
Over the past 4 years, genome-wide association studies 
(GWA studies) have become a powerful tool for investi-
gating the genetic basis of common diseases, and impor-
tant new findings now emerge almost every week1–3. But 
so far there has been limited attention to health problems 
in Africa, such as the massive burden of infectious dis-
ease and the increasing prevalence of chronic diseases 
associated with changes in lifestyle4–6. By elucidating 
the molecular mechanisms that underlie resistance and 
susceptibility to disease, GWA studies in Africa might 
provide important insights into the development of 
more effective vaccines, therapeutics and public health 
interventions. As Africa is the ancestral home of all 
human populations, understanding the biology of dis-
ease in Africa could shed light on the genetic origins of  
common diseases worldwide7–9.

African populations are genetically more diverse 
than European and Asian populations10–12. According 
to the out-of-Africa hypothesis of human origins, this 
is because groups migrating out of Africa experienced 
severe population bottlenecks, resulting in a reduction 
of genetic diversity in descendant populations8,13. A 
reduction in nucleotide diversity outside Africa has 
been consistently observed in genotype and resequenc-
ing data8; similarly, levels of haplotype diversity tend to 
decrease and linkage disequilibrium (LD) tends to increase 
according to the geographic distance of a population  
from Africa11,12. 

From a statistical genetic perspective, the high levels 
of haplotype diversity and low levels of LD in African 
populations have both advantages and disadvantages for 

genome-wide analysis. High levels of haplotype diver-
sity are potentially a powerful tool for fine mapping the 
causal variants that underlie disease associations14–16. 
However, low levels of LD are disadvantageous when 
screening the genome for disease associations using cur-
rent SNP-genotyping approaches, which essentially rely 
on the principle of LD mapping17,18. The fundamental 
question underlying this Review is how to develop an 
appropriate methodology for GWA analysis in Africa 
that overcomes the difficulties of genome-wide screen-
ing for association and exploits the potential for fine 
mapping causal variants.

There is a growing body of data to address this prob-
lem. The first GWA study from Africa has recently been 
published19, and others are close to completion. The 
International HapMap Project has generated a large 
catalogue of SNP allele frequencies and haplotypes in 
the Yoruba people of Nigeria15,20, and this effort has 
recently been expanded to include the Luhya and the 
Maasai people from Kenya. There has recently been 
remarkable progress in our understanding of genome 
sequence variation in Africa, starting with systematic 
resequencing of specific genomic regions21,22, followed 
by next-generation sequencing of the entire genome of 
an African individual23, leading on to the 1000 Genomes 
Project. This large international endeavour will include 
whole-genome sequence data for several hundred peo-
ple in different parts of Africa, and data have already 
emerged for the Yoruba group.

Here, we examine the implications of these and other 
recent findings for the design and analysis of GWA 
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Genome-wide  
association study
Examination of DNA variation 
(typically SNPs) across the 
whole genome in a large 
number of individuals who have 
been matched for population 
ancestry and assessed for a 
disease or trait of interest. 
Correlations between variants 
and the trait are used to locate 
genetic risk factors.

Population bottleneck
A marked reduction in 
population size followed by 
the survival and expansion of 
a small random sample of  
the original population. It 
often results in the loss of 
genetic variation and more 
frequent matings among 
closely related individuals.
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Abstract | Medical research in Africa has yet to benefit from the advent of genome-wide 
association (GWA) analysis, partly because the genotyping tools and statistical methods 
that have been developed for European and Asian populations struggle to deal with  
the high levels of genome diversity and population structure in Africa. However, the 
haplotypic diversity of African populations might help to overcome one of the major 
roadblocks in GWA research, the fine mapping of causal variants. We review the 
methodological challenges and consider how GWA studies in Africa will be transformed 
by new approaches in statistical imputation and large-scale genome sequencing.
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Haplotype
A set of genetic markers  
that are present on a single 
chromosome and that show 
complete or nearly complete 
linkage disequilibrium — that 
is, they are inherited through 
generations without being 
changed by crossing over  
or other recombination 
mechanisms.

Linkage disequilibrium
In population genetics,  
linkage disequilibrium is the 
non-random association of 
alleles. For example, alleles  
of SNPs that reside near one 
another on a chromosome 
often occur in non-random 
combinations owing to 
infrequent recombination.

Causal variant
A genetic marker that is 
functionally responsible  
for altering the severity of  
the phenotype.

Population structure
Genetic differences between 
individuals as a consequence of 
the distribution of individuals in 
partially isolated populations.

Imputation
Imputation methods aim to fill 
in missing genotype data using 
a sparse set of genotypes (for 
example, from a genome-wide 
association scan) and a scaffold 
of linkage disequilibrium 
relationships (as provided  
by the HapMap data).

Bacteraemia
A form of infection in which 
bacteria are detected in blood, 
which is normally a sterile 
environment. It is often 
associated with infection 
elsewhere in the body and  
can cause severe illness.

Admixture mapping
Genetic mapping strategy  
that uses individuals whose 
genomes are mosaics of 
fragments that are descended 
from genetically distinct 
populations. This method 
exploits differences in allele 
frequencies in the founders  
to determine ancestry at a 
locus to map traits in a way 
that is broadly similar to an 
advanced intercross.

Helminthic infection
Infection by nematodes or 
parasitic worms.

studies in Africa. We begin by outlining the practical 
importance of conducting GWA studies in Africa, and 
then examine in some detail the analytical problems that 
can arise at each stage of a conventional GWA study as 
a result of low LD and population structure (BOX 1). We 
go on to consider how new approaches in statistical 
imputation and large-scale genome sequencing will help 
to overcome these problems and to accelerate the iden-
tification of causal variants. Finally, we briefly discuss 
the practical requirements for effective GWA studies in 
Africa, the need for attention to the ethical issues that 
arise in a resource-poor setting, and what is being done 
to build local research capacity in this area.

why Gwa studies in africa are needed
Most GWA studies are motivated by a desire to under-
stand the underlying causes of disease at both the 
molecular and the environmental level. Although it is 
becoming apparent that the current generation of GWA 
studies will provide only a partial understanding of the 
genetic architecture of common diseases, they at least 
provide a foundation for systematic investigation of the 
problem, including the complex question of how disease 
risk is affected by gene–environment interactions24,25. In 
high-income countries, GWA studies have provided 
many new leads for medical research on common dis-
eases: for example, the discovery that common variants of  
the FTO gene are associated with risk of obesity — one 
of the first major findings from a GWA study — has 
led to new insights into the determinants of eating 
behaviour26–29. It is important that Africa should not 
be excluded from this new research agenda. Here, we 
briefly outline two major public health problems that 
are of particular importance for GWA research in Africa: 
infectious diseases and the rising prevalence of chronic 
non-communicable diseases. In later sections we con-
sider the potential importance of GWA studies in Africa 
for fine mapping the causal genetic variants that underlie 
common diseases found throughout the world.

Infectious disease. Over 10% of children in sub-Saharan 
Africa die before the age of 5 (compared with <1% in 
high-income countries), primarily due to infectious dis-
eases, such as malaria, respiratory infections and diar-
rhoea4. AIDS is a major cause of death in young adults, 
and tuberculosis affects all age groups5. The difficulty of 
developing effective vaccines against malaria, AIDS and 
tuberculosis is a strong incentive for conducting GWA 
studies to discover natural mechanisms of resistance to 
infection, which has a significant genetic component30–33. 
A classic example of how human genetic discoveries may 
translate into leads for vaccine development is given by 
a series of discoveries concerning Plasmodium vivax, a 
species of malaria parasite that causes much morbid-
ity in the tropics. P. vivax infection is remarkably rare 
in sub-Saharan Africa, and over 30 years ago it was 
discovered that this is because most Africans lack the 
Duffy blood group, which is essential for erythrocyte 
invasion by P. vivax 34. This lack is now known to be 
caused by a regulatory SNP in the Duffy blood group, 
chemokine receptor (DARC) gene; this discovery led to 

the molecular characterization of a crucial parasite pro-
tein that binds to the erythrocyte Duffy receptor, which 
in turn led to the development of a candidate vaccine 
against P. vivax 35. Similarly useful genetic discoveries 
for Plasmodium falciparum, which is responsible for 
most malaria deaths, could revolutionize malaria vac-
cine development. Two further observations support 
this approach: malaria has been a strong force for selec-
tion on the human genome, and only a small fraction of 
host genetic resistance to malaria is explained by known 
factors, such as sickle haemoglobin, which implies that 
many genetic factors remain to be discovered36. A global 
partnership of malaria researchers, the Malaria Genomic 
Epidemiology Network (MalariaGEN), has been estab-
lished to conduct multi-centre-scale genetic-association 
studies of resistance to malaria, and initial GWA data 
from The Gambia have been reported19,37. An equally 
strong case can be made for genetic studies of tubercu-
losis, HIv/AIDS, invasive bacterial disease and other 
major infections31–33. GWA studies of tuberculosis have 
recently been completed in The Gambia and Ghana 
(A. v. Hill and R. D. Horstmann, personal communi-
cation), and a GWA study of bacteraemia in Kenya is 
currently being conducted by the Wellcome Trust Case  
Control Consortium.

Gene–environment interactions and chronic diseases. 
Changes in lifestyle in Africa are causing a rapidly ris-
ing prevalence of chronic non-communicable diseases, 
such as hypertension and diabetes38,39. For example, the 
number of people in Africa with diabetes is estimated 
to rise from 10 million in 2006 to more than 18 million 
in 2025, and chronic diseases in general are expected 
to account for more than a quarter of deaths by 2015 
(REF. 39). The importance of genetic factors is high-
lighted by the observation that, among residents of  
high-income countries, there is higher prevalence  
of hypertension, diabetes and obesity in people of 
African ancestry than in those of European ancestry40,41. 
Importantly, the prevalence of these diseases in people of 
African ancestry is much higher for those who reside in  
high-income countries42,43. 

One approach being used to investigate the genetic 
basis of these differences is admixture mapping in groups 
of mixed ancestry, for example, African-Americans44–48. 
Admixture mapping — which has the advantage of 
requiring few genetic markers and the concomitant dis-
advantage that it localizes the genetic signal imprecisely 
— has led to the discovery of a number of important 
genetic loci49,50. However, it is important that genetic 
studies are conducted in Africa itself, both to ensure 
relevance to the health problems that are encountered 
there and to take account of the great diversity of envi-
ronments, which range from forest to urban, and of 
habitation, sanitation, diet, physical activity and other 
aspects of lifestyle. One of the most important environ-
mental variables is the level of exposure to infection — 
for example, the prevalences of malaria, HIv/AIDS and 
helminthic infection vary widely across the continent. 

One epidemiologically relevant change that is now 
occurring in Africa is a tendency for migration from 
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rural to urban areas, which typically have a lower preva-
lence of parasitic diseases, such as malaria, but a higher 
prevalence of chronic non-communicable diseases, 
such as hypertension51. An important recent advance 
is a GWA study of hypertension in African-Americans, 
which identified several loci associated with systolic 

blood pressure that were replicated in a sample from 
West Africa52. There is a clear need to establish well-
defined cohorts — such as the Africa America Diabetes 
Mellitus study, which involves five centres in Nigeria 
and Ghana — to investigate how genetic factors, and 
their interaction with the environment, contribute to 
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Box 1 | Genome-wide association analysis by linkage disequilibrium mapping

The table and diagrams describe the difference between African and European populations in the three stages of 
genome-wide association (GWA) analysis by linkage disequilibrium (LD) mapping.

stage of analysis european populations African populations

1. Detecting 
genotype–phenotype 
associations by 
genome-wide  
SNP typing

High levels of LD make it probable that 
many causal variants will be in sufficient 
correlation with nearby SNPs to show 
a significant genotype–phenotype 
association, even if the causal variant is 
not directly typed (see the figure, part a)

Low levels of LD reduce the likelihood that 
a causal variant will have a sufficient level 
of correlation with nearby SNPs to show 
significant genotype–phenotype associations 
unless it is directly typed (part b)

2. Replicating 
associations in 
multi-centre studies

Different study sites tend to have similar 
allele frequencies and patterns of LD, 
so there is a good chance of replicating 
associations even if the causal variant is 
not directly typed

Different study sites may have different allele 
frequencies and/or patterns of LD, both of 
which reduce the likelihood of reproducing 
associations in multi-centre studies unless the 
causal variant is directly typed

3. Localizing the causal 
variants through 
sequencing- and 
imputation-based 
strategies

Localizing the causal variant can 
be difficult because it is in high LD 
with neighbouring SNPs, which give 
association signals of similar magnitude to 
the causal variant (part c)

It might be relatively easy to localize the 
causal variant because it is in weak LD with 
neighbouring SNPs and will therefore stand out 
at the peak of the association signal (part d)

R E V I E W S

NATuRE REvIEWS | Genetics  vOLuME 11 | FEBRuARY 2010 | 151

© 20  Macmillan Publishers Limited. All rights reserved10



Replicating association
Testing the same variant of 
interest for association in 
diverse data sets.

Multiple testing
An analysis in which multiple 
independent hypotheses are 
tested. Multiple testing must 
be taken into account during 
statistical analysis, as the 
combined probability of  
type I error increases in an 
unadjusted analysis.

Trans-ethnic studies
Studies conducted across 
multiple populations with 
different ethnic backgrounds. 

Tagging SNP
A genetic marker that is 
correlated to a number of 
neighbouring variants such  
that the genetic information it 
contains is representative of 
these variants.

Power
The probability of correctly 
rejecting the null hypothesis 
when it is truly false. For 
association studies, the power 
can be considered as the 
probability of correctly 
detecting a genuine association.

Coverage
The extent of the genome  
that has been successfully 
represented by a sparser set  
of genetic data.

the rapidly rising prevalence of hypertension, diabetes  
and other chronic diseases in Africa itself 53–56.

Gwa by Ld mapping
Current methods for GWA analysis are based on the 
principle of LD mapping17,18. This relies on a sufficiently 
high level of LD to screen for genetic associations across 
the whole genome by typing a subset of variants15,20,23,57. 
GWA by LD mapping has three main stages of analysis, 
starting with genome-wide screening for associations, 
followed by replicating associations and then fine mapping 
of causal variants. In this section we summarize the dif-
ferent methodological issues that arise at each of these 
stages of GWA analysis in Africa.

Stage 1: Genome-wide screening for associations. At 
the first stage of GWA analysis, the aim is to screen the 
genome for regions that are associated with the dis-
ease or phenotype of interest. For example, a landmark 
study conducted by the Wellcome Trust Case Control 
Consortium in the uK population involved 17,000 indi-17,000 indi-
viduals (2,000 cases for each of 7 common diseases and 
3,000 population controls), and 0.5 million SNPs were 
genotyped in each individual58. To reduce the number of 
false-positive associations arising from multiple testing, it 
is necessary to impose a rigorous threshold for statistical 
significance that takes account of the large number of 
SNPs that have been genotyped. There are different ways 
of arriving at this genome-wide significance threshold58–62,  
but typically it is set in the region of between  p < 10–7 
and p < 10–8. This threshold is more difficult to achieve 
in African populations than in European or Asian popu-
lations because of the lower levels of LD, and authentic 
loci with strong genetic effects may fail to reach genome-
wide significance because of weak LD between causal 
variants and the SNPs that are genotyped19. In the fol-
lowing sections we consider how GWA signals might 
be boosted in African populations by improved SNP-
genotyping platforms and by multipoint imputation 
from population-specific sequencing data.

Stage 2: Replicating associations. The second stage of 
GWA analysis aims to exclude false-positive associations 
due to systematic biases in genotyping and sampling by 
replicating associations in independent studies59. In 
European and Asian populations there has been con-
siderable success in replicating GWA signals in large 
multi-centre studies across different locations26,63,64, but 
in Africa there is a greater likelihood that authentic sig-
nals of association will fail to replicate across different 
locations because of high levels of population structure. 
A particular problem is that multi-centre replication is 
less likely to succeed when there is variation among loca-
tions in the level of LD between the causal variant and 
the SNPs that are genotyped19,65,66. 

Below, we discuss in more detail the problem that 
this LD variation and population structure creates for 
GWA studies in Africa, and how it might be addressed 
by using imputation to identify potential causal vari-
ants before attempting to replicate associations across  
different locations. 

Stage 3: Fine mapping of causal variants. The final stage of  
GWA analysis is to make a high-resolution genetic map 
of those regions of the genome with replicable signals of 
association, with the aim of localizing the causal variants. 
How to achieve this remains open to debate, because so 
far there has been very limited success in identifying the 
causal variants responsible for GWA signals in European 
and Asian populations. Broadly speaking, fine mapping 
involves systematic resequencing of the genomic region 
of interest to identify all common variants, which are then 
tested for disease association using the largest possible 
sample size67. After the completion of the first tranche of 
large GWA studies in 2007 revealed novel genomic regions 
of association for several common diseases in European 
populations, there were initial hopes that this would 
shortly be followed by the identification of the causal vari-
ants. However, despite considerable efforts by several large 
research groups and consortia, progress has been slow, the 
fundamental problem being that high levels of LD make it 
difficult to distinguish causal variants from neighbouring 
non-functional variants. This has led to growing interest 
in trans-ethnic studies, which aim to increase the resolution 
of fine mapping by enlarging the haplotypic diversity of 
the sample. Studies in Africa could be of particular value 
in fine mapping because of the low levels of LD found in 
individual populations and because different populations 
in Africa have different patterns of LD14–16,68,69.

In the following sections, we discuss in more detail 
the challenges of dealing with high levels of genome vari-
ation and population structure, and go on to consider 
how these challenges might be overcome as new GWA 
methodologies are developed, particularly those that are 
based on large-scale genome sequencing.

dealing with high levels of genome variation
How many SNPs should be genotyped? What is the opti-
mum number of SNPs to genotype at the first stage of 
a GWA study in Africa, and which are the best SNPs to 
include in this genotyping set? More specifically, what 
is the optimum genotyping set for a given population, 
and how much does this need to be enlarged to cover 
other ethnic groups and geographical locations, given 
the great genetic diversity of African populations10–12? 
Although there is no clear answer to these questions at 
present, data soon to emerge from the 1000 Genomes 
Project on different populations in Africa will greatly 
increase our understanding of this problem. Our current 
understanding relies primarily on HapMap data on 90 
Yoruban individuals from Ibadan in Nigeria, who were 
genotyped for 3.4 million SNPs15,20. A crude estimate from 
the initial HapMap publication, based on the concept of 
tagging SNPs, was that a GWA study of 1.5 million SNPs 
in an African population would have approximately the 
same statistical power as a study of 0.6 million SNPs in 
a European population15. In practical terms, the current 
commercial SNP-genotyping platforms, most of which 
have been designed based on HapMap data, provide con-
siderably lower levels of genome coverage in Africa than 
in Europe or Asia, and this translates to a lower power 
to detect a GWA signal that achieves the genome-wide 
significance threshold11,70–72.
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Figure 1 | African populations are subject to high levels of ascertainment bias in current snP databases. A study 
by Wall et al.76 sequenced 40 intergenic regions in 90 individuals from 6 different ethnic groups. Within these regions, 
they observed almost all of the SNPs in the HapMap Phase 2 database, as well as discovering many new SNPs. The 
figure shows the number of SNPs in the HapMap data (green) compared with the number of SNPs that were 
discovered by resequencing and that were not present in the HapMap data (orange), categorized by derived allele 
frequency. a | Data from all ethnic groups combined. b | SNPs discovered in an African group (Mandinka) compared 
with African data (Yoruba people in Ibadan, Nigeria (YRI)) from the HapMap Project. c | SNPs discovered in a European 
group (Basque) compared with European data (Utah residents with Northern and Western European ancestry from 
the CEPH collection (CEU)) from the HapMap Project. d | SNPs discovered in an East Asian group (Han Chinese) 
compared with SNPs from a similar group (Han Chinese in Beijing (CHB)) in the HapMap Project. It can be seen that 
the HapMap data have greater SNP ascertainment bias for African than for European or Asian populations. In 
particular, African populations have many low-frequency alleles that are not well represented in current SNP 
databases. The figure is modified, with permission, from REF. 76  (2008) CSHL Press.

Private SNPs
SNPs that are confined to a 
single population.

The problem of ascertainment bias. A fundamental 
limitation of using HapMap data for designing geno-
typing platforms for Africa is that the data focus on 
SNPs that were discovered in a relatively small number 
of individuals, predominantly of European descent73. 
This is particularly problematic because African popu-
lations have more private SNPs than European or Asian  
populations74. Resequencing of specific genome regions 
in the ENCODE Project revealed that data from 
Phase 2 of the HapMap Project provide 81% coverage of 
common SNPs in the Yoruba people compared with 94% 
in Europeans75. Because the HapMap Project prioritized 
SNPs that were common on all three continents, this leads 
to over-representation of high-frequency SNPs and under-
representation of SNPs that are common in Africa but 
rare or absent elsewhere22,76 (FIG. 1). This was highlighted 
in a targeted resequencing study, which found that 91% 
of low-frequency SNPs discovered in the Yoruba people 

were missing from the HapMap data, compared with  
86% in a comparable European sample22.

It remains uncertain to what extent data from the 
Yoruba people can be extrapolated to other populations 
in Africa, given the high level of haplotypic diversity 
and population structure11. The practical implication is 
that a SNP-genotyping platform based on HapMap data 
might have decreased coverage in regions of the genome 
in which LD differs between the population under study 
and the HapMap populations65,66. Large-scale genotyping 
data sets are now being generated for other African pop-
ulations: Phase 3 of the HapMap Project will include the  
Luhya and Maasai groups from Kenya in East Africa; 
the Human Genome Diversity Project includes indi-
viduals from eight African ethnic groups12,77; and GWA 
studies of malaria and tuberculosis involving thousands 
of individuals are ongoing in The Gambia, Ghana and 
Malawi19,37. Although these studies will provide valuable 
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Ascertainment bias
A consequence of collecting a 
non-random subsample with  
a systematic bias, so that 
results based on the subsample 
are not representative of the 
entire sample.

Genomic control
A method used in genetic 
association studies to correct 
for spurious associations 
(which may arise due to 
population stratification) by 
estimating the extent of 
inflation in the statistical 
evidence and appropriately 
downweighting this inflation.

Principal components 
analysis
A statistical method that is 
used to simplify data sets by 
transforming a series of 
correlated variables into a 
smaller number of 
uncorrelated factors.

Quantile–quantile plot
This compares the observed 
data against data sampled 
from a theoretical distribution, 
in which deviation from the line 
of y = x indicates that the 
observed data are not 
behaving as expected. In the 
context of genome-wide 
association studies, it is often 
used to test for systematic 
false-positive associations.

Family trio
A set of three people, 
comprising an individual plus 
both of the parents. In genetic 
association studies, the term 
‘affected family trio’ denotes 
an individual with the 
phenotype of interest plus 
both of the parents, who 
effectively serve as controls.

information, they all use commercial genotyping plat-
forms for which SNP selection reflects the same biases 
as the HapMap data. Large-scale resequencing studies, 
such as the 1000 Genomes Project, are therefore required 
for the development of a comprehensive list of African 
variants and their LD structure across the continent. 

Capturing structural variation. GWA studies must also 
take account of the importance of structural variation 
in the human genome. This includes copy-number vari-
ants (CNvs), such as insertions, deletions and duplica-
tions, as well as inversions and translocations. Structural 
variants seem to exhibit similar demographic patterns 
to SNPs (that is, a high proportion of common variants 
seem to be shared across continents), but there is evi-
dence of greater structural variant diversity in Africa: 
among the HapMap populations, the Yoruba sample has 
more polymorphic CNvs than the European or Asian 
samples78–80. Structural variants can be genotyped with 
arrays that are specifically designed to interrogate known 
CNv regions, but there is potential ascertainment bias if 
these are based primarily on non-African reference data. 
Alternatively, they can be inferred from SNP-genotyping 
arrays, but the low levels of LD in Africa are an inherent 
limitation in LD-based strategies for CNv tagging. New 
approaches using next-generation sequencing technology 
will be particularly valuable in reducing ascertainment  
bias towards known, common variants.

dealing with population structure
The potential confounding effect of population struc-
ture on genetic association studies in Africa is illustrated 
by the existence of more than 2,000 distinct language 
groups, most of which correspond to a specific ethnic 
group (see the Ethnologue website). There is growing 
evidence that these ethnic differences correlate with 
genetic differences and that levels of population struc-
ture are much greater within Africa than in other parts 
of the world10,19,77.

Here, we discuss the analytical implications in two 
parts. First, we consider the consequences of local popula-
tion structure — that is, variation in allele frequencies and 
LD between different ethnic groups who reside at a sin-
gle location. Second, we discuss the effects of population  
structure on multi-centre studies — that is, variation 
in allele frequencies and patterns of LD at different  
geographical locations.

Local population structure. Failure to account for 
population structure in a community with multiple eth-
nic groups can result in a high false-discovery rate and 
reduce the power of the study81,82. These confounding 
effects can be minimized by ethnic matching of cases 
and controls, but accurate matching can be difficult 
in communities in which there is substantial mixing 
between groups (BOX 2). At the first stage of a GWA 
study, it is possible to correct for population structure 
using statistical approaches, such as genomic control 
and principal components analysis83,84. In The Gambia, 
which is a community of considerable ethnic diversity,  
quantile–quantile plots of GWA data indicate that methods 

based on principal components analysis are highly effec-
tive in minimizing false-positive associations caused by 
population artefacts19. However, such statistical methods 
are more difficult to apply at the second stage of a GWA 
study because they require a substantial fraction of the 
assayed genetic markers to be independent of the phe-
notype being studied, and are therefore of limited value 
in replication studies in which only candidate SNPs are 
genotyped. In this situation it may be necessary to rely 
on surrogate markers, such as language or location of 
residence, to correct for population structure, and it has 
been shown that, at least in some populations, this can 
be reasonably effective19. An alternative is to replicate 
candidate signals with the use of family-based associa-
tion studies — for example, with family trios — as such 
designs are generally more robust to the confounding 
effects of population structure85.

Population structure in multi-centre studies. A funda-
mental problem for multi-centre replication studies in 
Africa is that allele frequencies and patterns of LD may 
vary among the different study sites8,66,86,87. Replication 
studies across European populations have been largely 
successful in reproducing the initial findings from GWA 
studies because the allele frequencies and patterns of LD 
are reasonably constant across Europe. This is not the 
case in Africa, and failure to replicate an association at 
different study sites may simply be due to varying pat-
terns of LD between the causal variant and the SNPs that 
are genotyped. An analysis of the haemoglobin-β (HBB) 
gene region in different parts of West Africa provides a 
clear example of this: the SNP encoding ‘sickle cell’, hae-
moglobin (HbS), shows different patterns of LD in The 
Gambia compared with the HapMap Yoruba sample, and 
if data from both populations are combined using stand-
ard meta-analytic approaches, this tends to reduce, rather 
than improve, statistical power to detect signals of associa-
tions unless the causal SNP itself is genotyped19,66 (FIG. 2).

This presents a quandary for the design and analy-
sis of GWA studies in Africa. The standard approach 
in Europe aims to confirm initial GWA findings in 
multi-centre studies before attempting to identify the 
causal variants by regional sequencing and fine map-
ping. However, in Africa there is a lower probability that 
association signals will replicate in multi-centre studies 
unless the causal variants are assayed directly. It has been 
proposed that the term ‘transferability’ is more appro-
priate than ‘replication’ when testing SNP associations 
across genetically different populations88. 

In the next section we consider how new technolo-
gies for large-scale genome sequencing will help to 
overcome this problem in two ways: first, by starting 
to define the population genomic structure of African 
populations at the level of resolution needed to under-
stand whether a particular multi-centre study is truly 
a test of replication as opposed to transferability; and 
second, by providing a method to refine the evidence 
of association in a GWA study, and to narrow this 
down to a shortlist of potential causal variants, before 
attempting to replicate putative causal variants across  
multiple populations. 

R E V I E W S

154 | FEBRuARY 2010 | vOLuME 11  www.nature.com/reviews/genetics

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.ethnologue.com
http://www.ncbi.nlm.nih.gov/gene/3043


Box 2 | correcting for local population structure

Population structure can affect genome-wide association (GWA) studies both at the local level and when combining data 
across multiple sites: here, we consider the effects of local population structure in The Gambia, West Africa. Jallow and 
colleagues19 recruited case individuals (patients with severe malaria) at a large government hospital and control individuals 
from local birth clinics. The majority of cases and controls came from a relatively small geographical area of approximately 
400 square miles. This community is made up of several ethnic groups, each with their own language, of which the most 
common are Mandinka, Fula, Wolof and Jola.

Part A of the figure illustrates the extent of population structure in The Gambia. It shows a principal components analysis 
of genome-wide SNP data from 2,500 individuals, revealing that the genetic population structure corresponds to 
self-reported ethnicity. Based on the genetic data, some individuals can be confidently assigned to a specific ethnic group, 
whereas others seem to have more complex ancestry. 

Part B of the figure illustrates the effects of various statistical correction procedures in a case–control association study.  
It shows quantile–quantile plots of the trend test statistic for association with severe malaria. Part Ba shows that there are 
many false-positive associations in the raw data. Part Bb shows that the number of false-positive associations can be 
greatly reduced if the analysis is stratified by self-reported ethnicity. Part Bc shows a very low rate of false-positive 
associations after correction by principal components analysis.

These findings show that, in this particular community, the number of false-positive genetic associations in a case–control 
study can be reduced to an acceptable level by taking an individual’s self-reported ethnicity into account, despite high 
levels of population stratification and ethnic admixture. Such information can be valuable when conducting candidate 
gene studies in large population surveys.

However, there are several other ways in which population structure might confound GWA analysis that are not considered 
here. For example, variable patterns of linkage disequilibrium among different ethnic groups might act to reduce authentic 
GWA signals when the results from different groups are combined, as discussed in the main text and in FIG. 2. The figure is 
reproduced, with permission, from Nature Genetics REF. 19  (2009) Macmillan Publishers Ltd. All rights reserved.
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moving towards Gwa by sequencing
GWA methodologies are about to be transformed 
by new sequencing technologies23,89–94. The cost of 
sequencing an individual human genome will probably 
fall to uS$1000 in the next few years, and eventually it 
will be possible to conduct GWA analysis by genome 

sequencing of all of the cases and controls. This will  
be particularly beneficial for studies in Africa: it  
will increase the strength of GWA signals, because causal 
variants will be directly tested, and replication studies 
will be more likely to succeed because they will include 
the causal variant. In this situation, weak LD and variable 
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Figure 2 | Meta-analysis at a site with different associated haplotypes in two populations. The ‘sickle cell’ variant 
of the haemoglobin-β (HBB) gene — encoding haemoglobin S (HbS) — is known to confer resistance to severe malaria. 
It is also known to exist on different haplotypes in different African populations. Here, we consider the major HbS 
haplotypes (green and blue horizontal bars) found in Gambia and in the Yoruba people of Nigeria: the HbS-encoding 
variant (orange strip) is in linkage disequilibrium with different SNPs (cyan strips) in the two populations. The graphs 
represent fictitious case–control studies of severe malaria in the Gambian (a) and Yoruban (b) populations, showing 
the strength of association signal expected from the causal variant (orange star) and other SNPs (red circles). Part c 
shows the results expected if data from a and b were combined in a standard meta-analysis: the association signal of 
the causal variant is boosted, but that of other SNPs is reduced.

Figure 3 | imputation and the choice of haplotype 
reference panel. Imputation is a process of statistical 
inference that estimates the most likely genotype of an 
individual at a given position in the genome, based on what 
is known about the genotype of that individual at nearby 
positions and on a reference data set of genome variation 
in the general population. The accuracy of imputation 
depends on the appropriateness of the reference data set. 
The figure shows signals of association with severe malaria 
from SNPs distributed across a ~2.5-Mb region of 
chromosome 11 (REF. 19). The vertical dashed line 
represents the position of rs334: this SNP is known  
to encode the haemoglobin S (HbS) variant of the 
haemoglobin-β (HBB) gene, which confers resistance to 
malaria. a | SNPs typed using the Affymetrix 500K 
genotyping platform (black circles). b | SNPs imputed using 
the HapMap Yoruba people in Ibadan, Nigeria (YRI) data  
as the reference (grey circles). The rs334 SNP is shown as  
a yellow diamond. c | SNPs imputed from regional 
sequencing data on 62 Gambian individuals (orange 
circles), including rs334 (yellow diamond). If we did not 
know that rs334 was the causal variant, imputation based 
on Gambian sequencing data would have been extremely 
useful, whereas imputation based on the HapMap YRI data 
would have been misleading. Parts a and c are modified, 
with permission, from Nature Genetics REF. 19  (2009) 
Macmillan Publishers Ltd. All rights reserved.

▶

Allelic heterogeneity
When multiple variants in the 
same gene affect the same 
disease. This should be 
contrasted with genetic or 
locus heterogeneity, when 
variation in different genes 
affects the same phenotype.

LD between populations will become an advantage,  
as they will help to distinguish causal variants. 

GWA by sequencing will greatly enhance our ability 
to detect associations with variants that are population-
specific, and to dissect the problem of allelic heterogeneity. 
For example, there are two distinct variants of the HBB 
gene that confer resistance to malaria in West Africa: 
one encodes HbS (a valine substitution at codon 6)  
and the other encodes HbC (a lysine substitution, also 
at codon 6). HbS is relatively widespread, whereas HbC 
has a more localized distribution — for example, among 
the Dogon people of Mali, who have a low frequency of 
HbS95–97. This example is well understood because hae-
moglobin has been intensively studied by geneticists for 
many years, but allelic heterogeneity of this sort might 
be extremely difficult to dissect by GWA analysis, unless 
it is based on genome sequencing.

The 1000 Genomes Project will improve imputation 
accuracy. It will be some years before GWA analysis by 
sequencing becomes a practical proposition, and this 
raises the question of how to perform effective GWA 
studies in Africa using current genotyping resources. 
Within the next 2 years, the 1000 Genomes Project 
proposes to generate whole-genome sequence data on 
at least 60 individuals from each of 5 different African 
populations: data are currently being generated on two 
HapMap groups, the Yoruba of Nigeria and the Luhya of 
Kenya, and plans are under way to include groups from 
The Gambia, Ghana and Malawi. As well as enabling the 
optimization of new SNP-genotyping platforms, these 
data will increase the value of existing SNP-genotyping 
platforms by increasing the accuracy of multipoint impu-
tation. Imputation is a method of statistically inferring 

an individual’s genotype at a variable position in the 
genome, based on that individual’s known genotypes at 
nearby variable positions combined with reference data 
on genome variation in the general population98–101. The 
HapMap Project has provided an important reference 
panel for imputation in European populations, and it 
is now common for GWA studies to report association 

R E V I E W S

156 | FEBRuARY 2010 | vOLuME 11  www.nature.com/reviews/genetics

© 20  Macmillan Publishers Limited. All rights reserved10



Nature Reviews | Genetics

–l
og

10
 p

 v
al

ue

5.5 6.54.5 5 64
Genome position (Mb)

12

14

10

8

6

4

2

0

–l
og

10
 p

 v
al

ue

5.5 6.54.5 5 64
Genome position (Mb)

12

14

10

8

6

4

2

0

–l
og

10
 p

 v
al

ue

5.5 6.54.5 5 64
Genome position (Mb)

12

14

10

8

6

4

2

0

Genotype SNP on Affymetrix 500K
Imputed using HapMap YRI as reference
Imputed using sequence data from The Gambia

a  Signals of malaria association using the Affymetrix 500K SNP data set

b  Signals of malaria association using SNPs imputed from the Yoruban SNP data set

c  Signals of malaria association using SNPs imputed from sequence data from The Gambia

Association signal at rs334

rs334 (sickle-cell locus)

p ~ 10–14

data at 3 million SNP positions, of which 1 million have 
been directly genotyped and the remainder imputed.

Accurate imputation requires the correct reference data. 
Imputation strategies are predicated on the assumption 
that the reference data accurately represent the haplo-
types that exist in the GWA study population; if this is 
not the case, imputation can give misleading results. This 
is particularly problematic for African populations, in 
which lower imputation accuracy has been reported65,102. 
The problem is well illustrated by a GWA study of severe 
malaria in Gambian children, in which a detailed analysis 
was undertaken of a 110-kb region of the genome con-
taining the known malaria resistance variant HbS19. All 
common variants were imputed across this region using 
two different sets of reference data on genome variation. 
The first reference data set was obtained by resequencing 
62 Gambian individuals across this region of the genome, 
and the second used HapMap data from the Yoruba peo-
ple, who live in a different part of West Africa. Imputation 
based on the Gambian reference data accurately identi-
fied HbS as being strongly associated with resistance 
to malaria, whereas imputation based on the HapMap 
Yoruba reference data showed no association with HbS 
(FIG. 3). This finding is not entirely surprising given that 
the HbS-encoding allele occurs on different haplotypic 
backgrounds in different parts of Africa103–106.

Imputation based on population-specific sequencing 
as an interim strategy. The above result represents a 
proof of principle that causal genetic variants can be fine 
mapped in Africa by imputation based on population-
specific genome variation data. FIG. 3 illustrates three 
important points. First, imputation should be based on 
population-specific reference data. Second, multipoint 
imputation can be highly effective in boosting GWA 
signals when the genotyping array contains no indi-
vidual SNP that is in strong LD with the causal variant; 
in the case of HbS, the imputed GWA signal was several 
orders of magnitude greater than that obtained by direct 
genotyping. Third, low levels of LD can be valuable in 
localizing a causal variant by fine mapping: in the case 
of HbS, after imputation had been performed with the 
appropriate reference panel, the causal SNP (rs334) could 
be clearly identified at the peak of the association signal. 
It remains to be determined whether other causal vari-
ants will be as amenable to fine mapping by imputation 
as the HbS variant. The success of this approach will be 
affected by different patterns of genome variation, and 
the HbS-encoding locus has several features that may 
be particularly favourable, namely a strong phenotypic 
effect, an extended ancestral haplotype owing to recent 
positive selection, and a genomic region with generally 
weak LD19. But until it becomes possible to conduct 
GWA by sequencing all cases and controls, imputation 
based on population-specific reference data provides an 
interim strategy to boost GWA signals of association in 
Africa and to enable multi-centre studies, the results of 
which can be usefully combined because all common 
(including causal) variants have been imputed with a 
reasonable level of accuracy at each centre.
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 Box 3 | developing capacity for genome-wide association studies in africa

Building local resources 
Obtaining well-characterized phenotypic data from thousands of individuals in poor communities with no systematic 
medical records requires investment to strengthen infrastructure for clinical research and data management. There 
also needs to be a commitment to build the resources for genetic and genomic research in Africa, and to foster a cadre 
of African scientists with the expertise needed to lead this research area. The African Society of Human Genetics 
provides an important forum for knowledge-sharing, networking and interactive training programs, with an annual 
conference held in a different African region each year107,108. The Society also recognizes the need to communicate with 
policymakers and to attract global attention to the efforts of African scientists, which will be crucial in persuading 
African institutions and governments to engage with large-scale projects in human genetics and genomics. Another 
example of capacity building is the Malaria Genomic Epidemiology Network (MalariaGEN) scheme of data fellowships 
and data bursaries, which provides training and support in statistics and informatics for researchers in 15 
malaria-endemic countries37. Institutions also need to develop infrastructure to manage genetic samples and data 
within an appropriate regulatory and ethical framework, an example being the Gambian National DNA Bank109.

Data-sharing networks
Data-sharing networks, such as the Wellcome Trust Case Control Consortium and the Genetic Association Information 
Network, have been instrumental in driving forward genome-wide association (GWA) research58,110. Bringing together 
African and non-African partners will require work at many different levels — for example, reaching decisions about 
the ownership and permitted uses of shared data and samples, intellectual property and data release, and developing 
web information systems to integrate data from different research groups and to make these data widely accessible to 
partners in Africa111,112. The MalariaGEN network has developed policies for data sharing that take account of the 
disparities of research in high- and low-income countries37. For example, MalariaGEN’s policy for GWA data release 
promotes data access while guarding against uses that might lead to ethnic stigmatization, in addition to setting 
timelines for data release that are fair to contributing investigators in malaria-endemic countries, who might not be in a 
position to analyse their data as rapidly as researchers in high-income countries37,113.

ethical issues
Genetic research in developing countries raises a wide range of ethical and social issues114, and considering them all is 
beyond the scope of this Review. An example is the problem of obtaining valid consent from study participants for 
whom terms such as ‘genetics’ and ‘database’ might be meaningless unless carefully explained, drawing from local 
experience115–117. In this situation, it is important to take account of local language and cultural practices and it may be 
appropriate to seek consent from community leaders as well as from individuals. Another sensitive issue is the fear that 
the use of information about ethnicity in genetic studies might lead to ethnic stigmatization118. 

towards an African Genome Project
Plans to study African genome variation within the 1000 Genomes Project are currently limited to populations that 
speak Niger-Kordofanian languages, and will therefore encompass only a fraction of African genetic diversity10. The 
African Society of Human Genetics has put forward a strong case for an African Genome Project108, one component of 
which would involve systematic sampling of at least 100 ethnic groups across the continent, including minority 
populations that will be poorly represented in the 1000 Genomes Project. The fundamental aim is to develop 
population-based resources to investigate genetic and environmental determinants of disease. As discussed above, 
there is also a need for investments in training and infrastructure. Although these plans remain embryonic, they 
demonstrate that the time is ripe for an expansion of genome research in Africa, led by African investigators.

conclusions
GWA research in Africa presents a wide range of practical,  
scientific and ethical challenges, which we have not 
attempted to cover comprehensively here. For example, it 
can be a huge undertaking to establish the clinical research 
infrastructure needed to recruit large numbers of patients 
and to ensure accurate phenotypic data when working 
in a resource-poor setting. There is a need for robust 
epidemiological platforms to investigate how variations 
in environment and lifestyle affect the results of genetic-
association studies in different populations, and for 
statistical methodologies that can account for such inter-
actions when combining data from different locations in 
multi-centre GWA studies. GWA studies in Africa require 
the building of local resources and the development of 
data-sharing networks that meet the needs of the African 
research community, and it is of crucial importance to 
pay attention to the ethical issues that arise in medical  
and genetic research in resource-poor settings (BOX 3).

Our main purpose in this Review has been to con-
sider the specific methodological roadblocks to GWA 
analysis that arise in Africa owing to the high levels  
of genome diversity and population structure. Many of 
these roadblocks will be removed when new sequencing 
technologies make it possible to conduct GWA analy-
sis by genome sequencing. Because all variants will  
be directly observed, including causal variants, this 
will increase the strength of GWA signals and make it 
easier to perform meta-analyses across multiple study 
sites. An interim strategy is to conduct imputation of all 
common variants, and for GWA studies in Africa it is 
particularly important that this should be based on pop-
ulation-specific genome variation data. By providing a 
framework for accurate imputation in a number of dif-
ferent African populations, the 1000 Genomes Project 
will be an important first step towards reliable multi-
centre GWA studies in Africa and the fine mapping  
of causal variants.
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