 the system of densities of a distribution defines some configuration measure P. 
It remains to prove that the measure P and the functional B(t) are connected by the relation 

B (t) = S I I  (1 q- t {x)) dP (c). ( 2.39 ) 
x~c 

First of all, it is necessary to prove the existence (P-almost everywhere) and summability 
of the function (Ht)(c) on M. We choose a function t 6L'(R v) (more precisely, a representa- 
tive of the corresponding equivalence class) bounded on R ~. With each increasing sequence 

) ANEW0 U An----R ~ there is associated a particular method of finding (~lt[)(c) for which the 
~ll=| 

partial products are the functions 
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*n (C)=l~  (1 + ~A n (x) lt (X)I ) =  (~XA n It I)(c). (2 .40)  
x~c 

The f u n c t i o n s  ,n (C)  depend on ly  on the  p a r t  of  the  c o n f i g u r a t i o n  c c o n t a i n e d  in  An: ~n(c )=  
*n(c ~An). Therefore, 

e , n  (C) dP (c) = *n (C0) d P  (Co) 
C 

= ~ I I  (I+X~n(X) l t (x) l )~(~o)B(__X^n)eX(Co)=B(~, l t l )  ' (2.41) 
�9 '~(~) ~ o  

where P denotes the restriction of the measure P to the algebra ~a which is given by the 
system of densities of the distribution (2.38). As n + =, XAntt + in L'(R~); therefore, by 

the continuity of B(t) the right side of (2.41) is bounded uniformly with respect to n. The 
existence and integrability of (Hltl(c) [and with it of (Ht)(c)] follows from the theorem of 
Levy [18]. Replacing in (2.41) Itl by t and passing to the limit, we obtain (2.39). Since 
the right side in this relation does not depend on the choice of representative 16LI(R ~) , the 
left side also does not depend on it. The relation (2.39) extends to bounded functions t 
L'(R ~) trivially by passing to the limit. 

Condition (2.35) is only a weak version of conditions (2.13). The following conditions 
are a complete analogue of (2.13). 

LEMMA 2.1 [27]. An analytic GF Bp(t) on the set 

~t--{t~  L t ( R v ) : l + t ( x ) > O  n. B. B ~v} (2 .42)  

satisfies the condition 

~(co) Bp(~)>0, V ~ t ,  Vc0~ 3~" (2 .43)  

Proof. VAE~0 and rE31 

(Co) B. (z~,t)= J" ~ (Co u c~) B (-- x.) 1-[ Iv, (x) 0 + t (x))] a ,  (cO >0,  
�9 ~ ( a )  xEc' 

since nonnegative expressions stand under the in teg ra l  s ign. Le t t i ng& § v, by the a n a l y t i c i t y  
of functional derivatives we obtain (2.43). 

It is obvious that |+Jt~if(Rv); nevertheless, St "occupies little space" in L'(R~). 

LEMMA 2.2 [27]. The set $I is nowhere dense in L' (R~). 

A proof of the lemma is presented in [27]. Functions on 

p (Co) ~ .~ (Co) Bp (0) ( 2.4 4) 

have special significance in statistical physics; they are called correlation functions. 
There is a connection between the functions p(c0) and OA(C0) [23]. It can be established in 
an elementary way in terms of the generating functional Bp(t): 

aa (Co) = ~D (Co) Bp (--  y..~) - - - - S ~  (Co U c0 B o (0) (--  l)lc,, 1-[ Xa (x) d~. (cl) 
~CI  

S p (CoU cl (-- 1) Icl 1-[%A (x) r (cl), (2 .45)  
:~(a)  xEc, 

p (Co) = @ (Co) Bp (0) 

=x(~,~ j" ~ (Co u c~) B. ( - x~,)xe=,1-I z,, (x) e~. (c~) - ,, (Co u cOx~, (2.46) 

The mathematical expectations of variables of summation type can be expressed in terms 
of the functions p(c0) [24]. Let ~n(Xl .... ,x n) be a syrmnetric function. We denote by c n the 
configuration in which ICnl = n, i.e., c n = {xl .... ,x n} is a collection of n points x~6R v. 
We define, formally for the time being, a function on C E 
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,(") (C)--~ X *" (C.) " (2.47) 
CnCC 

and call it the summation function of n-th order. 

LEMMA 2.3. Let P be a configuration measure with analytic GF Bp(t). V~,(c,)6L'(l~ "v) 
the functions (2.47) are summable on P and 

Proof. 
functions 

,~,~ ( c ) =  ~ * n  (C) X~ (Cn) 
CnCe 

are integrable, where XA(Cn) is the indicator of A n . 

It> 

] ,(.) (c) d P  (c) = (nt) -~ ] p (xt . . . . .  �9 Xn~ ~ .  (Xt . . . .  , X.)  d (X).. ( 2 . 4 8 )  

Exactly in the same way as in Theorem 2.9, it suffices to prove that VA6~0 the 

! 

= 2~., ( - - . ) '  I *"(x~ ..... x . ) x , .  (x ,  . . . . .  x ~  . . . . .  x . ) a ( ~ ) . .  
nt~n ~m 

'S = ~ 0 (x~ . . . . .  x,,) , .  (x, . . . . .  x.) xA" (x~ . . . . .  x .)  a (x.), 

and ( 2 . 4 8 )  i s  o b t a i n e d  f rom t h i s  by p a s s i n g  t o  t h e  l i m i t  A § R ~. With t h i s  t h e  g e n e r a l  s t u d y  
of properties of GF is completed. In the following sections solution of some problems of 
statistical physics by the method of GF will be demonstrated. From a general point of view 
this reveals the possibilities of the method in specific applications. 

3. Gibbs Grand Canonical Ensemble 

The simplest model of a physical system in equilibrium with the surrounding medium is 
a system of identical point particles occupying a bounded region AcR v, and capable of ex- 
changing energy and particles with the medium. A mathematical model of such a system is the 
probability space [3~, ~,PA] , where A6~c, and the measure PA is given by a density pA(c) with 
respect to the measure ~ in ~(A) 

p~ ( c ) =  E~'zlcl exp{--~H(c)}xa (c), ( 3 . 1 )  

where  X a ( c ) = I l X a ( x )  , and XA i s  t h e  i n d i c a t o r  o f  A; t h u s ,  t h e  measure  PA i s  c o n c e n t r a t e d  on 
x6c 

~(A). The quantity 8 > 0 is inversely proportional to the temperature and characterizes the 
intensity of the thermal interaction of the system with the medium. The intensity of material 
interaction (the transport of energy by particles) is characterized by the activity z > 0. 
The Hamiltonian H(c) is determined by the potentials of the external field el(x) and the bi- 
nary interaction ~2(x) 

/ - / ( C ) = X ( D t ( X ) +  X (Di(x--Y)" (3.2) 
x6.c {x.v}Cc 

where  r and r a r e  m e a s u r a b l e ,  e s s e n t i a l l y  l o w er  semibounded f u n c t i o n s  on R ~ and r i s  an 
even  f u n c t i o n  

~2 (x) = ~2 ( - x). ( 3 . 3 )  

Values assumed by the potentials on a set of measure zero are inconsequential for the density 
PA(C); therefore, potentials differing on a set of measure zero are identified. 

- m  I exp {--~h r (x)n} d (x). ( 3 . 4 )  
Z n 

n=O An 

is the statistical sum. A sufficient condition on the Hamiltonian ensuring its existence 
VA~0, is the stability condition: ~b>0 such that 

/ 4 ( c ) > - - b l c l  (a.e. ~nO0. (3.5) 
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The measure PA defined by the density (3.1) is called the Gibbs grand canonical distri- 
bution, while the mathematical model [~f, ~,Pa] is called the Gibbs grand canonical ensemble 
(GCE). The measure PA can be considered defined on [M,~] by the system of densities of the 
distribution 

O~ (C) = ~ (C) B~ (-- XA), (3.6) 

constructed on the basis of the GF 

Ba(Q= ~ I I  (l-]-t(x))pa(c)d~(~. (3.7) 
.TC(a) xEc 

For stable Hamiltonians analyt ici ty of the functional (3.7) on L'(R v) is easily established. 
From the set of configuration measures on [M, ~] the Gibbs distribution is distinguished by 
the equation which i t s  GF sa t i s f ies .  We require additionally that V~>0, 

exp { - -  ~ 2  (x)} - -  1 = f (x)EL" (R v) N L" (R~. ( 3.8 ) 

A b i n a r y  p o t e n t i a l  w i t h  t h i s  p r o p e r t y  we c a l l  r e g u l a r .  

LEbIMA 3.1 [ 2 5 ] .  The GF o f  GCE w i t h  s t a b l e  H a m i l t o n i a n  H and r e g u l a r  b i n a r y  p o t e n t i a l  
~z s a t i s f i e s  t h e  B o g o l y u b o v  e q u a t i o n  

where 

(x) (t) = (x) (t + / Ixl (t + l)), (3.9) 

za (x) = Xa (x) z exp {-- ~O, (x)} (3. I O) 

and f[x](y) = f(x -- y). The Bogolyubov equation is characteristic for the GF of GCE. To 
establish this some of its simplest properties are required. We rewrite (3.9) in a somewhat 
more general form for some functional A(t) 

~ (x) A (t)= z (x) A (l-F f [xl (t + l)), (3.11) 

where 

z (x)6L" (R'), f (x) =/(-- x)~L' (~') n L" (~'). (3.12) 

(3.12) constitutes minimal conditions on the (generally speaking, complex-valued) functions 
z(x) and f(x) in order that Eq. (3.11) be meaningful; z and f are parameters of Eq. (3.11). 
The Bogolyubov equation (3.11) is an equation with shifted argument, and the shift f[x](t + I) 
depends on t. For this equation there is only the one additional condition 

A(O) =| (3.13) 

-- the normalization condition. This "point" condition can single out a unique solution of 
Eq. (3.11) if the latter is considered on the entire space L'(RV). In this case solutions 
of the equation must be analytic functionals on L'(RV), since they have a Frechet derivative 
on L'(RV). A natural class of functionals is thus distinguished which contains solutions of 
the Bogolyubov equation -- functionals analytic on L'(RV). We denote it by ~. 

LEMMA 3.2 [27]. Each solution A~ of the Bogolyubov equation satisfies the relation 

A (t)=A (xat), (3.14) 

where XA is the indicator of A = supp z(x). 

Proof. We represent tEL'(~ v) in the form 

t ( x ) =  xA (x) t ( x ) +  (l - x A  (x)) t (x) = t, ( x ) +  (x). 

For  a s o l u t i o n  A ( t )  o f  Eq. ( 3 . 1 1 )  we h a v e  

1 

A (t)= A (I, + i2) = A (l,) + ~ ~ ~ (x) A (t, + at2) ts (x) dxda = A (t,) = A (Xat), 
0 

s i n c e  by ( 3 . 1 1 )  ~ ( x )  A ( t ) - - z ( x )  , and z ( x ) ( l - - xa (x ) ) l ( x )=O.  

If A=suppz(x)E~0., then the general solution of the Bogolyubov equation is 

A(t)=A o .[ ]-[ (l+f(x--y))[[ z(x)(|+t(x))dk(c), (3.15) 
OC(a) {x.y}Cc xEc 

LEMMA 3.3. 
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if it belongs to ~ and only the trivial solution A E 0 otherwise; A0 = const. 

Proof. Successively computing the functional derivatives in (3.11), we obtain 

~(c)  A(t)---- IX z (x )  H ( I H - f ( x - - y ) )  A ( t + f [ c l ( t + l ) ) ,  
~Ce {x.~lCc 

where 

By Lemma 3.2 

(3.16) 

.f[c I (g) = 1 I  (1 .-]-.f(x--y))--I. ( 3 . 1 7 )  
xEc 

(c) A (--  x~.) = ]-I z (x) 1-[ (l + f ( x - -  y)) A (--  Z~), 
xE~ g '  Y} 

whereby A(--XA) is defined, since by hypothesis %~L'(Rv}. Thus, all derivatives of the func- 
tional A(t) at one point have been found. On the basis of them it remains to construct the 
series (3.15). The constant A0 is obviously equal to A(--XA). If the series (3.15) does not 
define an analytic functional on L'(R~), then there remains only the one trivial solution 
which obviously exists, since Eq. (3.11) is linear and homogeneous. 

If we substitute f and z defined by (3.8) and (3.10), respectively, into (3.15), then 
the functional A(t) hereby obtained differs from BA(t) -- the GF of the GCE -- only by a factor. 

THEOREM 3.1. The Bogolyubov equation with parameters z of (3.10) and f of (3.8), where 
~i and ~2 are defined by (3.2) -- a stable Hamiltonian, r is a regular binary potential, and 
AE~0, has a unique solution satisfying the normalization condition (3.13). 

Proof. By the estimate (3.5) the series (3.15) converges VI~L'(Rv). It remains to nor- 
malize it: 

A (0) = 1 = A 0 ~ exp {--  ~H (c)} dk (c) = A0~A. 

For  r e a l  z ( x )  and f ( x )  E ~ 0 ,  and t h e  c o n s t a n t  A0 i s  u n i q u e l y  d e t e r m i n e d :  A0 = E~ z.  I f  t h i s  

i s  s a t i s f i e d  t h e  f u n c t i o n a l  ( 3 . 1 5 )  c o i n c i d e s  w i t h  t h e  GF o f  t h e  GCE. 

The n e x t  r e s u l t  i s  a c o r o l l a r y  o f  Lemma 3.1 and Theorem 3 . 1 .  

THEOREM 3 . 2 .  A c o n f i g u r a t i o n  m e a s u r e  w i t h  p h a s e  s p a c e  R v i s  a G ibbs  d i s t r i b u t i o n  w i t h  
s t a b l e  p o t e n t i a l  and r e g u l a r  b i n a r y  p o t e n t i a l  i f  and o n l y  i f  i t s  GF s a t i s f i e s  t h e  Bogo lyubov  

e q u a t i o n .  

The B o g o l y u b o v  e q u a t i o n  t o g e t h e r  w i t h  t h e  n o r m a l i z a t i o n  c o n d i t i o n  ( 3 . 1 3 )  d i s t i n g u i s h e s  

t h e  GF o f  t h e  GCE f r o m  t h e  c l a s s  o f  a n a l y t i c  f u n c t i o n a l s  and h e n c e  can  be  s e t  a s  t h e  f o u n d a -  
t i o n  f o r  s t a t i s t i c a l  p h y s i c s .  E q u i l i b r i u m  c l a s s i c a l  s t a t i s t i c a l  p h y s i c s  h e r e b y  a c q u i r e s  t h e  

c a n o n i c a l  f o r m  o f  a p h y s i c a l  t h e o r y :  t h e  b a s i c  e q u a t i o n  whose s o l u t i o n s  d e t e r m i n e  t h e  s t a t e s  
o f  t h e  p h y s i c a l  s y s t e m  i s  i n t r o d u c e d  a x i o m a t i c a l l y .  I n  t h i s  c a s e  t h e  g e n e r a t i n g  f u n c t i o n a l  

i s  c o n v e r t e d  f rom a c o n v e n i e n t  a u x i l i a r y  d e v i c e  i n t o  a c h a r a c t e r i s t i c  o f  t h e  s t a t e  o f  t he  

s y s t e m .  We s h a l l  t r e a t  GF i n  j u s t  t h i s  way.  We s h a l l  d e m o n s t r a t e  a d v a n t a g e s  o f  t h i s  f o r m u -  

l a t i o n  o f  s t a t i s t i c a l  m e c h a n i c s  i n  t h e  n e x t  s e c t i o n .  

4. Gibbs Distributions of Infinite Systems. 

Although Gibbs GCE are defined VA6~0, the behavior of real systems is described by en- 
sembles for which A~R ~ is "sufficiently large"; this is the macroscopic condition of sys- 
tems of statistical physics. In correspondence with this an analysis must be made of the 
asymptotic (for A expanding to all of R ~) properties of Gibbs distributions. The GCE in- 
duces a measure PA on [M, ~]. This makes it possible to construct a limit Gibbs distribution 
P (PA § P as A § R ~) which approximates the properties of the GCE for large A [23]. The 
limiting procedure used to find the limit Gibbs distribution -- the thermodynamic limiting 
procedure (TLP) is the mathematically precisely formulated macroscopic condition for systems 
studied in statistical physics. Consideration of TLP in the method of GF leads to the prob- 
lem of characterizing convergence of configuration measures in terms of convergence of their 
GF. In order to formulate the fundamental theorem in this direction, we introduce the follow- 
ing definition. 
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Definition 4.1 [47]. A sequence of configuration measures Pn with phase space E is 
called convergent in distribution to a measure P if it converges to P on the system of gen- 
erators C~''~ of the algebra of cylinder sets in ~. 

In other words, Pn converges in distribution to P if the sequence of distributions of the 
vectors (~(AI),...,~(Ak)) induced by the measures Pn converges to the distribution induced by 
the measure P. 

THEOREM 4.1 [46, 47]. A sequence of configuration measures Pn converges in distribution 
to a measure P if and only if the sequence of GF Bpn(U) converges pointwise to Bp(u) on ~{.r x 
(E). 

Proof. If Bpn(u).-+Bp(U ) VuE~.r(E), then the generating functions Bpn(U a) of the vectors 

(~(AI),...,~(Ak)) defined by (2.6) converge to Bp(ua). This is sufficient for convergence of 
the corresponding distributions. Conversely, convergence of the distributions of the vectors 
(~(AI),...,~(Ak)) implies convergence of the GF Bpn(U) to Bp(u) on simple functions uE~.r(E). 

! 
For an arbitrary uE~{.r(E) there exist two monotone sequence Um ~ u ~ u m approximating it 
from above and below. By (2.13) for any m, n we have 

B pn (Um) < Bpn (u) ..< Bpn (Um/). (4 .  1 ) 

Hence for n § = 

B p  (urn) -.< lira Opn (u)  < lira Bp (u) ..< Bp (urn'). 

I t  r e m a i n s  t o  u s e  t h e  m o n o t o n e  c o n v e r g e n c e  t h e o r e m .  

n i n~ . 
For those phase spaces for which the system of cylinder sets CA-'''A. ~ is the class de- 

. ~''" K 
fining convergence [4], convergence of the configuration measures zn dlstributxon is equiva- 
lent to weak convergence of these measures. This is the situation with the phase space R ~ 
or Z ~ . 

THEOREM 4.2. For weak convergence of measures Pn with phase space R ~ or Z ~ to a measure 
P, it is necessary and sufficient that the GF Bpn(U) converge to the GF Bp(u) YuE~.r. 

This theorem is a simple corollary of Theorem 4.1 and the theorem on coincidence of con- 
vergence in distribution and weak convergence of measures on R = proved in [4]. 

The problem of characterizing relative compact sets of configuration measures in terms 
of properties of the GF corresponding to them has not been solved. For analytic measures we 
shall present an effective sufficient criterion for relative compactness. With a view to 
further applications, we consider this criterion in the space of ~ of analytic functionals 
on L'(R~)). Weak convergence of measures leads to pointwise convergence of their GF; in 
we therefore introduce the topology of pointwise convergence (we call it weak convergence). 

LEMMA 4. I. A weakly closed, locally uniformly bounded set ~0c~ is weakly compact. 

Proof. By Theorem 2.4 local uniform boundedness of ~0 implies local uniform bounded- 
ness of the generating functionals A~G , and this, in turn, implies equicontinuity of ~0. 
By the second theorem of Ascoli [38] the weak topology in ~0 coincides with the topology 
of pointwise convergence on a dense set in L'(R~). Since L'(R ~) is separable, this topology 
is metrizable. By Theorem 2.5 ~0 is closed in the space of functionals continuous on L' x 
(R v) with the weak topology, and it is compact in it by the third Ascoli theorem [38]. 

We denote by ~7,c~ the set of generating functionals, i.e., functionals satisfying 
conditions (2.36), (2.37). The next lemma distinguishes compact sets in this set. 

LEMMA 4.2. Let ~0c~ be a closed, locally uniformly bounded set. Then ~p,0=~N~0 
is compact. 

The definition of compactness of a set of configuration measures in terms of compactness 
in ~ has the advantage that it preserves the property of analyticity of a measure for the 
limit points of these sets. The criterion of compactness formulated in Lemma 4.2 is sufficient 
to prove the existence of a limit Gibbs distribution. To clarify characteristic properties 
of these distributions it is necessary to further study the Bogolyubov equation (3.11). 

LEMMA 4.3. Let An(t ) be a sequence of solutions of the Bogolyubov equation with param- 
eters (Zn, fn). If An6~0 and converges weakly to A, z n § z in the weak-* topology of 
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L~(RV), fn § f in L'(RV), and [IfnIL = < a < +=, then A is a solution of the Bogolyubov equation 
with parameters (z, f). 

To prove the lemma it is necessary to write the Bogolyubov equation for A n and pass to 
the limit in it. On the left side this is possible by Theorem 2.5, while on the right it is 
possible by the equicontinuity of functionals in ~0 and convergence in L'(R ~) of the argu- 
ment of the functional 

lit-Of, ix] (t+1)--(t+t[x] (t+l)ll,-~0 Vx~R ~. 

Remark.  The a s s e r t i o n  o f  Lentna 4 .3  r e m a i n s  in  f o r c e  i f  9~0 i s  r e p l a c e d  by  ~ , 0 .  In  
t h i s  c a s e  a l s o  A6~p,0. 

THEOREM 4 . 3 .  Suppose  ~1 and ~2 d e f i n e  a s t a b l e  H a m i l t o n i a n ,  r i s  r e g u l a r ,  and f o r  g iven  
z ,  B t h e r e  e x i s t s  ~ p , ~  such  t h a t  t h e  GF o f  t h e  GCE Bn(t)Oi~p,oVA6~o. Then f o r  t h e  g i v e n  z ,  B 
there exists at least one limit Gibbs distribution whose GF satisfies the Bogolyubov equation 
with parameters 

z ( x ) =  z exp {--~@1 (x)}, f(x)=exp{--~@2(x)}--I (4.2) 

Proof. From the stability condition it follows that [Izl[~ and llflI~ are definite. On 
the basis of an increasing sequence An6~0 such that U~,=~ v we construct a set of GF of 
the GCE BAn(t) (with the given z, B). By hypothesis this set is relatively compact. It re- 
mains to select from it a convergence subsequence. By Lermma 4.3 its limit B(t) will satisfy 
the Bogolyubov equation with parameters (z, f) of (4.2), since BAn(t) satisfies the Bogolyubov 
equation (3.9), and ZAn(X) = XAn(X)Z(X) + z(x) as n § =. 

The condition of Theorem 4.3 encompasses the broadest class of interactions with a regu- 
lar, binary potential for which infinite models were considered in classical statistical phys- 
ics (it includes the class of potentials investigated in [12, 14, 22, 28, 44]). Of course, 
this is a condition difficult to verify and its description in terms of other concepts ad- 
mitting effective utilization is a current problem. Theorems 3.2 and 4.3 make it possible 
to formulate the following definition. 

Definition 4.2. A Gibbs distribution with parameters (z, f) is a configuration measure 
with phase space R v (or Z v) whose GF satisfies the Bogolyubov equation with parameters (z, f). 

Among solutions of the Bogolyubov equation the GF of Gibbs distributions are distin- 
guished by the following property. 

THEOREM 4.4. A solution A(t) of the Bogolyubov equation with parameters (z, f) defines 
the GF of a Gibbs distribution if and only if 

A ( t ) >  0, V/6Jt .  ( 4 . 3 )  

Proof. If A(t) is the GF of a Gibbs distribution, then by definition of the GF (2.39) 
and of the set fit (2.42) A(t) ~ O. To prove positivity of A(t) on ffl we suppose otherwise: 
~t06fft, for which A(t0) = 0. We choose a function ~0ffl of constant sign such that ]I~H=<+oo. 
Then for a real variable a such that 0~.a-~<I[~]l~ -l, we have ~l~10fft. By definition (2.39) of 
GF we have 

0 <  a (to--= 1,1 (to+ t)) < A (tO = 0  II, II='l. (4.4) 

Now A(G--al,l(to+l)) f o r  f i x e d  t and , i s  an  e n t i r e  f u n c t i o n  o f  t h e  complex  v a r i a b l e  
a. It follows from (4.4) that it is identically equal to zero. In particular, at the point 

= I (or ~ = --I) 

A ( ~ + ,  (t0+t)) =0. (4.5) 

By means of  t h e  r e p r e s e n t a t i o n  ~ = ~+ + ~ - ,  where  ~+ > 0 ,  ~-  ~ 0 and t h e i r  s u p p o r t s  do n o t  

i n t e r s e c t ,  t h i s  e q u a l i t y  e x t e n d s  t o  V~ef f~ f lL~( /~ ) .  From t h e  B o g o l y u b o v  e q u a t i o n  we o b t a i n  t h e  

s y s t e m  ( 3 . 1 6 )  wh ich  shows t h a t  ~(c)A(to)=O , s i n c e  f [ c ] ( y )  d e f i n e d  by  ( 3 . 1 7 )  b e l o n g  t o  ~ t f l  
L~(RV).  V a n i s h i n g  o f  A t o g e t h e r  w i t h  a l l  i t s  d e r i v a t i v e s  o b v i o u s l y  c o n t r a d i c t s  t h e  n o r m a l -  

i z a t i o n  c o n d i t i o n  ( 2 . 3 6 ) .  C o n v e r s e l y ,  s u p p o s e  A ( t )  i s  a s o l u t i o n  o f  t h e  B o g o l y u b o v  e q u a t i o n .  

From the system (3.16) and condition (4.3) it then follows that 

(Co) A (t~) ~ 0 V~6~z and Co63~', 

i.e., A is a GF. We fix a function f and the normalized solution of the Bogolyubov equation 
with a given function z we denote by A(t; z). 
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LEMMA 4.4. Suppose for ~t'(Rv)Ni-(Rv ) A(~;z)W=0. Then 

A (t + ~ ( t  + 1); z ) /A  ('g; z ) =  A (t; (1 + ~) z). ( 4 .6 )  

P r o o f .  By d i r e c t  s u b s t i t u t i o n  i n t o  the  Bogolyubov  e q u a t i o n  i t  i s  e a s y  to  s e e  t h a t  f o r  
g i v e n  ~bA(t'+ ~ ( t  + 1) ;  z) s a t i s f i e s  t h e  Bogo lyubov  e q u a t i o n  w i t h  p a r a m e t e r s  (1 + ~ ) z ,  f .  
N o r m a l i z i n g  t h i s  f u n c t i o n a l ,  we a r r i v e  a t  ( 4 . 6 ) .  The p r o p e r t y  (4 .6 )  o f  s o l u t i o n s  o f  t h e  
Bogo lyubov  e q u a t i o n  i s  c a l l e d  the  p r o p e r t y  o f  m u l t i p l i c i t y .  This  name i s  c o n n e c t e d  w i t h  t he  
fact that 

A ( t + , ( t +  z ) =  A (,; z) A (t; (l + , )  z). (4.7) 

For f i x e d  f ,  z we c o n s i d e r  t h e  p a r a m e t r i c  s e t  A(t  + ~ ( t  + 1);  z ) .  We d e m o n s t r a t e  the  
fundamental importance of the multiplicative property for simple lattice systems. 

LEMMA 4.5. The set of GF of limit Gibbs distributions with parameters (3.12) of simple 
lattice systems lies in the closure of the set A(t; (I + ~)z0, where ~65~ 

Proof. By the estimate (2.23) this set is locally uniformly bounded and hence relatively 
compact. For all z such that suppz~suppz0 there exists a sequence ~n such that (I + ~n)Z0 § 
z in the weak-* topology of the space L~176 By the relative compactness of the set A(t; 
(I + ~)z0), from the sequence A(t; (I + ~n)Z0) it is possible to extract a convergent subse- 
quence. On the basis of Lemma 4.3 its limit is A(t; z), i.e., it satisfies the Bogolyubov 
equation with parameters (z, f). In particular, in this manner it is possible to construct 
the GF of the GCE of finite systems A(t; z~) Acsuppz0. In the closure of the last set ] ie uhe 
GF of limit Gibbs distributions. 

We note that actually somewhat more has been proved: in the closure of A(t; (I + q,)z0) 
lie the GF of limit Gibbs distributions with parameters (z, f) where z is such that supp z 
suppz0. If suppz0 = Z v, then all limit Gibbs distributions with given function f can be re- 
covered from one solution of the Bogolyubov equation with parameters (z0, f). A characteriza- 
tion of Gibbs distributions is possible in terms of the canonical form of the conditional 
probabilities. This approach forms the basis for the definition of the Gibbs distributions 
of Dobrushin [12, 14] and is most popular at present. 

Let P be a configuration measure with phase space R ~. Each configuration c of CR9 can 

be represented in the form (co, c), where c0----cNA, A6~0, cEC~, A=~\A, and can define a 

conditional probability PA(-]c) (relative to the measure P) under the condition that cEC~- 
is fixed. 

Definition 4.3. A configuration measure P with phase space R v is called a Gibbs distri- 
bution if VAE~0 and any configuration cEC~- outside A the conditional probability PA(-Ic) 
is given by the density 

pA (Co[ c)----- E71 (c) zlc,I exp {-- [~H (Co, c)} XA (Co) (4 .8 )  

relative to a measure in 0~(A) , where 

f-/(c o, C) ----- H (Co) + X (])2 (X-- y), ( 4 . 9 )  
X~Co 
vEe 

E~ (c) = ] zl~ot exp {--  OH (Co, c)} dX (Co). ( 4 . 1 0 )  
X(A) 

Thus, for a Gibbs distribution the conditional probability is determined by the Gibbs 
distribution of the GCE in A. The configuration of particles c outside A creates an external 
field. This configuration is called the boundary conditions. The same idea regarding the 
canonical form of conditional probabilities can be expressed in a somewhat different form [40] 
by using conditional mathematical expectations. 

Definition 4.4. A configuration measure P is called a Gibbs distribution if it satis- 
fies the Dobrushin--Lanford--Ruelle (D--L--R) equation 

v q~ (c) dP (c )=  .[ d~. (Co) . [  q~ (Co LJ r z 'c~ exp {--13H (Co)+ H (co, c)} dP (c), (4 .11)  
c Z~?(a) 

where ~(c)- is an a rb i t ra ry  function on CR~ which is summable with respect to P and H(c0, c) 
is defined by (4.9). 
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The equivalence of both definitions is obvious. From the viewpoint of Definition 4.3, 
finding Gibbs distributions is a rather traditional problem of probability theory: recovery 
of the distribution on the basis of a given collection of conditional probabilities. Having 
proved equivalence of Definitions 4.3 and 4.2, we shall demonstrate the usefulness of the 
method of the GF for solving such problems of probability theory. 

It is convenient to compare Definitions 4.2 and 4.4. We note, first of all, that exis- 
tence (P-almost everywhere) and summability of the functions 

exp {-- ~H (Co, c)} = H (1 + f [Co] (y)) ( 4 . 1 2 )  
vEc 

a r e  c o n t a i n e d  in  t h e  c o n d i t i o n s  on t h e  measure  P ( f [ c 0 ] ( y )  d e f i n e d  in  ( 3 . 1 7 ) .  S ince  fEL'(I-~)I-I 
L=(R v) , i t  i s  n a t u r a l  to  assume t h a t  a l l  f u n c t i o n s  of  the  form 

I I  ( l + / ( x ) ) ,  teL'(l~V) (4.13) 
xEc 

are integrable with respect to a measure P satisfying the D--L--R equation. Exactly the same 
sort of considerations -- the necessity of writing the Bogolyubov equation characterizing Gibbs 
distributions -- dictates the choice of L'(R v) as the domain of the GF. Thus, comparison of 
the D--L--R and Bogolyubov equations should be carried out for the class of analytic measures. 
The class of measures on which Eq. (4.11) is considered can be extended if the requirement 
of positivity of the measures is abandoned [44]. Such an extension is also possible in the 
method of the generating functional. The densities oA(c0) defined by an analytic, normalized 
[condition (3.11)] functional A(t), 

Oa (Co)=~) (Co) A (--%a), (4.14)  

in  analogy to the d e n s i t i e s  (2.38)  s a t i s f y  the c o n d i t i o n s  of  cons i s tency  (1.15) and n o r m a l i -  
z a t i o n  (1 .16 ) .  Hence, they de f ine  some measure on CRy (not  n e c e s s a r i l y  p o s i t i v e )  [11 ] .  

Equat ions (4.11)  and (3.11) are thus considered on the c lass  of  measures generated by 
analytic functions A~. A distinguishing feature of such measures is that the class of func- 
tions integrable with respect to such measures contains functions of the form (4.13). More- 
over, the measure is completely determined by the integrals of these functions. Considering 
this circumstance, in ( 4 . 1 1 )  we set cp(c)=l-I(l+t(x)), and after elementary transformations we 

x~c 

obtain an equation equivalent to Eq. (4.11) 

A ( t ) =  ~ dX(co) H (l+t(x))zlcotexp{--f~H(Co)} A((t-{-f[col)(l+t)(l--xA)--l),  (4.15) 
Xta) XECo 

where 

A ( t ) = S  I I  (1 + t (X)) d P  (c) (4 .16 )  
x~c 

d e f i n i n g  the  measure  P. 

For  p a r a m e t e r s  (z ,  f )  s a t i s f y i n g  c o n d i t i o n  (3 .12 )  Eqs. (4 .15 )  and 

is the functional in 

THEOREM 4.5 [27]. 
(3.11) on ~Y~ are equivalent. 

Proof. If A satisfies (3.11), then it also satisfies the system (3.16). Replacement on 
the right side of (4.15) of A of a complex argument according to (3.16) by the derivative 
..~(coiA(('l +t)(I--%~)--I) converts (4.15) into an identity. Conversely, suppose that A satis- 
fies Eq. (4.15). Differentiating (4.15) at the point t -- XA(I + t), we obtain 

XA (X) ~ (X) A (t --  XA (l + t)) = XA (X) z (X) A ((l + f [x]) (l + t) (l - -  XA) - -  l). ( 4 .17 )  

I f  we remove the  f u n c t i o n s  XA(x),  then  Eq. ( 4 . 1 7 )  i s  p r e c i s e l y  t he  Bogolyubov  e q u a t i o n  (3 .11 )  
written at the point t -- XA(t + I). It is easy to show that a functional not satisfying 
(4.17) does also not satisfy the Bogolyubov equation (for the details see [27]). The equiv- 
alence of Definitions 4.2 and 4.4 reveals additional properties of measures defined by posi- 
tive solutions [those satisfying condition (4.3)] of the Bogolyubov equation. The next result 
gives a characteristic of the set of positive solutions of the Bogolyubov equation. 

LEMMA 4.6 [27]. For given (z, f) the set of positive solutions of the Bogolyubov equa- 
tion lying in the compact set ~0, is closed and convex. 
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Since positive solutions define the GF of Gibbs distributions, Lemma 4.6 characterizes 
the set of Gibbs distributions with given parameters (z, f). 

5. Equivalence of Ensembles 

In addition to the GCE, in statistical physics the Gibbs canonical ensemble CE is con- 
sidered; thisr is the probability space |X, ~, P~N)[, where AE~0, the measure Pi N) is given by 

a density p~N)(c) relative to the measure X in ~, 

p~m (c)=Q-' (N, A, ~)exp{--pH(c~x ~ (~, (5.1) 

i f  It[ = N and PA(N)(c) =0 otherwise.  The Hamiltonian H(c) is  def ined by (3 .2) ,  v(x) = 
exp {--~r 

Q (N, A, ~) ~ x p  {--~H (c)} X& (c) dgN (c) (5. 2) 

is the configuration integral, and 

~N (~N) = (NI)-t~N (b~ 1 (QN)) (5.3) 

is the restriction of the measure A to ~N, ~,~E~A~. The Gibbs CE describes the state of a 

system with a fixed number of particles N. The measure Pi N) is called the canonical Gibbs 
distribution. Just as the grand canonical distribution, it may be assumed given on [M, ~%] 
by a system of distribution densities 

o~ ( c ~  - -  ~ (ca - ~ '  ( - xA), ( 5 .4 )  

constructed on the basis of its GF 

~F ~ (0= ~ n (t + t (x))pF~ (c)d~ (c). (5.5) 
X xE c 

Here we have used the traditional notation [5] for the GF of a CE _~N).  It is easy to see 
that the GF ~N)(t) of the CE is the ratio of the configuration integrals Q(N, A, v) of a 
system in a given external field #z and in one changed by A~1 = --8 -I in (I + t(x)) 

s ( t )= Q (N, A, (1 + t) .)/Q (N, A, *). (5.6) 

For regular potentials ~2~kN)(t) satisfies the recursion relations [5] 

NQ(N--I, A, v) ~N--,)(t + / [ X ]  ( t+  ])), (5.7) 
~(x)'~k~(t)=vA(x) Q(N, ~, ~) 

vA = Xhv and XA is the indicator of A~R ~ . We call (5.7) the Bogolyubov equation of the CE. 
The relation (5.7) differs in an essential way from the Bogolyubov equation which the GF of 
a GCE satisfies. It is natural to suppose that after the TLP the GF of the CE will also sat- 
isfy the Bogolyubov equation. For systems with a solid core this is proved in [8]; for lat- 
tice systems it is proved in [21]. Here we present constructions for continuous systems which 
are somewhat more general than those in [8]. Consideration of the TLP in a CE requires more 
stringent conditions on the binary potential. 

Definition 5.1. A binary potential ~2 belongs to the class (Az-3, B2) if there exist 
constants C > 0, y > v, 0 < d2 < d2 < + = such that the condition 

B~:l~2(x)l--<Clxl -v, Ixl>d~, (5.8) 

is satisfied as well as one of the conditions 

A2:I~2(x) I>Clx l  v, Ixl-<d,, (5.9)  

or 

are defined in the standard way: 

p~'  ( c ) = ~  (c)_~N, (0). 

We denote by IAI the Lebesgue measure of  the set  AE~0, ~" 
in a system of solid spheres. 

Aa:%(x)-----l- ~ ,  Ixl--<d~. (5.1o) 

The class of such potentials is defined in [15]. For CE the correlation functions p~N)(c) 

is the largest density p = NIAI -I 
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LEMMA 5.1. The correlation functions of CE p~N)(c ) f  for systems with potentials of the 
type (--A~2-~, B~) satisfy for sufficiently large IAI the estimates 

p~N) (c) ~ale{ (5.11) 

uniformly with respect to p = NIA{ -I and B belonging to any closed, finite subregion S lying 
inside the region B > 0, p < 00 (for systems without solid core P0 = +~). 

For systems with solid core Lemma 5.1 is proved in [8]; ~ > 0 contained in the estimate 
(5".11) is determined constructively. We denote by 

z~)=NQ(N--I, A, ~)Q-'(N, A, v) (5.12) 

the activity in the CE. The estimates (5.11) show that the set of GF of CE {~A ~m} is weakly 
compact in ~. This solves the question of existence of thermodynamic limits of functionals 
of CE. In the Bogolyubov equation (5.7) it is possible to carry out the TLP (first setting 
v = I, of course) by precisely the scheme considered in Sec. 4. However, in order that the 
limit functional satisfy the Bogolyubov equation it is necessary that 

lira ~ (Nk-') (t) = lira -~N~)  (t) (5. I 3) 
k ~  Ak k ~  k 

for those sequences of pairs (Nk, A k) for which both limits exist and NklAk I-I § p. Condition 
(5.13) can be written in a different, equivalent form. In correspondence with the definition 
of the GF (5.5) and the activity (5.12) we have 

~s (i)/..~s163 (l)lZs (5.14) 

where z(N)(t) = NQ(N-- I, A, I + t)/Q(N, A, I + t) is the activity of the system in the field 

�9 , ( x ) =  - p - '  {n ({ 4 t (x)), (5 .15)  

of  c o u r s e ,  u n d e r  t h e  c o n d i t i o n  1 + t ( x )  > 0.  Thus ,  in  p l a c e  o f  (5 .13 )  we can w r i t e  

lira z i ~ k ) ( t ) / z ~ ) =  I. ( 5 . 16 )  

This forces us to turn to the study of thermodynamic quantities of systems in the field (5.15). 
We first specify the set from which t(x) is to be taken so that (5.15) is meaningful. We 
denote by Cy(R ~) the subspace of functions t(x)@L'(R') satisfying the inequality 

I t (x ) l . .<OO+lx l )  -~ aoe. in ~', 

where b > 0, y > ~. We introduce for /~Cv(~ v) the norm 

II t IIv=ess sup (l +1 x{)~ It (x)l- ( 5 . 1 7 )  

O b v i o u s l y ,  t h e  t o p o l o g y  i n t r o d u c e d  in  Cy(R 9) by t h e  norm ( 5 . 1 7 )  i s  s t r o n g e r  t h a n  t h e  t o p o l o g y  

i n d u c e d  f rom L ' ( R g ) ,  s i n c e  

II t II < II t II~ ~ (1 + I x I)-~dx-- a II t II~- (5 .18 ) 

For potentials (A2-3, B2) in [15] existence is proved of the limit of the specific free 
energy 

llm la~'lnQ (N ,  A) = g  (p, ~). ( 5 .19 )  
N ~  ,NIAI-t~p 

This makes it possible to prove the following lemma. 

LEMMA 5.2. For systems with potentials (A2-3, Bi) the specific free energy and activity 
do not depend on an external field of the form 

�9 ~ (x) ---- - -  ~-t In (I + t (x)); t@S6 c C v (~v), 6 > O, ( 5 . 2  O) 

where $6 is the ball of radius 6 > 0 with center at zero defined by the norm (5.17). 

The means of finding 6 is indicated in the course of the proof of the lemma. The proof 
of the first part of the lemma is based on representing the specific free energy in the field 
(5.20) in the form 

{AI-'InQ(N, A, l + t ) - - - - l A l - ' l n Q ( g ,  A)+lAl-' lnfie~m(t)  - (5 .21 )  
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Because of estimates (5.11), the set {~,~N)(t)} is locally uniformly bounded and hence equi- 
continuous. Equicontinuity of this family together with the normalization condition ~N)(0)----1 
demonstrate that ~N)(t) is uniformly bounded away from zero in some neighborhood of the point 
t -- O. Passage to the limit in (5.21) gives 

g(P,I 3, O =  lim I A I - l l n Q ( N , A ,  l + O = g ( p , ~ ) .  
Noeo,NIA[-'-.* 0 

This proves the first part of the lemma. 

The proof of the second part of the lemma is based on using the relations 

lira z ~ V ) = z = e x p {  Og(o,[3)} 
Op ' 

A'-.oa ./VIAl : -"  0 

o b t a i n e d  in  t he  work [15] .  The theorem on e q u i v a l e n c e  of  ensembles  i s  proved on the  b a s i s  
o f  Lemmas 5.1 and 5 . 2 .  

THEOREM 5 . 1 .  For sys t ems  w i t h  p o t e n t i a l s  (A2-3, B2) f rom each sequence  ~ ' ~  (t) of  GF 

of  CE, where Ak i s  a c h a i n  o f  e x p a n d i n g ,  m e a s u r a b l e ,  bounded s e t s  such t h a t  U A k = R  ~ and 
lirnNklAsl-l=0, i t  i s  p o s s i b l e  to  e x t r a c t  a weakly  c o n v e r g e n t  subsequence  in  ~7~ whose l i m i t  
p o i n t  s a t i s f i e s  t he  Bogolyubov e q u a t i o n .  

For  sys tems  w i t h  p o t e n t i a l s  (A2-s ,  B2) by Lerrana 5.1 the  GF o f  CE l i e  in  t he  compact s e t  
~ 0 "  Le t  ~Ca~s)(t ) be a subsequence  c o n v e r g i n g  weak ly  to  ~ ( t )  �9 Each of  i t s  te rms s a t i s f i e s  

the  Bogolyubov e q u a t i o n  

~(Nk--1) 
~ (X) ~q~s) (0 = Z ~  s~x~ (x) aS (t + f Ixl(t + 0)" (5.22) 

By refining the sequence ~F (Ns) as (t), if necessary, we can arrange that together with it the 

sequence ~(Ns-1)(t) also converges. Let ~(t) be its limit. By Lemma 5.2 on S 6 
A s 

.W ( t ) -  lim ~ vs) (t) =lim .~(,v#-,) (t) = . ~  (t), 

since ~(A~ s) (t)/~Nks--1)(f)--+ 1 on S~. ~, ~ are analytic functionals on L' (R~). We consider 

their restrictions to Cy(R v) with norm (5.17). Since this norm is stronger than the norm 
induced from L'(R ~), ~ and ~ are analytic (in the norm II fly) on Cy(R~). However, by 
coinciding on S 6, they thus coincide on all of Cy(R~), and, since Cy(R ~) is dense in L'(R~), 
they coincide on L'(R ~), i.e., ~=~. To complete the proof it remains to use Lemma 4.3 and 
pass to the limit in Eq. (5.22). 

We have thus established that for the distinguished class of potentials the limit func- 
tionals of both ensembles satisfy the same equation (3.11) (with a consistent choice of the 
activity z), and in this sense the ensembles are equivalent. By Theorem 4.4 the equivalence 
of ensembles just proved means essentially that the thermodynamic limits of GF of CE define 
Gibbs measures. Complete equivalence of the Gibbs ensembles, i.e., coincidence of the limit 
functionals of both ensembles, holds for those pairs (z, 8) and pairs (P, 8) corresponding to 
them for which the Bogolyubov equation has a unique solution satisfying the normalization 
condition ~~ We encounter this situation, for example, for small z (or 0)- 

6. Stability of Gibbs Distributions 

Distinguishing parameters (z, f) for which there exists a unique Gibbs distribution is 
an important problem closely related to the problem of phase transitions in statistical phys- 
ics. As Lemma 4.6 shows, the structure of the set of Gibbs distributions for fixed (z, f) 
is rather simple: it is a convex set which is completely characterized by its extremal points. 
These points are interpreted in statistical physics as states corresponding to the pure phases. 
It is assumed a priori that such states are relatively stable under weak perturbations of the 
system, for example, by an external field. From the viewpoint of probability theory the ex- 
tremal points of the set of Gibbs distributions for given (z, f) must possess special proper- 
ties of regularity. Thus, in principle there must be a connection between these two means 
of characterizing Gibbs distributions. It will be the purpose of this section to explicitly 
establish this connection for simple lattice systems. 

At the beginning of the section a criterion for uniqueness of the Gibbs distribution 
of simple lattice systems is established: continuous dependence of the GF on the external 
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field. This criterion is a standard for the connection of the stability of a Gibbs distri- 
bution with the condition of its regularity. After considering various regularity conditions 
it is established that for Gibbs distributions only two are essential: the condition of ex- 
ternal uniform regularity and the condition of regularity which correspond to two forms of 
stability of Gibbs distributions. 

The phase space for lattice systems is Z ~. A lattice system whose Gibbs distributions 
are concentrated on simple configurations is called a simple lattice system. As is evident 
from the system (3.16), simple lattice systems are characterized by the condition f(0) = --I. 

The uniqueness criterion for simple lattice systems is based on the property of multi- 
plicativity (4.6) which we present here for convenience, changing only the notation for the 
functional A to 

.~'(t; ( l+~)z )=.~( t+~( t+  1); z)/.oq~'(q; z), *EJI- (6.1) 

~'(l; z) is a positive, normalized solution of the Bogolyubov equation -- the GF of the Gibbs 
distribution for given (z, f). In all further considerations f is fixed and is not indicated 
in the notation. For infinite systems the parameter z is defined in analogy to (3.10): 

z (x) = exp { -- ~q,, (x)}. (6 .2)  

Replacing it by (I + ~)z corresponds to replacing the potential of the external field by 

A ~ =  _~- t  ln(l + @ (x)). (6 .3)  

For statistical physics it is important to know the dependence of the Gibbs distribution 
on the parameters (z, f). In the region of the parameters (z, f) where the Bogolyubov equa- 
tion has a unique, normalized, positive solution, the dependence of the generating functional 

on these parameters is determined "automatically." Where unique solvability of the equa- 
tion does not hold, a special, physically justified procedure is needed to distinguish in- 
dividual single-valued branches determining the change of state of the system as the param- 
eterz (z, f) vary. The multiplicative condition (6.1) makes it possible to construct for 
each state a branch determining its variation under the action of the external field. We 
emphasize that the branch (6.1) is constructed independently of whether there exists one or 
several [for given (z, f)] solutions of the Bogolyubov equation. 

Construction of the branch (6.1) can also be justified on the TLP. Let ~(t;z~) be 

a sequence of GF of the Gibbs GCE converging weakly to ~.~(t;z) . As a solution of the Bogol- 
yubov equation (3.11), ~(t;Z~n) satisfies the multiplicative condition 

.~ ( t ;  ( 1+~)ZAn)= .~  ( t + ~ ( l + t ) ;  Z~.)l-~qe(~; Z~.). (6.4) 

Passing to the limit, in (6.4) on the left we obtain the functional determining the state with 
parameters (I + ~)z, f, while on the right we obtain precisely the right side of (6.1) which 
corroborates the correctness of the interpretation of the multiplicative condition. 

The multiplicative condition defines a mapping fi:~1-+~ . Stability of the Gibbs distri- 
bution with GF ~(t; z) is naturally treated as continuity of F with a suitable choice of 
topologies in 31 and ~ . In ~Y~ we introduce the weak topology Tf and in ~i the weak-* 
topology~, induced fromL~(RV). This choice of topology is also motivated by topological prop- 
erties of the Bogolyubov equation (see Lemma 4.3). 

LEMMA 6.1. The Gibbs distribution of a simple lattice system for given (z, f) is unique 
if and only if there exists at least one positive solution ~(t; z) of the Bogolyubov equa- 
tion which defines by (6.1) a mapping F:(~h ~.)f+(~Y~, T) sequentially continuous at zero. 

Proof. Necessity. Let ~(t;z) be the GF of the unique Gibbs distribution, and suppose 
~l~,,i+0. The sequence ~(t; (|+~n)Z) constructed on the basis of (6.1) is relatively compact. 
By Lemma 4.3 all its convergent subsequences have the same limit ~(I; z) -- the unique Gibbs 
distribution (for given z, f). Thus, .~(l; (l+~,)z) converges, and the mapping F is sequen- 
tially continuous at zero. 

Sufficiency. The mapping F constructed on the basis of the GF .~(t; z), can be extended 
to the set J~={~:~=X~--|, A6~ with preservation of continuity at those points where there 
is continuity. For tfiis it suffices to choose a sequence ~n § XA -- I, and the sequence of 
functionals ~(/; (l +~,)z) corresponding to it converges, since (I + ~n)Z § zA, whereby the 
Bogolyubov equation-has a unique (normalized) solution. This suffices to construct the ex- 
tension [16] (we recall that the space ~ for simple lattice systems is metrizable). Suppose 
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there exist two Gibbs distributions ~i(/; z), ~'2(/, z) which both generate a mapping F con- 
tinuous at zero. On the set ff~ constructed on the basis of them the extensions coincide. 
We choose ~n-+0 ~ 6~ ; then 

Because of the continuity of both mappings, the limiting procedure n § = gives ~=(t; z)=~2(l; 
z), i.e., the GF ~t and ~2 coincide. 

Gibbs distributions can be characterized by regularity conditions of various types [12]. 
Let P be a simple configuration measure with phase space Z v. The landing of particles in a 
region "V6~o'(~o consists in this case of finite subsets of Z ~) we call an event. Each such 
event A is identified with a system of subsets of V. If c~V, then {c} is an elementary 
event. In this terminology ~v is the algebra of events. The measure P induces a probability 
distribution Pr on IV, ~v]. In correspondence with the notation of Sec. I, Cva=~v-t(A) is a 
cylinder set. Thus, 

Pr (A )=P  (Cr Pv (c), 
c6a 

where PvCc) is the probability of elementary events. 

Let VE~ 0 and mnv~---~ �9 We denote by d(V, V) the distance between V and V. 

(6.5) 

We set 

y(V,  V)= sup [Pr(A/B)--Pr(A) I, (6.6) 
AE~v,Bfi~p,Pr(B)>O 

where  t he  p r o b a b i l i t y  in  ( 6 . 6 )  i s  computed  by means o f  t h e  measure  P. y (V,  V) i s  a nonsym-  
m e t r i c  f u n c t i o n  whose f i r s t  a rgument  i s  a s s o c i a t e d  w i t h  t h e  a l g e b r a  o f  e v e n t s  ~v,  and t he  
s econd  w i t h  t h e  a l g e b r a  o f  c o n d i t i o n s  ~ .  

D e f i n i t i o n  6 . 1 .  A d i s t r i b u t i o n  P p o s s e s s e s  t h e  p r o p e r t y  o f  e x t e r n a l  u n i f o r m  r e g u l a r i t y  

if VPE~o 

(V, 9)- .<~v (d(V, V)), ( 6 . 7 )  

where ~v(d)-+0 as d § ~ for fixed V. 

Definition 6.2. The distribution P possesses the property of interior uniform regularity 
if VVE~o 

~(V, 9 )< ,~  (d(V, V)), ( 6 . 8 )  

where  ~v(d)  + 0 as d + ~ f o r  f i x e d  V. 

D e f i n i t i o n  6 . 3 .  A d i s t r i b u t i o n  P p o s s e s s e s  t h e  p r o p e r t y  o f  r e g u l a r i t y  i f  VVE~ 0 

6(V, V ) =  sup ]Pr(ANB)--Pr(A)Pr(B)[..<Xv(d(V, V)), ( 6 . 9 )  
afi~V,~6~g 

where Xv(d) + 0 as d + = for fixed V. For simplicity we shall consider Gibbs distributions 
of systems without an external field and with localized repulsion, i.e., f(x) = --I only for 
x = 0. 

LEMMA 6.2. For simple Gibbs distributions of systems without an external field and with 
localized repulsion YVES0 and VASty 

Pr (A) >By > 0. (6.10) 

Proof. By definition (6.5) 

Pr (A) > rnin Pv (c) = m l n  .~ (c) ~ ( - -  Xv) = 
c~,ZV cCV 

(6.11) 
= m l n  z 1el exp {--13H (c)}.~ ((I + f [c]) (1 - -  Xv) - -  I) -----8 v > 0. 

ccv 
Here ~ is the GF of the Gibbs distribution. At the last step we used system (3.16) and 
Theorem 4.4. 

THEOREM 6.1 [20]. For the Gibbs distribution of simple lattice systems satisfying the 
conditions of Lemma 6.2 I) the property of external uniform regularity implies the property 
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of interior uniform regularity; 2) the property of internal uniform regularity is equivalent 
to the property of regularity. 

As shown in [12], the property of external uniform regularity is equivalent to unique- 
ness of the Gibbs distribution; it is therefore natural to compare it with the condition of 
stability used in Lemma 6.1. To prove the equivalence of these conditions we first carry out 
the following constructions. We set 

Pv.~, (c J "c) = Pr ({c}/{c}), 

where c~Vfi~5 o, c~V6~o and V N V = ~  , and we d e f i n e  

v0(V,V)~ sup IPvs.(cl'c)--Pv(c)[. 
c~V, c~V 

(6.12) 

Obviously, 

Pr (A NB)----~ Pv,r, (c I c) P~ (c)" (6.13) 
c6A 

LEMMA 6.3. YVES0, Vfi~50 such that V ~ 9= Q~ 

v0(v, V)-.<v(V, 9)-.<2w~v0 (V, V0). (6. ~4) 

The c o n d i t i o n a l  p r o b a b i l i t y  P v , 9 ( c l c )  fo r  Gibbs d i s t r i b u t i o n s  can be expressed  in terms 
of the GF [22] 

Pv.p  (c [~) = Pr ({c} n {r ({c}) = D (c U r -q' (--  XvuP)/D (c) -~ (--  X~) = zl~' exp {--~H (c, c)} 

X~( (1 - -~vu~) ( I+ f [cU%D-- I ) I~ (1 - -XP) ( IA- f [~ I ) - - I ) - - - - -~ (c ) '~ ( - -Xv ;  (I--  X~) (t + f [~]) z)- (6.15) 

We have s u c c e s s i v e l y  used d e f i n i t i o n  (2 .30) ,  the  system of equa t ions  (3 .16) ,  and the  
m u l t i p l i c a t i v e  c o n d i t i o n  (6 .1 ) .  H(c, ~) i s  de f ined  by (4.9) and f [ c ]  by (3 .17) ,  so t h a t  the  
e q u a l i t y  ( i+ f[cU5])=( l+f[c] ) ( l+[[~] )  can be v e r i f i e d  t r i v i a l l y .  The dependence of  the_GP 
on z i s  i n d i c a t e d  in the  n o t a t i o n  only  a t  the  l a s t  s t ep .  Using (6 .15 ) ,  we w r i t e  y0(V, V), 

?o(V, V).=sup J~ (c).o~ (--  Xv; (1 --Xr q - f  [Q) z) .-- ~) (r ~ (--XV; z)l- (6.16) 

This expression shows that external uniform regularity of a Gibbs distribution is connected 
with continuous dependence of the GF on the external field created by the boundary condition 
c. A rigorous proof of this requires two technical lemmas whose proofs we omit (see, for 
example, [20, 22]). The GF of simple lattice systems lie in the subspace ~cc~, defined by 
the conditions 

.~ (c)A (0) = 0, 

if c is not a simple finite configuration; ~c is weakly compact. 

~EMMA 6.4. The weak topology on ~= can be defined by the system of seminorms: for 

V6~o 

gv(A)=sup [~(c)A (--Xv)1- (6.17) 
cCV 

As should be the case, the weak topology on ~c is metrizable. We consider the mapping 
F constructed according to (6.|) on the set f[c],where ~ are all possible finite configura- 
tions. We denote this set by Jl" Obviously, $fC$i. 

LEMMA 6.5. If f(O) = --I, then the sequence fn[Cn] § 0 in the topology T, if and only if 

mlnl x l~  ~,  
X~C~ 

i . e . ,  the conf igura t ions  Cn "go out"  to i n f i n i t y .  

THEOREM 6.2. The Gibbs distribution of a simple lattice system with localized repulsion 
possesses the property of external uniform regularity if and only if the mapping F :(fit, x.)-~ 
(~.-..x) defined by (6.1) is continuous at zero. 

Proof. By the estimates (6.14) y(V, V) in Definition 6.1 can be replaced by y0(V, V). 
If F: (fit, x.)--~(~c,~), then by definition of the seminorms (6.17) and Y0 it immediately 
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follows that F is continuous at zero. Conversely, if F is continuous at zero, then y0(V, V) 
tends to zero as the configuration c departs, since by Lemma 6.4 in this case --XV + f[c](1 -- 
x~) § 0. 

Continuity at zero of the mapping F considered only on 31, suffices for uniqueness of the 
Gihhs distribution, since points of the set ~ are limit points of the set ~j. 

Quite different topologies on J/ and ~c are required in order to express the property 
of regularity of a Gibbs distribution in terms of continuity of the mapping F. We define 

vVE~o, VEto, V n V = 

6o(V, V)= sup [~Pp,v(clc)--P~(c)[. (6.18) 
cCv'B6~ F ~8 I-- I 

LEMMA 6.6. VV6~0, ff6~0, VNV=Q, 

21Vlsv6o (V, V) -.< 6 (V, V) < 6o (V, V) 2 Ivl. (6.19 ) 

The proof of the lemma is similar to the proof of Lemma 6.3. The form of 60(V, V) "sug- 
gests" the choice of topology on ~e �9 We denote by L the linear space (subspace) of func- 

tionals in ~c satisfying the condition: for any expanding sequence AnCZ ~, ~ An=Z v and 

lira sup t ~  ~(c) A(--7r (6 20) 
n'= s6~F, ~6B 

Sets of the form 

UAo= Ao-[-L (6.21) 

form a basis for a topology on ':~c, which we denote by T L. GF in L define measures on [M,~J, 
concentrated "mainly" on cylinder sets with bases containing zero, since by (6.20) the varia- 
tion of the measure constructed from A and restricted to the measurable space [Cv,~v] , where 
V = Z ~\V, tends to zero for expanding V. Measures constructed on the basis of two function- 
als whose difference belongs to L differ from one another only "locally." 

Finally, in $/ we introduce the trivial topology x~={~, $/}. After these constructions 
the next result becomes obvious. 

THEOREM 6.3. A Gibbs distribution possesses the property of regularity if and only if 
the mapping F:(Xl, ~=)'-~'(,~c, TL) constructed according to (6.1) is continuous at zero. 

The continuity of F defined in Theorems 6.2 and 6.3 expresses essentially different forms 
of stability of the physical system. Continuity defined by the pair (T,, T) expresses, so to 
speak, the property of "elasticity" of the system: perturbations by a weak field leave no 
trace in the system after they are removed. Continuity defined by the pair (Ta, T L) expresses 
the property of stability connected with localization of the effect on the system of a weak 
external field (the field created by a finite number of particles). By choosing other pairs 
of topologies, infinitely many versions of stability conditions can be obtained. Distinguish- 
ing among them the physically significant ones is a current problem of statistical physics. 
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