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Methodological challenges when estimating the
effects of season and seasonal exposures on birth
outcomes
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Abstract

Background: Many previous studies have found seasonal patterns in birth outcomes, but with little agreement
about which season poses the highest risk. Some of the heterogeneity between studies may be explained by a
previously unknown bias. The bias occurs in retrospective cohorts which include all births occurring within a fixed
start and end date, which means shorter pregnancies are missed at the start of the study, and longer pregnancies
are missed at the end. Our objective was to show the potential size of this bias and how to avoid it.

Methods: To demonstrate the bias we simulated a retrospective birth cohort with no seasonal pattern in gestation
and used a range of cohort end dates. As a real example, we used a cohort of 114,063 singleton births in Brisbane
between 1 July 2005 and 30 June 2009 and examined the bias when estimating changes in gestation length
associated with season (using month of conception) and a seasonal exposure (temperature). We used survival
analyses with temperature as a time-dependent variable.

Results: We found strong artificial seasonal patterns in gestation length by month of conception, which depended
on the end date of the study. The bias was avoided when the day and month of the start date was just before the
day and month of the end date (regardless of year), so that the longer gestations at the start of the study were
balanced by the shorter gestations at the end. After removing the fixed cohort bias there was a noticeable change
in the effect of temperature on gestation length. The adjusted hazard ratios were flatter at the extremes of
temperature but steeper between 15 and 25°C.

Conclusions: Studies using retrospective birth cohorts should account for the fixed cohort bias by removing
selected births to get unbiased estimates of seasonal health effects.

Background
Worldwide, it is estimated that 2.2% of all babies are
stillborn [1] and 9.6% of all births are preterm (less than
37 completed weeks of gestation) [2]. Preterm babies are
at greater risk of poor health and early death, require
longer periods of hospitalisation after birth, and are
more likely to develop disabilities [3-5].
Environmental and meteorological factors may be a

cause of adverse birth outcomes [6]. Increases in air pol-
lution [7] and temperature [8] have been associated with
adverse birth outcomes. Air pollution and temperature
usually have a strong seasonal pattern, meaning that one

method of examining environmental factors is to
explore seasonal patterns. Research has shown that the
risk of preterm birth varies by season of birth [9,10] and
season of conception [11]. Seasonal patterns of preterm
birth differ from country to country, and peaks have
been shown to occur at both hot and cold times of the
year. For example, in a London cohort of almost
500,000 live singleton births, babies were more likely to
be born preterm in winter than in spring (odds ratio =
1.10, 95% confidence interval (CI) 1.07-1.14), with the
highest risk of preterm birth in November and Decem-
ber (probability of 0.76 per 1,000 fetuses at risk com-
pared to 0.64 in April) [12]. However, in Greece
preterm birth rates were highest in summer and spring
[9], and in The Gambia preterm birth rates peaked in
summer and autumn [13]. In Japan peaks of preterm
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births were reported in summer and winter [14]. The
peak in winter was dominant among the northern lati-
tudes and the peak in summer was dominant among the
southern latitudes, suggesting that the seasonal pattern
was dependent on factors differing between geographic
locations (such as temperature) [15]. Different statistical
methods may partly explain the differences in the seaso-
nal patterns in the studies discussed above [16]. In parti-
cular, some studies assumed a sinusoidal seasonal
exposure, whereas others looked at individual months or
seasons.
Studies in developing countries have hypothesised

that seasonal patterns in birth outcomes are due to
seasonal changes in nutrition, infectious diseases, and
seasonal work [13]. These factors are not as important
in developed countries, but seasonal patterns in birth
outcomes still occur, possibly because of seasonal
changes in Vitamin D, air pollution or temperature
[7,8,17,18]. As we show in this paper, seasonal patterns
can also be due to biases in the selection of the study
sample.

The fixed cohort bias
For birth cohorts the population at-risk is constantly
changing, as new pregnancies start and existing preg-
nancies end [19]. In retrospective birth cohort studies,
when using a study period based on the date of birth
(e.g., all births from 1 January 2005 to 31 December
2005), the population at-risk is different at the start
and end of the cohort. The differences are shown in
Figure 1 using three groups of three births, where each
group has the same conception date. The shortest
pregnancy registered in Brisbane statistical Division
between 1 July 2005 and 30 June 2009 was 19 weeks
and the longest was 43 weeks. For pregnancies con-
ceived more than 19 weeks before the study start date,
only those with a longer gestation will be included,
and those with a shorter gestation will be missed
because they gave birth before the start of the study.
Similarly, for pregnancies conceived less than 43 weeks
before the end of the cohort, mothers with longer
gestations will give birth after the end of the study.
Birth cohorts that prospectively follow women from
conception to birth (or from their first antenatal visit
to birth), do not experience this problem because the
complete pregnancy history is known and no deliveries
are missed.
The pattern shown in Figure 1 has the potential to

bias seasonal patterns of gestation length by including
only the longer pregnancies at the start of the study and
only the shorter pregnancies at the end of the study. It
also has the potential to bias studies of environmental
exposures such as temperature. Just one example of
how this could lead to biased estimates were if there

was an unusually hot month in the first trimester of
those women captured at the start of the study, which
could mean that high temperatures were wrongly asso-
ciated with longer gestations. We refer to this bias as
the fixed cohort bias.
The arrows shown in Figure 1 call to mind to the

well-known issue of left and right censoring in survival
analysis [20], where either the start or end times are
unknown. However, the fixed cohort bias is a different
issue because it occurs when both the start and end
times are unknown. These subjects will be missing from
the at-risk population which will therefore be too small,
and hence the consequences of the bias are similar to
those caused by censoring.
The purpose of this paper is to demonstrate the

potential effects of ignoring the fixed cohort bias, and to
show how it can be avoided. We show the bias when
estimating the effects of season, and the seasonal expo-
sure of temperature.

Methods
The Brisbane cohort
We requested data on a cohort of all singleton births in
the Brisbane Statistical District from 1 July 2005 to 30
June 2009 (n = 114,947) from the Queensland Health
Perinatal Data Collection Unit. We only examined sin-
gleton births, so twins or triplets were excluded.
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Figure 1 How the population at-risk changes according to
birth date using a birth cohort based on all births in 2005.
Black arrows show births included in the cohort and grey arrows
show births that were missed. The number above each arrow
shows the gestation length in weeks. The plot shows three groups
of three births, each group represents one conception date.
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Simulated cohorts
To investigate the fixed cohort bias we simulated a ret-
rospective birth cohort with no seasonal pattern in
gestation. The simulated cohort was based on the Bris-
bane cohort and had the same start and end dates (1
July 2005 to 30 June 2009). We randomly sampled
gestation lengths from the Brisbane cohort (with repla-
cement) using the original sample size (n = 114,947).
We randomly simulated conception times from 43
weeks prior to the start of the study period (3 Septem-
ber 2004) until the end of the study period using a dis-
crete Uniform distribution. Using these non-seasonal
conception times and randomly sampled gestation
lengths meant there was no seasonal pattern in gestation
lengths or dates of births in the simulated cohorts, and
that the distribution of gestation lengths was the same
as the Brisbane cohort. Simulated births with a date of
birth outside the cohort start and end dates were
excluded, as these births would have been missed by a
fixed cohort. Missing these births is the cause of the
fixed cohort bias. The simulations were made using the
R software (version 2.11.1).

Statistical analyses
We ran a survival analysis of gestation length to analyse
the effect of the fixed cohort bias on the seasonality of
birth outcomes. We used a Cox proportional hazards
model with a dependent variable of gestation length (in
days) and an independent variable of conception month.
A hazard ratio greater than one means an increased
chance of giving birth, and hence shorter gestations.
Whereas a hazard ratio less than one means a reduced
chance of giving birth, and hence longer gestations.
We suspected that the effects of the fixed cohort bias

would vary depending on the start and end dates of the
study. To investigate this, we moved the end date of the
study (using the simulated cohort) backwards in time
(one month at a time) and repeated the survival analysis.
We repeated this analysis for 100 simulated cohorts and
calculated the average hazard ratios in each conception
month.
We propose a method to avoid the fixed cohort bias

by removing some pregnancies from the cohort. The
adjusted cohort is created by limiting the included preg-
nancies to those with conception dates between:

1. 19 weeks before the cohort started, and
2. 43 weeks before the cohort ended.

We used 19 and 43 weeks as cut-offs since these were
the longest and shortest gestation lengths observed in
the Brisbane cohort. This ensures that the long pregnan-
cies at the beginning of the cohort, and the short preg-
nancies at the end of the cohort, are excluded. We then

repeated the survival analysis using the original Brisbane
cohort and the adjusted cohort with month of concep-
tion as the single independent variable.
To investigate the effect of the fixed cohort bias on

the effect of seasonal environmental exposures, we fitted
a similar survival model but with the time-dependent
variable of mean temperature in the last four weeks. We
used polynomial splines for mean temperature [21]. The
degrees of freedom of the spline control the degree of
smoothness of the estimated temperature-gestation asso-
ciation. To allow for non-linear shapes, we used three
degrees of freedom to describe the association between
temperature and gestation length. We used the mean
temperature in Brisbane (21°C) as the reference tem-
perature where the hazard ratio was 1. We adjusted for
mean humidity (in the last four weeks), baby sex, mater-
nal age, Indigenous status, marital status, maternal
smoking, number of previous pregnancies, and preg-
nancy complications (yes/no). We used both the original
and adjusted Brisbane cohort. All models were fitted
using the R software (version 2.11.1).

Results
Table 1 describes the demographics of the original Bris-
bane cohort (n = 114,947). Figure 2 shows gestation
lengths by month and year of conception. The births in
the cohort conceived in September 2004 must have had
a gestation of at least 40 weeks to be included, because
any shorter pregnancies gave birth before the start of
the study period (1 July 2005). The closer to the start of
the study period, the more possible it became for
women with shorter pregnancies to enter the cohort. In
the middle of the cohort, gestation lengths were rela-
tively stable, as all pregnancies were included and none
were excluded because of their length. Towards the end
of the cohort it became impossible for women conceiv-
ing during the study period but with longer pregnancies
to be included, because they gave birth after the end of
the study period. After removing the pregnancies con-
ceived more than 19 weeks before the study start and
less than 43 weeks before the study end, the adjusted
cohort had 101,870 pregnancies (88.6% of the original
sample).

Simulation results
Our simulated data had no seasonal pattern in gestation
length. Figure 3 shows that an artificial seasonal pattern
occurred for every end date except June 2009. The sea-
sonal pattern varied according to the end date, so an
end date of April 2009 meant that the shortest gesta-
tions were for conceptions in July (highest hazard ratio
for giving birth), whereas an end date of January 2009
meant the shortest gestations were for conceptions in
May (highest hazard ratio for giving birth). The bias was
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avoided when the day and month of the end date (31
June - ignoring year) were just before the day and
month of the start date (1 July). This is because the
shorter pregnancies at the end of the study period were
balanced by the longer pregnancies at the start of the
study.

Brisbane results
We further illustrate the fixed cohort bias using the
Brisbane cohort in Figure 4. The estimated seasonal pat-
tern in gestation length was strongly dependent on the
end date of the study. For an end date of September
2008 the hazard ratios for many conception months
were significantly lower than January (e.g., the hazard
ratio for June relative to January was 0.95, 95% CI: 0.92,
0.98) meaning that gestations were longer for June con-
ceptions. Conversely for an end date of March 2009 the
hazard ratio for June relative to January was 1.04, 95%
CI: 1.01, 1.07, meaning that gestations were shorter for
June conceptions. After adjusting the cohort by remov-
ing births conceived more than 19 weeks before the

cohort started, and less than 43 weeks before the cohort
ended, the estimated seasonal pattern remained almost
the same regardless of the study end date. The esti-
mated seasonal pattern using the adjusted cohort was
very close to that shown for an end date of June 2009,
an end date which avoids the fixed cohort bias for this
analysis because the end day and month are just before
the start day and month (regardless of year).

Temperature results
The effect of the fixed cohort bias in a study investigat-
ing temperature is shown in Figure 5. In the original
cohort, longer gestations (reduced hazard ratios)
occurred at temperatures from 12°C to 15°C, there was
no change from the average gestation length between
15°C and 25°C, and average gestation lengths were shor-
tened from 25°C and upwards. The estimated hazard
ratios using the adjusted cohort were quite different.
The hazard ratio of birth increased (gestation decreased)
almost linearly from 15°C to 25°C. At very low and high
temperatures the confidence intervals were wide, making
it difficult to make any inferences.

Discussions
Artificial seasonal patterns can occur in retrospective
birth cohorts depending on the study’s start and end

Table 1 Demographics of the Brisbane cohort (births
between 1 July 2005 and 30 June 2009)

n %

Total births 114,947 100.0

Gender

Male 59,317 51.6

Female 55,630 48.4

Marital status

Married/De facto 98,888 86.0

Never married 14,240 12.4

Separated/Divorced 1,788 1.6

Not stated 31 < 0.1

Indigenous status

Indigenous 2,568 2.2

Non-indigenous 112,301 97.7

Not stated 78 0.1

Smoking

Non-smoker 94,283 82.0

Smoker 19,845 17.3

Not stated 819 0.7

Pregnancy complications

No complications 108,946 94.8

Pre-eclampsia 6,001 5.2

Previous pregnancies

0 34,857 30.3

1-2 55,670 48.4

3-4 17,393 15.1

5+ 7,027 6.1

Mother’s age (years), mean (SD) 29.6 (5.8)

Gestation length (weeks), mean (SD) 38.8 (2.3)

SD = Standard deviation

Figure 2 Box plots of gestation (weeks) by month of
conception for the Brisbane cohort. Boxes show the inter-quartile
range; outliers are circles. The dotted vertical line shows the start of
the cohort based on birth dates (1 July 2005). The last birth was 30
June 2009 and the last gestation was in December 2008. Gestations
for conceptions in September 2004 were all 40 weeks or longer,
whereas those in December 2008 were all shorter than 30 weeks.
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dates (Figure 3). The cause is the great difference in
pregnancy lengths between those births included at the
start and those included at the end of the study. In our
Brisbane cohort the median gestation length was 40
weeks at the start of the study, 39 weeks in the middle
part of the study and as low as 25.5 weeks during the
last conception month (Figure 2). The artificial seasonal
patterns caused by the fixed cohort bias have a shape
similar to an expected seasonal pattern, meaning that it
could easily be wrongly attributed to a seasonal expo-
sure (e.g., temperature). It is possible to remove the bias
at the cost of a loss of sample size. We demonstrated
how the bias was avoided by removing the pregnancies
that were conceived earlier than 19 weeks prior to the
start of the study period and later than 43 weeks before
the end of the study period (Figure 4).
The biases are not caused by the well-known issues of

censoring in survival data, which occurs when the start
or end time of a subject are unknown. The bias demon-
strated here is because both the start and end times are
unknown. It is a bias caused by subjects who were com-
pletely (and unknowingly) missed from the cohort, not
because of subjects who were partially observed.

The potential biases due to changes in the at-risk
population when examining the effect of time-depen-
dent exposures on pregnancy have been addressed by
two recent studies [19,22]. These studies showed sub-
stantial biases due to ignoring seasonal patterns in preg-
nancies [19], and due to ignoring the week of gestation
at study entry [22]. A recent study demonstrated the
value of using time-dependent exposures as part of a
Cox proportional hazards model when estimating the
effects of air pollution on pregnancy, and concluded
that this method was more effective than conventional
approaches for estimating key exposure periods [23].
We also recommend the use of methods that adjust for
the at-risk population and use time-dependent expo-
sures to correctly estimate the effects of environmental
exposures on pregnancy. However, we caution that
when using these methods the fixed cohort bias needs
to be considered. Our paper makes an important contri-
bution to this developing area as it shows the potential
size of the fixed cohort bias and a simple way to avoid
it.
Our results show how the size of the fixed cohort bias

can be substantial, causing great changes in the months
that most effect gestation length (Figure 3, 4), and chan-
ging the estimated effect of temperature on gestation
length (Figure 5). The results in Figure 3 showing the
erroneous seasonal pattern were based on four years of
data. To remove the seasonal pattern we excluded preg-
nancies with conception dates 19 weeks before the
cohort started and 43 weeks before the cohort ended.
These were around 13% of all pregnancies, and so repre-
sent a relatively large proportion of the sample, which
explains the relatively large bias.
As shown in Figure 3, the fixed cohort bias is avoided

when the day and month of the cohort’s end date are a
day before the day and month of the cohort’s start date
(regardless of year). A design with these ‘matching’ start
and end dates is the most common for previous birth
cohort studies [11,18,24,25]. However, the balancing of
the bias will not occur for time-dependent exposures.
For example, if there was an unusually hot month in the
first trimester of those women captured at the start of
the study, then high temperatures could be wrongly
associated with longer gestations. The bias would only
be avoided if there was an equally unusually hot month
at end of the study period, when the women captured in
the cohort have shorter gestations. We examined this
potential bias in the original and adjusted Brisbane
cohort and confirmed that the fixed cohort bias changed
the effect estimates of temperature on gestation length
(Figure 5). Ignoring the fixed cohort bias meant the big-
gest changes in the hazard ratios were at the extremes
of temperature, whereas the adjusted estimate shows the
biggest changes for more moderate temperatures. So if

Figure 3 Estimated seasonal pattern in gestation length by
conception month for 12 end dates using 100 simulated
cohorts (January is the reference month). Each panel shows the
estimated seasonal pattern for a different end date. The start date
was 1 July 2005. The data was simulated with no seasonal pattern.
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we ignored the fixed cohort bias we might wrongly
advise that pregnant women avoid extreme temperatures
(above 25°C), whereas the actual change in gestation
length is for moderate temperatures (between 16 and
25°C). The fixed cohort bias can therefore not only bias
the estimated effects of season (e.g., month of concep-
tion), but can also bias the estimated effects of seasonal
exposures (e.g., air pollution and temperature).
A group of conceptions that were missed in this

study were those occurring before 20 weeks (sponta-
neous abortions). These unfortunate cases are not
added to the Brisbane birth registry. Rates of sponta-
neous abortions having reached at least five gestational

weeks after last menstrual period vary from 11 to 16%
[26-28]. Missing these cases has the potential to bias
estimates of time-dependent exposures. Suppose an
environmental exposure is strongly associated with
spontaneous abortion, then a peak in this environmen-
tal exposure will cause an increase in spontaneous
abortions and hence a decrease in the number of
births that appear in the cohort. A study based on
births after 19 weeks would miss the opportunity to
detect the dangers of this exposure. Hence birth cohort
studies should minimise their entry time, and clarify
that the results only apply to pregnancies that have
progressed to that time.
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Figure 4 Estimated seasonal pattern in gestation length by conception month for the Brisbane cohort. Each panel shows the estimated
seasonal pattern for a different end date. The black lines show the estimated seasonal pattern ignoring the fixed cohort bias. The grey lines
show the estimated seasonal pattern after adjusting for the fixed cohort bias. Mean hazard ratios (dots) and 95% confidence intervals (vertical
lines).
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An ideal study design is one that prospectively follows
women from close to conception, as this ensures that
no pregnancies are missed (and hence the fixed cohort
bias is not an issue). However, these designs are much
more expensive that those relying on routinely collected
birth data. A good alternative is to adjust cohorts using
our method, and so avoid artificially created patterns
and wrongly estimated effects from seasonal environ-
mental exposures on birth outcomes.
Our results in Figure 5 are consistent with three pre-

vious studies that found that exposure to high tempera-
tures in the week of birth increased the risk of preterm
birth [8,9,29]. Maternal hyperthermia has been asso-
ciated with abortions and stillbirths with lags of days to
several weeks [30]. A study investigating hot tub and
Jacuzzi use during the pregnancy and its effect on abor-
tions found that pregnant women using hot tub or
Jacuzzi during the pregnancy were twice as likely to
have an abortion than women who did not (hazard
ratio: 2.0, 95% confidence interval: 1.3, 3.1). Another
study found that application of heat to the abdominal
wall of women in labour increased uterine activity [31].
Dehydration during warmer temperatures may also be
the cause of the shorter gestations, as insufficient fluids
in the mother can decrease the amount of blood avail-
able to the fetus and induce uterine contractions [32].
Our results suggest that pregnant women should avoid
exposure to high temperatures.

Limitations
Although we controlled for Indigenous status we did not
have data on other racial groups. As shown by Darrow
et al [19] seasonal patterns in birth numbers by racial
groups can cause seasonal patterns in birth outcomes.
Therefore by only partially controlling for race the

results in Figure 5 may be caused by a seasonal pattern
in conception times in one or more racial groups. Also,
we used data on ambient temperature and not the
actual temperature experienced by the women which
introduces a measurement error. For example, women
with air conditioning would experience less exposure to
high ambient temperatures.
We used a Cox proportional hazard model with a

time-dependent exposure and therefore the results are
presented as hazard ratios, and we were not able to give
the estimated gestation length on the absolute scale of
time (Figure 3). Using an accelerated failure time model
or pooled logistic regression model [33] in place of the
Cox model would mean the results could be given on a
time scale.

Conclusions
Correctly estimating the effects of environmental expo-
sures on pregnancy is vital because an unhealthy start to
life can mean an unhealthy adulthood. The adverse health
effects of preterm birth and low birth weight include:
socio-emotional and educational problems [3], reduced
cognitive function [4], impaired vision and hearing [5] and
restricted growth [34]. New research into the possible
effects of the temperature on pregnancy is particularly
important because of climate change. Future changes are
predicted to include an increase in ‘mega-heatwaves’ such
as those experienced in Europe in 2003 and 2010 [35]. If
higher temperatures increase the risk of preterm birth as
shown here (Figure 5), then we can expect a greater future
public health burden due to preterm birth.
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