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Abstract— A semi-automated method has been developed
for calibrating the parameters of a modified version of Da-
ganzo’s Cell Transmission Model (CTM). A least-squares data
fitting approach was applied to loop detector data to determine
free-flow speeds, congestion-wave speeds, and jam densities
for specified subsections of a freeway segment. Bottleneck
capacities were estimated from measured mainline and on-
ramp flows. The calibration method was tested on a 14-
mile portion of Interstate 210 Westbound in southern Cali-
fornia. The calibrated CTM was able to reproduce observed
bottleneck locations and the approximate behavior of traffic
congestion, yielding approximately 6%, or less, error in the
predicted total travel time.

I. INTRODUCTION

Traffic congestion is a phenomenon frequently encoun-
tered on freeways. It has many detrimental effects, such
as increasing driver delay and intensifying air pollution.
Regulation, or metering, of on-ramp flows is often used
as a method to help alleviate congestion on freeways.
Accurate traffic models are desirable as both a basis for on-
ramp metering control designs and as testbeds for proposed
metering methods.

In an effort to find innovative solutions to the conges-
tion problem, we are engaged in an ongoing collabora-
tion between the California Department of Transportation,
District 7, and PATH (Partners for Advanced Transit and
Highways), with the goal of developing advanced freeway
on-ramp metering control methods. One of the advanced
control strategies proposed as part of this collaborative
work employs the Cell Transmission Model (CTM) [1],
[2] in determining optimal on-ramp metering rates for
a freeway. The optimization method requires reasonably
accurate estimates of the CTM parameters.

In this paper, we describe a methodology for tuning the
CTM parameters to reproduce observed freeway traffic be-
havior. We have tested our calibration method on a 14-mile
stretch of Interstate 210 Westbound (I-210W) in Pasadena,
California, which typically endures heavy congestion during
the weekday morning commute period. Our implementation
of the CTM has been shown to capture the main features
of the congestion evolution observed in the actual freeway,
such as bottleneck formation, and the approximate tem-
poral duration and spatial extent of the traffic congestion.
Other examples of our recent work in CTM-based traffic
modeling, traffic density estimation, and congestion mode
estimation can be found in [3], [4], and [5].
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II. MODIFIED CELL TRANSMISSION MODEL

The macroscopic cell-transmission traffic model was se-
lected for this research due to its analytical simplicity and
ability to reproduce important traffic behavioral phenomena,
such as the backward propagation of congestion waves. The
CTM has previously been validated for a single freeway
link (with no on-ramps or off-ramps) using data from I-880
in California [6]. For this calibration study, we have used a
modified CTM (MCTM), which is similar to that of [1], [2],
except that it uses cell densities as state variables instead
of cell occupancies1, and accepts nonuniform cell lengths.
Using cell densities instead of cell occupancies permits the
CTM to accommodate uneven cell lengths, which leads to
greater flexibility in partitioning the highway. The MCTM
is subject to the same intercell connectivity restrictions as
those described in [2].

In the modified CTM, a highway is partitioned into a
series of cells. A 4-cell example is shown in Fig. 1. The
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Fig. 1. Highway segment divided into 4 cells.

traffic density in any cell i evolves according to conservation
of vehicles:

ρi(k + 1) = ρi(k) + Ts

li
(qi,in(k) − qi,out(k)) (1)

where qi,in(k) and qi,out(k) are, respectively, the total
flows, in vehicles per unit time, entering and leaving cell i
during the kth time interval, Ts [k, k + 1), including flows
along the mainline and the on- and off-ramps. k is the time
index, Ts is the discrete time interval, li is the length of
cell i, and ρi(k) is the density, in vehicles per unit length of
freeway, in cell i at time k Ts. The model parameters include
v, w, QM , and ρJ , which are depicted in the fundamental
diagram of Fig. 2. They can be uniform over all cells or
allowed to vary from cell to cell. The free-flow speed v
is the average speed at which vehicles travel down the
highway under uncongested (low density) conditions. w is
the average speed at which congestion waves propagate
upstream within congested (high density) regions of the
highway. QM is the maximum flow rate, and ρJ is the

1Cell occupancy is defined as the number of vehicles in a cell; this
is different from freeway loop-detector occupancy, which refers to the
percentage of time a detector is occupied by vehicles.
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Fig. 2. Flow as a function of density.

jam density. ρc, the critical density, is the density at which
the free-flow curve Q(ρ) = vρ intersects the congestion
curve Q(ρ) = w(ρJ − ρ). The congestion status of cell i is
determined by comparing the cell density with the critical
density: if ρi < ρc,i, the cell has free-flow status, otherwise
ρi ≥ ρc,i and the cell is said to have congested status.

Three different types of intercell connection are allowed:
simple connection, merge, and diverge.

Simple Connection: If two cells are connected to one
another without any intervening on-ramps or off-ramps (for
example, cells 2 and 3 in Fig. 1), then the cells are said to
be simply connected. Let i−1 be the upstream cell and i be
the downstream cell in the pair. As described in [2], qi(k),
the flow entering cell i from the mainline, is determined by
taking the minimum of two quantities:

qi(k) = min(Si−1(k), Ri(k)), (2)

where Si−1(k) = min(vi−1ρi−1(k), QM,i−1), is the max-
imum flow that can be supplied by cell i − 1 under free-
flow conditions, over the kth time interval, and Ri(k) =
min(QM,i, wi(ρJ − ρi(k))), is the maximum flow that can
be received by cell i under congested conditions, over the
same time interval.

Merge: A merge connection corresponds to the case
where an on-ramp intervenes between two cells (e.g. be-
tween cells 1 and 2 in Fig. 1). Assume that rm,i+1(k) is
the measured demand at on-ramp i+1, and that ri+1(k) is
the flow that actually enters the mainline from the on-ramp.
We consider two cases, one where the downstream cell can
accept both the supply flow from the upstream cell and the
demand from the on-ramp, and one where the combined
supply flow and on-ramp demand exceed the maximum
receiving flow.

qi+1 =

{
Si, if Si + rm,i+1 ≤ Ri+1

max(0, Ri+1 − rm,i+1), otherwise
(3)

In the latter case, i.e., when Si(k) + rm,i+1(k) > Ri+1(k),
we assume that the total flow entering the downstream cell is
equal to Ri+1(k), thus, in the event that rm,i+1(k) exceeds
Ri+1(k), a flow of Ri+1(k) will be supplied by the on-
ramp. In all other cases the on-ramp demand is given by

ri+1(k) = rm,i+1(k). That is,

ri+1 =

{
rm,i+1, if Si + rm,i+1 ≤ Ri+1

Ri+1 − qi+1, otherwise
(4)

For brevity, the time index k has been suppressed in Eqs. (3)
and (4).

Diverge: If the outflow from a cell is split between the
downstream mainline region and an off-ramp, a diverge
connection is warranted; an example is shown between
cells 3 and 4 in Fig. 1. We assume that each off-ramp has
unlimited capacity. Then the diverge law of [2] simplifies
to

qi,out(k) = min(Si(k), Ri+1(k)
1−βi(k) ) (5)

where qi,out(k) = qi+1(k) + fi(k) is the total flow exiting
cell i, and fi(k) is the off-ramp flow. The flow entering
the downstream cell is then given by (1 − βi(k))qi,out(k),
and the flow exiting through the off-ramp is βi(k)qi,out(k),
where βi(k) is the split ratio for off-ramp i, i.e., the fraction
of vehicles leaving cell i which exits through the off ramp
during the kth time interval.

The modified CTM consists of flow conservation, Eq. (1),
for each cell, along with the flow specifications, Eqs. (2)–
(5). The aforementioned equations are the density-based
equivalents of those described in [2]. The state variable is
ρ = [ρ1 . . . ρN ]T for a freeway partitioned into N cells, and
the model inputs are the demands at each on-ramp and at
the mainline entrance to the freeway. Flows at the upstream
and downstream mainline boundaries of the freeway are
determined from Eqs. (3), (4), (5), treating the mainline
entrance as an on-ramp, and the mainline exit as an off-
ramp with βN = 1.

III. CALIBRATION METHODOLOGY

A. Freeway Representation

We have divided the 14-mile I-210W test segment into
41 cells, as shown in Fig. 3. The traffic flow direction is
in order of increasing cell index, i.e., left to right, starting
at the top of the figure. The cell index is located in the
center of each cell. The uppermost row of numbers above
the cells is the cell length (in feet). The second row of
numbers gives the number of mixed-flow lanes (4 to 6)
in each cell. Vertical red (or gray in a gray-scale printout)
bars mark the locations of the mainline loop detectors, and
the postmile of the detector (e.g. 39.159) is listed above
the detector marker. On- and off-ramps are depicted as
numbered arrows. Associated street names are given for
each set of ramps. A single high-occupancy vehicle (HOV)
lane runs parallel to the leftmost mainline lane on this
segment of I-210W. Each of the six HOV-lane gates is
indicated by a horizontal blue (or gray) bar. In the real
freeway, vehicles are only allowed to enter and leave the
HOV lane at the gate locations. In our implementation,
HOV/mixed-flow lane interaction is only partially modeled,
as explained in Sec. III-B.
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Fig. 3. Cell partition of I-210W testbed.

One requirement of the MCTM is that the cell lengths
must be longer than the free-flow travel distance, i.e.,
viTs ≤ li for cell i, where li is the cell length and Ts

is the time step. In our default partitioning method, we
put cell boundaries immediately upstream of on-ramps and
immediately downstream of off-ramps; however, for our
chosen time step of 10 sec., and a typical free flow speed
of 63 mph, three of the cells were found to be shorter than
the minimum allowed cell length of 924 ft. We increased
the length of these cells by borrowing length from their
respective downstream cells, and these adjusted cell lengths
are shown with asterisks in Fig. 3.

B. Demand and Split Ratio Reconstruction

In this study, we have been working with two main
sources of data: loop detector data obtained from the
Performance Measurement System (PeMS) [7], and a set of
manually-counted on-ramp and off-ramp volumes provided
to us by the Caltrans District 7 Traffic Operations Group.
The PeMS-derived data used in this study includes the
flow (veh/hr or vph) at each detector, updated every 30
sec., and the density (veh/mi or vpm) at each mainline
detector, which is available in 5-min. averages. Speed (mph)
is determined from the relationship flow = density× speed.

One problem we face in calibrating traffic models is that
our data sources, collectively, do not provide us with a

complete data set (which would include flows and densities
for each mainline and HOV-lane detector, along with flows
measured at each of the ramps, over the entire morning
period) for any single day of data collection. Missing mea-
surements are mainly caused by malfunctioning detectors,
or problems affecting the transmission of loop data, in
the case of the PeMS data sets. For the manually-counted
data, on any given day there are some ramps for which no
volumes have been recorded.

For our model, a complete demand data set consists of the
measured flow at the upstream mainline (Vernon) boundary,
along with the measured flows at each on-ramp, over the
period 5AM–12PM for a selected day. If PeMS data is faulty
or absent at a particular on-ramp, our first preference is
to substitute manual counts, if they are available for that
day. If there is no hand-counted data for the chosen day,
we substitute a historical average of the manually-counted
flows for that on-ramp.

Our procedure for estimating the MCTM split ratios is to
compute, for each off-ramp, the ratio of the measured off-
ramp flow to the total measured flow (mainline plus off-
ramp) exiting the diverge junction. Since we have access
to only a limited amount of accurate off-ramp data, we
are currently using historically averaged split ratios in our
MCTM simulations.



To estimate the extent to which the HOV lane affects
the mixed-flow lanes, we computed the flow difference
(upstream minus downstream flow) in the HOV lane across
each of the HOV gates, and determined that this net flow
is relatively large (in the range of 500–1500 vph) and of
consistent sign (positive) only at the farthest downstream
gate, near Lake Ave. For this study, we approximated this
effect by creating an additional on-ramp (no. 22), computing
the net flow rate across the Lake HOV gate, and inserting
this flow into the mixed-flow lanes through the new ramp.
The remaining HOV gates were not modeled.

C. Calibration Procedure

The main steps of the calibration procedure are as fol-
lows:

1) Free-flow Parameter Calibration: The free-flow traf-
fic velocities, vi, are determined by performing a least-
squares fit on the flow vs. density data over the period
5:00–6:00AM. For the I-210 section, traffic typically flows
freely during this period. For the jth detector, vj is the
solution, in the least-squares sense, to the equation φjvj =
Yj , where φj = [ρdj

(k 5:00) . . . ρdj
(k 6:00)]T and Yj =

[qdj
(k 5:00) . . . qdj

(k 6:00)]T are the measured densities and
flows over the specified time interval. If no data is available,
or the data is of poor quality, a default value of 60 mph
is used. The free-flow speed vj is assigned to the cell
containing detector j, and free-flow speeds are computed
for non-detector cells by linear interpolation. The resulting
vi are typically in the range of 60–65 mph.

2) Bottleneck Identification: Bottleneck locations are
identified by examining contour plots of the measured traffic
densities and/or speeds, and determining the locations of
fixed spatial boundaries which divide the freeway into an
upstream congested region and a downstream free-flow
region. For example, in the top plot of Fig. 5, a bottleneck
was observed to form between the detectors at 33.049 and
32.199 during the 6:00 time slice.

3) Non-Bottleneck Capacity Selection: Currently, a set of
nominal QM,i are assigned to the cells that are not located
at bottlenecks. It is expected that QM,i, which represents
the maximum flow that can possibly enter or exit cell i,
will typically not be achieved (and hence not observed) in
the real system. Thus, it is not advisable to set QM,j equal
to the maximum observed flow at each detector-equipped
cell, since this will most likely result in underestimating the
true capacity of the freeway. In general, the nominal QM,i

must be chosen to be larger than the maximum observed
flows (usually ≥ 2000 veh/hr per lane (vphpl)) in each
region of the highway, in order to avoid inducing unwanted
bottlenecks in the simulation.

4) Bottleneck Capacity Determination: Consider the sce-
nario suggested by Fig. 4: an active bottleneck exists be-
tween cell 1 and cell 2, hence the upstream cell is congested,
while the downstream cell remains in free-flow status. We
assume that the inflow into cell 1 is w1(ρJ,1 − ρ1(k)), the
total inflow to cell 2 is QM,2, the total outflow from cell

ρ1 ρ2

f2r2r1

q2q1 q3

Fig. 4. An active bottleneck: the upstream cell (1) is congested, while
the downstream cell (2) is in free-flow mode. Vertical red bars indicate
detectors.

2 is v2ρ2(k), and that the second case in the maximum
of Eq. (3) holds, that is, the measured demand rm,2 is not
larger than the amount of flow that cell 2 can accommodate.
In this situation, the MCTM equations for these two cells
reduce to a linear system. The density dynamics are given
by:

ρ1(k + 1) = ρ1(k) + Ts

l1
(w1(ρJ,1 − ρ1(k))

− QM,2 + r2(k)) (6)

ρ2(k + 1) = ρ2(k) + Ts

l2
(QM,2 − v2ρ2(k)) (7)

The total flow entering cell 2 is QM,2 = q2 + r2, where
q2 is the flow entering from the mainline. Since both
q2 and r2 are measurable, these quantities are used to
estimate the bottleneck flow rate, specifically, Q̂M,2 =
meank∈KM

(q2(k) + r2(k)). KM corresponds to the half-
hour time interval ending at arg max(q2(k)+r2(k)). If, for
a selected day, the q2 or r2 data are considered faulty, QM,2

is estimated using historically averaged q2 or r2 data sets.
5) Congestion Parameter Calibration: wi and ρJ,i are

estimated by performing a constrained least-squares fit on
the flow vs. density measurements. First, the critical density
is estimated for each detector; ρ̂c,j = maxk(qdj

(k))/vj .
The (ρdj

(k), qdj
(k)) data is sorted so that only congested

pairs are used in the estimation. Let κ = {k1 . . . kNc
} de-

note the set of all k for which ρdj
(k) > ρ̂c,j . [wj wjρJ,j ]T

is the solution, in the least-squares sense, to

φj

[
wj

wjρJ,j

]
= Yj (8)

where

φT
j =

[−ρdj
(k1) . . . −ρdj

(kNc
)

1 . . . 1

]

and

Yj =




qdj
(k1) + lj

Ts
∆ρdj

(k1)
...

qdj
(kNc

) + lj
Ts

∆ρdj
(kNc

)


 ,

where ∆ρdj
(k) = ρdj

(k + 1) − ρdj
(k). Note that Eq. (8),

which is linear in the unknown parameters [wj wjρJ,j ]T ,
is a rewriting of the congested case of the MCTM, where
qdj

is taken as a measurement of the flow exiting the cell
containing detector j. In the congested case, inter-cellular
flow is determined by the downstream density in each pair
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Fig. 5. Contour plots of 15-minute average measured (top) and simulated (bottom) densities (vpmpl) on Nov. 28, 2001.

of cells; for example, the congested-mode equation for cell
1 in Fig. 4 is

ρ1(k + 1) = ρ1(k) + Ts

l1
(w1(ρJ,1 − ρ1(k))

− w2(ρJ,2 − ρ2(k)) + r2(k)) (9)

The least-squares solution is subject to the constraint

Q̂M,j ≤ vj wj ρJ,j

vj+wj
(10)

The constraint is included to prevent the solution
[wj wjρJ,j ]T from limiting the maximum possible flow
in cell j below the Q̂M,j identified in step III-C.4. As an
example, referring to Fig. 1, suppose that the flow associated
with a density ρ is given by Q(ρ). It can be shown that
for a given set of (v,QM , w, ρJ ) > 0, the maximum
possible flow rate is min(QM , vwρJ

v+w ). Thus, the constraint
prevents the lines Q(ρ) = vρ and Q(ρ) = w(ρJ − ρ)
from intersecting below the Q(ρ) = QM line. Since QM

is intended to represent the maximum permissible flow in a
cell, this constraint ensures that the maximum flow rate is
achievable by the model. Currently, only values of wj that
fall within a range that is considered physically reasonable,
10 ≤ wj ≤ 20 mph, are retained. If Eqs. (8) and (10)
fail to produce a solution in the acceptable range for a
particular detector cell n, this cell is assigned the wj of
the nearest downstream neighbor with a w inside the range.
The corresponding ρJ,n is found by solving the equality
case of constraint (10). wi and ρJ,i are then determined for
non-detector cells through linear interpolation.

6) Time-Varying Parameter Adjustments: If necessary,
we can apply temporary parameter changes (e.g. reduction
of QM,i in a region) to reproduce the effect of an incident.
Also, by reducing wi in the mid-morning time range, when
the traffic is still congested but beginning its recovery back
to the free-flow mode, we can approximate the effect of
flow-density hysteresis.

IV. RESULTS

Figure 5 shows contour plots for the measured (top) and
simulated (bottom) densities for a particular day (Wednes-
day, Nov. 28, 2001) in the I-210 testbed. The numbers inside
the shaded cells are traffic densities, in vehicles per mile per
lane (vpmpl). Free-flow densities (0–33 vpmpl) are shown
as green (or white in a gray-scale printout). Mid-range
congestion (33–43 vpmpl) is shaded yellow (medium gray).
Red (dark gray) indicates heavy congestion (43 vpmpl or
greater). Traffic is flowing from left to right in these plots,
and the time, in 15-minute intervals, is given in the leftmost
column. The time range is 5:30–10:30AM. Loop detector
outages are indicated by crossed-out boxes in the measured-
data contour plot. Loop detectors which were suspected
to be faulty for the whole day have their postmile labels
surrounded by a dashed box at the top of the measured-
data plot.

The MCTM parameters used in this simulation are plotted
in Fig. 6, along with those estimated for two other week-
days. The nominal QM,i was chosen as 2300 vphpl for the
5 cells farthest upstream, and 2100 vphpl for the remaining
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Fig. 6. MCTM parameters used for Nov. 13, 2001, Nov. 28, 2001 and
Jan. 10, 2002 simulations.

cells. For the Jan. 10, 2002 parameters, it can be seen that
wi and ρJ,i differ from those of the other two days, in the
region between cells 20 and 30. This difference was caused
by the lack of good data in this region, including bottlenecks
at postmiles 30.779 and 28.879, on Nov. 11 and 28, 2001.
For these two days, historically averaged data were used to
estimate the QM,i, and the wi and ρJ,i were determined
from the interpolation methods described in Sec. III, in the
region of faulty data. A larger amount of good data was
available in this region on Jan. 10, 2002, which produced
different parameter estimates for this day.

To evaluate the performance of the simulation, we define
the Total Travel Time (TTT):

TTT = Ts

k11:45∑
k=k5:00

∑
i∈Cd

liρi(k)

Here, Cd is the set of cells which had problem-free mainline
detectors over each of the examined days. Cd excludes de-
tectors at postmiles 38.209, 38.069, 34.049, 30.779, 30.139,
29.999, 29.879, 28.030, and 26.800. Although it functions
properly, the detector at 39.159 is also excluded, since
the MCTM boundary condition prevents it from accurately
reproducing congestion that (in the real system) spills
upstream outside of the simulated region. Results for TTT
are summarized in Table I.

From Fig. 5 and Table I, it can be seen that the MCTM
reproduces the observed bottlenecks and the approximate
duration and spatial extent of the congestion upstream of
each bottleneck, and predicts the total travel time with
approximately 6% error, or less.

V. CONCLUSIONS AND FUTURE WORK

A procedure for calibrating the modified CTM has been
presented in this paper. The calibrated model has been tested
on a section of I-210W in southern CA, and has been
shown to reproduce the main features of the observed traffic

TABLE I

MEASURED AND SIMULATED TOTAL TRAVEL TIME (VEH-HR) FOR

THREE DIFFERENT DAYS

Date Meas. Sim. % Err.
Nov. 13, 2001 4249 3982 -6.3
Nov. 28, 2001 4375 4409 0.8
Jan. 10, 2002 3871 3863 -0.2
mean 4165 4085 -1.9
std. dev. 262 287 3.8

congestion on the freeway, such as approximate location of
bottlenecks and duration and spatial extent of congestion.
In addition, the model accurately predicts the total travel
time in the freeway.

A main benefit of this calibration method is that it pro-
vides a well-defined, automatable procedure for estimating
free-flow speeds, congestion parameters, and bottleneck ca-
pacities for the MCTM from loop-detector data. In the next
stage of our work, we intend to develop a fully-automated
parameter estimator. The quantities which still remain to be
determined automatically include the bottleneck locations,
the cell capacities away from the bottleneck locations, and
the locations of faulty loop detectors. Our research team
has already designed an estimator [4], [5] that determines
the congestion status of each portion of the freeway. This
estimator can be used to automatically locate bottlenecks,
i.e., the boundaries separating upstream congested regions
from downstream free-flow regions. Algorithms such as
that of [8], can be employed to detect data errors and
impute missing data values. Combining these approaches
with our existing calibration methodology will lead to a
fully-automated algorithm, which will be used to provide
parameter values for model-based on-ramp metering control
strategies.
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