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Abstract 
 

Understanding how best to estimate state-level policy effects is important, and several 

unanswered questions remain, particularly about the ability of statistical models to disentangle 

the effects of concurrently enacted policies. In practice, many policy evaluation studies do not 

attempt to control for effects of co-occurring policies, and this issue has not received extensive 

attention in the methodological literature to date. In this study, we utilized Monte Carlo 

simulations to assess the impact of co-occurring policies on the performance of commonly-used 

statistical models in state policy evaluations. Simulation conditions varied effect sizes of the co-

occurring policies and length of time between policy enactment dates, among other factors. 

Outcome data (annual state-specific opioid mortality rate per 100,000) were obtained from 1999-

2016 National Vital Statistics System (NVSS) Multiple Cause of Death mortality files, thus 

yielding longitudinal annual state-level data over 18 years from 50 states. When co-occurring 

policies are ignored (i.e., omitted from the analytic model), our results demonstrated that high 

relative bias (>85%) arises, particularly when policies are enacted in rapid succession. Moreover, 

as expected, controlling for all co-occurring policies will effectively mitigate the threat of 

confounding bias; however, effect estimates may be relatively imprecise (i.e., larger variance) 

when policies are enacted in near succession. Our findings highlight several key methodological 

issues regarding co-occurring policies in the context of opioid-policy research yet also generalize 

more broadly to evaluation of other state-level policies, such as policies related to firearms or 

COVID-19, showcasing the need to think critically about co-occurring policies that are likely to 

influence the outcome when specifying analytic models. 

 

Key Words concurrent policies; clustered policies; difference-in-differences; state-level policy; 
policy evaluations; opioid; simulation  
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1. Introduction 

Empirical studies that evaluate the effectiveness of a given policy on health outcomes are a 

staple of health policy research (Angrist & Pischke, 2009). Generally, these studies are 

observational and capitalize on geographic and temporal variation in policy adoption to identify 

policy effects (Wing et al., 2018). While it would be ideal from an evaluation standpoint for 

policies to be adopted in isolation, in practice, jurisdictions often adopt a cluster of policies 

within a brief span of time which serves to complicate identification of policy effectiveness 

(Matthay et al., 2021b). Concurrently enacted policies lack sufficient periods of time between 

enactment dates, posing challenges to isolating the effect of the primary policy independent of 

co-occurring secondary policies. Recent work has begun to elucidate the methodological 

challenges faced when trying to disentangle the individual policy effects of concurrent policies 

(Matthay et al., 2021a); however, unanswered questions remain regarding the magnitude of the 

impact of co-occurring policies on the performance of commonly used models for estimating 

policy effects. 

 

Methodologic challenges arising from concurrent policies apply broadly to policy research and 

are particularly relevant for analyses of opioid policies as states have generally enacted multiple 

opioid-related policies as the opioid crisis has evolved. For example, many states implemented 

some combination of naloxone laws, Good Samaritan laws, and medical marijuana laws during 

2015-2017. In addition to pre-existing prescription drug monitoring program (PDMP) laws, by 

2017 the majority of states had implemented at least 3 of these 4 categories of policies. Thus, 

analytically, it is very unlikely that it will be possible to identify a sizeable number of states that 

have implemented the policy of interest in “isolation.” Furthermore, these policies and 
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regulations may be enacted in rapid succession. For example, Florida nearly simultaneously 

enacted a PDMP and stricter pain clinic regulations (Kennedy-Hendricks et al., 2016; Rutkow et 

al., 2015). Similarly, as opioid-related overdoses climbed, many states adopted naloxone access 

laws and Good Samaritan laws simultaneously or in short succession to reduce opioid overdose 

mortality (Abouk et al., 2019; Blanchard et al., 2018; McClellan et al., 2018).  

 

In a prior scoping review of evaluation studies examining the impact of U.S. state- and federal-

level policies on opioid-related outcomes published in 2005-2018, it was found that of the 145 

studies reviewed, 94 (65%) did not control for any co-occurring policies (Schuler et al., 2020). 

Studies published more recently were more likely to adjust for co-occurring policies, likely 

reflecting both the increasing number of state policies enacted, as well as increased attention to 

this methodological concern, which was highlighted in the review. When co-occurring policies 

were accounted for, the set of polic(ies) adjusted for varied notably across studies. For example, 

comparison of two published PDMP studies found that both control for a fully disjointed set of 

policies: pill mill laws, ACA Medicaid expansion, OxyContin reformulation, and passage of 

Medicare Part D (Mallatt, 2018) compared to naloxone laws, Good Samaritan laws, requirement 

for physical examination for prescribing and identification upon dispensing, and medical 

marijuana laws (Dave et al., 2018). However, few studies explicitly discussed the rationale 

underlying the co-occurring policies they adjusted for. More broadly (Matthay et al., 2021a) 

found that only a third of social policy studies explicitly considered the presence of concurrent 

policies.  
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In practice, policy evaluation studies are more likely to account for potential confounding due to 

differences in state-level characteristics (e.g., sociodemographic characteristics) than 

confounding due to differences in state policy environments (Schuler et al., 2020). However, co-

occurring policies could represent a more significant confounding threat, as these policies may 

have a stronger relationship with the outcomes compared to other state-level confounding 

factors. As such, understanding the potential magnitude of the bias that might be due to 

confounding from co-occurring policies in state-level policy evaluation studies could enhance 

the rigor of policy analyses and policymaking. Obtaining unbiased estimates of policy effects is 

imperative to identifying and implementing effective policies that can improve public health and 

well-being across a range of areas, including opioid misuse as well as gun violence and COVID-

19 mitigation.  

 

In this paper, we conducted a simulation study to examine the impact of co-occurring policies on 

the performance of commonly used models in opioid policy evaluations. We had two key 

objectives – (1) in the context of correctly specified models that control for co-occurring 

policies, we sought to determine the minimum length of time between enactment of the primary 

and co-occurring policies needed to obtain unbiased effect estimates, and (2) to determine the 

impact of model misspecification that omits the co-occurring policy on estimation of the effect of 

the primary policy. Simulation conditions vary effect sizes of the primary and co-occurring 

policies as well as the length of time between enactment dates of the primary and co-occurring 

policies, among other factors. The simulations focused on evaluations utilizing longitudinal 

state-level ecological data or panel data, not on the use of individual or county level data nested 
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within states. The results provide insights and best practice guidelines for applied policy 

researchers.    

 

2. Methods 

We utilized Monte Carlo simulations to assess the effect of concurrent policy enactment on the 

evaluation of state-level policies. We considered the performance of two different statistical 

models – a correctly specified model that includes regression terms for both policies 

simultaneously and a misspecified model that omits the co-occurring policy – over a range of 

scenarios where a group of “treated” states enacted two policies (i.e., the primary policy and a 

co-occurring, secondary policy). In the context of the correctly specified model, we examined 

simulation conditions varying the length of time and relative timing of the policy enactment 

dates for the two policies in order to identify the minimum length of time needed between policy 

enactment dates to obtain robust estimates of the primary policy. Additionally, we explored the 

impact of misspecifying the statistical model by omitting the co-occurring policy on estimation 

of the primary policy effect. The corresponding author’s Institutional Review Board approved 

this study. 

2.1 Data  

The simulation was based on longitudinal annual state-level data. The outcome of interest was 

the annual state-specific opioid mortality rate per 100,000 state residents, obtained from the 

1999-2016 National Vital Statistics System (NVSS) Multiple Cause of Death mortality files. 

Eighteen years of annual observations across 50 states provided a total of 900 observations. 

Consistent with other studies (Abouk et al., 2019; Chan et al., 2020; Kilby, 2015), opioid-related 

overdose deaths were identified based on ICD-10-CM-external cause of injury codes indicating 

accidental and intentional poisoning (X40-X44, X60-64, X85, Y10-Y14) in combination with an 
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opioid diagnosis codes (T40.1 poisoning by heroin, T40.2 poisoning by natural and 

semisynthetic opioids, T40.3 poisoning by methadone, and T40.4 poisoning by synthetic opioids 

excluding methadone). To avoid concerns about model overfitting, we included a single 

covariate: annual state-level unemployment rate, derived from the U.S. Department of Labor, 

Bureau of Labor Statistics (U.S. Department of Labor, 2019). This covariate was selected 

because of the frequency of its use in opioid policy studies (Schuler et al., 2020). In our 

simulation, the original opioid mortality data represented outcomes under the null treatment 

condition (i.e., no policies in effect for a given state and given year); outcomes reflecting the 

effect of simulated primary and secondary policies were generated for treated states as described 

below.  

2.2 Data Generation 

The simulation design builds directly from similar prior work that compared statistical methods 

for evaluating the impact of state laws on firearms deaths (Schell et al., 2019) and opioid-related 

mortality (Griffin et al., 2021). In each simulation iteration, we first selected a random subset of k 

states to be the “treated” group that enacted both the primary and co-occurring policy, with the 

remaining states serving as the comparison group that never enacted either policy. Two time-

varying policy indicators were generated denoting whether the primary policy (𝐴𝐴1it) and co-

occurring policy (𝐴𝐴2it) were in effect for each state and each year. For comparison states, 𝐴𝐴1it = 𝐴𝐴2it 

= 0 for the entire study period.  

 

Our study period included 18 years of repeated time series data, spanning 1999 to 2016. Across 

simulation conditions, we varied the length of time between the primary and co-occurring policy 

enactment dates considering 4 conditions: approximately 0-1 years apart, 3-4 years apart, 6-7 



8 

years apart, and 9-10 years apart. For each policy state, policy enactment dates were selected as 

random draws from a multivariate normal distribution where the mean for the first policy was 

defined as a randomly selected year between 1999 and an upper bound that ensured there was 

enough time for the second policy to occur (e.g., 2007 for the 9-10 year interval) and where the 

mean for the second policy was defined as the previously drawn enactment date for the first 

policy plus the minimum length of the specified interval (e.g., 9 years for the 9-10 year interval). 

The variances for the multivariate normal distribution were set equal to 1 and the covariance was 

set equal to 0.9. This process yielded two continuous enactment dates (e.g., 1999.591 and 

2000.177 for a sample draw when the policies where to be enacted right on top of each other), 

which we then rounded to the nearest month and year of enactment for the two policies. Of note, 

in the first year of enactment, 𝐴𝐴1it and 𝐴𝐴2it were coded as fractional values between 0 and 1, indicating 

the percentage of the year each policy was in effect. Once the primary or secondary policy was 

enacted, they remained in effect throughout the study period; thus, 𝐴𝐴kit = 1 (for k=1,2) for all 

remaining years.   

 

We generated the outcome values (𝑌𝑌𝑖𝑖𝑖𝑖∗) using the following formulas: 

𝑌𝑌𝑖𝑖𝑖𝑖∗ = 𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑡𝑡1 ∗ 𝐴𝐴1𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑡𝑡2 ∗ 𝐴𝐴2𝑖𝑖𝑖𝑖 

where 𝑌𝑌𝑖𝑖𝑖𝑖 denotes the observed outcome value for state i in year t (obtained as described in the 

Data section) and 𝑡𝑡𝑡𝑡1 and 𝑡𝑡𝑡𝑡2 denote the policy effects for the primary and co-occuring policies. 

We note that our simulation study focused on conditions in which the policy effect was 

homogenous across states and did not vary over time. 

 

Simulation conditions also varied the following factors: 
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(1) Policy effect size. We considered eight different treatment effect scenarios, namely (te1, te2) 

= (0%, 0%) (e.g., both policies had null effects), (0%, -15%), (-15%, 0%) (-10%, -10%), (-15%, -

5%), (-5%, -15%), (-10%, -20%), and (-20%, -10%). These treatment effects – meant to cover a 

range of settings of realistic effect sizes of magnitudes that would be of interest to policymakers -

- were selected after consultation with our research center’s advisory board, which is comprised 

of senior researchers active in opioid or substance use disorder policy research, former and 

current policymakers, and representatives from policymaking organizations. 

(2) Number of treated states. We also investigated the role of sample size, considering two 

conditions in which both policies were enacted by 5 and 30 states, respectively.  

(3) Ordering of policy enactment dates. Finally, we considered cases where the order of 

enactment was random (e.g., ~50% of the time the primary policy would occur first) and cases 

where the order of enactment was fixed so the primary policy always preceded the secondary 

policy. 

(4) Form of policy effect. We considered two possible ways in which the policies have an effect 

on the outcome: an instantaneous effect and a 3-year linear phase-in effect. We specified an 

instantaneous effect as a simple step-function that has a value of one when the policy in question 

is in effect, zero otherwise. The 3-year linear phase-in policy effect allowed for the effect of a 

given policy to grow linearly in the first 3 years after implementation, with values starting at zero 

and reaching 1 after 3 years of implementation.  

(5) Varying the relative timing of the first policy: Our simulation design easily allows us to 

control for when in the time series the enactment of the first policy occurs. Thus, we explored 

(for a subset of our simulations) the effect on performance of the models when the timing of the 
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first policy was restricted to occur at the beginning (1999-2004), middle (2005-2011) or end of 

our time series (2011-2016).   

(6) Having a subset of states that only enact a single policy. Since, in practice, not all states with 

the primary policy will have also enacted the co-occurring secondary policy, we explored the 

effect of having a subset that only enacts a single policy in two ways. First, we examined the 

effect of adding a subset of states that enacted a single policy to settings with 30 states enacting 

both policies. Here we explored the addition of 5 and 10 states per policy, hypothesizing that 

performance will improve due to the increased sample size. Second, we examined the effect of 

swapping a subset of our 5 and 30 states to have only a single policy instead of both policies.  

 

For each permutation, we assessed performance across 5000 randomly generated datasets. We 

conducted all simulations in R, using the OPTIC.simRM package which implements our 

simulation code on user-provided outcome data. The package is currently available on github 

https://github.com/aescherling/optic-core, including code to create the figures. Extensive results 

for all statistical models considered in our simulation are available via a Shiny tool 

(www.rand.org/t/TLA1975-1). 

 

2.3 Candidate Statistical Models 

We focused on the performance of a linear autoregressive (AR) model as this model was recently 

identified as an optimal model for estimating the effects of a single state-level opioid policy on 

opioid-related mortality (Griffin et al., 2021). Given the continued popularity of the classic two-

way fixed effects (FE) model (commonly used in context of difference-in-differences [DID] 

design), we additionally provide selected results for the two-way FE model.  

https://github.com/aescherling/optic-core
http://www.rand.org/t/TLA1975-1
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We note again that our design seeks to determine how the AR and classic two-way FE model 

handle concurrent (e.g., confounding) policies under the simple scenario where we have 

homogenous treatment effects. As has been noted in the recent literature, the classic two-way FE 

model will be biased in the presence of heterogeneous treatment effects (Callaway & Sant'Anna, 

2021; Goodman-Bacon, 2021); however, this concern is not applicable in our simulation context 

as we have homogenous treatment effects.  

 

For both the AR and two-way FE models, we examined two model specifications. First, we fit 

the correctly specified version of the outcome model that includes regression terms for both the 

primary and the co-occurring policy; second, we fit a misspecified version of the outcome model 

that omits the co-occurring policy.  

 

The correctly specified AR model was:   

𝑌𝑌𝑖𝑖𝑖𝑖∗ = 𝛼𝛼1 ∙ (𝐴𝐴1𝑖𝑖𝑖𝑖 − 𝐴𝐴1𝑖𝑖,𝑖𝑖−1) + 𝛼𝛼2 ∙ (𝐴𝐴2𝑖𝑖𝑖𝑖 − 𝐴𝐴2𝑖𝑖,𝑖𝑖−1) + 𝛽𝛽 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛾𝛾 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖−1∗ + 𝜎𝜎𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖          (1) 

where 𝑋𝑋𝑖𝑖𝑖𝑖 denotes the time-varying state-level covariate (unemployment rate) and 𝜀𝜀𝑖𝑖𝑖𝑖 denotes the 

error term. Notably, Model (1) includes time FE, 𝜎𝜎𝑖𝑖, to quantify temporal trends across time, but 

adjusts for state-specific variability with the AR term (𝛾𝛾 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖−1𝑜𝑜𝑜𝑜𝑜𝑜 ) rather than state FE. Inclusion of 

the AR term created a “change” model, as the policy effect was defined as the expected 

difference in the outcome, given the prior year’s outcome. As such, we coded both policy 

variables using change coding – i.e., (𝐴𝐴1𝑖𝑖𝑖𝑖 − 𝐴𝐴1𝑖𝑖,𝑖𝑖−1) – based on work demonstrating that effect 

size estimates from AR models can be substantially biased when using standard effect coding 

(i.e., 𝐴𝐴𝑖𝑖𝑖𝑖  ) (Cochrane & Orcutt, 1949). The coefficient estimates (𝛼𝛼�1,𝛼𝛼�2) on the change coding 
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terms represented the AR estimator of the policy effects of (𝐴𝐴1,𝐴𝐴2). For this work 𝛼𝛼�1was of 

primary interest. However, results additionally included model estimates for the effect of the co-

occurring policy (𝛼𝛼�2). 

 

The misspecified AR model was: 

𝑌𝑌𝑖𝑖𝑖𝑖∗ = 𝛼𝛼1𝑀𝑀 ∙ (𝐴𝐴1𝑖𝑖𝑖𝑖 − 𝐴𝐴1𝑖𝑖,𝑖𝑖−1) + 𝛽𝛽 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛾𝛾 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖−1∗ + 𝜎𝜎𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖                     (2) 

where the co-occurring policy variable was omitted from the model. Interest was in understanding 

the resulting bias in the estimate of the primary policy under the misspecified model and how 

this varied with the relative timing of the primary and co-occurring policies. Model (2) is often 

fit in practice when researchers focus on a single policy of interest without controlling for any 

additional co-occurring policies as potential confounders (e.g., (Kuo et al., 2016; Pauly et al., 

2018; Phillips & Gazmararian, 2017; Yarbrough, 2018). For the misspecified model, only 

estimates of the primary policy effect (𝛼𝛼�1𝑀𝑀) are reported. 

 

In contrast, the classic two-way FE model has the following version of the correctly specified 

and misspecified models, respectively: 

𝑌𝑌𝑖𝑖𝑖𝑖∗ = 𝛼𝛼1 ∙ 𝐴𝐴1𝑖𝑖𝑖𝑖 + 𝛼𝛼2 ∙ 𝐴𝐴2𝑖𝑖𝑖𝑖 + 𝛽𝛽 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖 + 𝜎𝜎𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖                     (3) 

𝑌𝑌𝑖𝑖𝑖𝑖∗ = 𝛼𝛼1 ∙ 𝐴𝐴1𝑖𝑖𝑖𝑖 + 𝛽𝛽 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖 + 𝜎𝜎𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖                      (4) 

where equations (3) and (4) now include state-level fixed effects, 𝜂𝜂𝑖𝑖, for state i and where the policy 

exposure variables are captured using classic effect coding (𝐴𝐴𝑘𝑘𝑖𝑖𝑖𝑖) for k = 1 and 2. 
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All models used state population as an analytic weight, an approach commonly used in opioid 

policy evaluations (e.g., (Ali et al., 2017; Buchmueller & Carey, 2018; McInerney, 2017; 

Paulozzi et al., 2011).  

 

2.4 Metrics for Assessing Relative Performance of Candidate Statistical Methods 

We report two primary statistical metrics commonly used to judge model performance with 

respect to both the estimated effect of the primary policy (𝜶𝜶�𝟏𝟏 𝑎𝑎𝑎𝑎𝑎𝑎 𝜶𝜶�𝟏𝟏𝟏𝟏 ) (from both Models (1) 

and (2)) and the estimated effect of the co-occurring policy (𝜶𝜶�𝟐𝟐) (from Model (1)).  

(1) Bias. Bias assesses the average difference between the estimated effect and true effect across 

all simulations. It indicates the tendency of the estimated effects of a given model to fall closer or 

further from the true effect on average. For the null effect settings, bias is shown on an effect size 

scale to denote small (<0.2), moderate (0.2-0.4) and large (>0.4) bias. For the non-null settings, 

the percent relative bias is shown, with <5% denoting virtually no bias, 5-10% small bias, 10-

20% moderate bias and >20% large bias (Li & Li, 2021). Since all of our assumed effects were 

negative, positive relative bias implied that the estimated effect was overestimated in the 

negative direction, while negative relative bias implied that the estimated effect was 

underestimated and closer to the null, relative to the true effect. 

(2) Variance. Variance is calculated as the average variance of the estimated effect across all 

simulations and indicates the precision of the estimated effects of a given model.  

Additional metrics can be found in our Shiny app. These included Type I and S errors and 

coverage rates, given the high prevalence of frequentist null hypothesis significance testing in the 

state-level policy evaluation literature. 
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3. Results 

3.1 Correctly specified AR and two-way FE models: Increasing length of time between primary 

and co-occurring policy enactment 

For the AR model, we found that the length of time between enactment dates had minimal effect 

on relative bias for the correctly specific model: across all 4 interval lengths considered, the 

relative bias was always minimal (< 2%) (Figure 1). However, the variance was notably larger 

for the 0-1 year interval compared to longer intervals. The variance remained relatively stable 

once the length of time between the enactment dates was longer than 3-4 years. These same 

trends were observed for the two-way FE model. Comparing the AR and two-way FE models, 

the AR model generally yielded smaller relative bias and lower variance than the two-way FE 

model, suggesting the AR model specification is more robust to decreasing the length of time 

between enactment dates than is the two-way FE model.   

 

3.2 Misspecified AR and two-way FE models: Increasing length of time between primary and co-

occurring policy enactment  

We next consider performance of misspecified models that omit the co-occurring policy term in 

the model. As expected, the relative bias for the estimated primary policy effect was larger in 

magnitude for the misspecified models (Figure 2) compared to the correctly specified models 

(Figure 1). For the AR model, the relative bias was quite large (82%) when there was only 0-1 

years between enactment dates. Notably, relative bias was much smaller (approximately -7%) 

and similar across conditions in which the length of time between enactment dates was 3-4-years 

or greater. Variance was relatively unaffected by the length of time between enactment dates in 

these AR models.  
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 Comparing the performance of the misspecified AR and two-way FE models, we see that 

the two-way FE model yielded notably biased effect estimates when the enactment dates were 0-

1 years apart (90%) or 3-4 years apart (45%). Additionally, the variance of the policy effects for 

the two-way FE models was approximately three times higher than the variance for the AR 

models. 

 

3.3 Correctly specified AR model: Effect of treatment effect size and policy ordering 

Notably, relative bias was consistently higher in the simulation setting in which the primary 

policy always was enacted first (“ordered” panel in Figure 3) compared to the setting in which 

the ordering of the two policies was randomly determined (“unordered” panel in Figure 3). The 

relative bias in the ordered setting ranged from 11% to 23% for the primary policy and from -6% 

to -24% for the co-occurring policy, whereas estimates from the unordered setting consistently 

had minimal relative bias. Additionally, in the ordered setting, the models consistently 

overestimated the effect of the primary policy and underestimated the effect of the co-occurring 

policy, which was enacted second, showcasing how the model attributed some of the effect of 

the (second) co-occurring policy to the primary policy.  

Critically, in the ordered setting, relative bias of both primary and co-occurring policies 

was related to effect size, with greater bias observed when the true policy effect was smaller. In 

cases where the true effect of the primary or secondary policy was 5%, we saw evidence that 

relative bias could be as high as 25-30%. In contrast, in cases where the true effect of the primary 

or secondary policy was 20%, relative bias would shrink to around 5%. In the unordered setting, 

bias was minimal regardless of effect size (always <5%). 
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3.4 Correctly specified AR model: Comparing phased-in policy effects to immediate policy 

effects 

Performance was consistently worse for our models when the form of the policy effects was 

assumed to have a 3-year phase-in period (Figure 4) compared to conditions in which the policy 

had an immediate effect (as shown in Figure 1). We note that the policy variables used in the 

models always accurately reflected the form of the policy used in the data generation (e.g., for 

the linear phase-in condition, the policy variable was coded as a proportion (reaching 1 at the end 

of the 3 year phase-in). Decreased performance (relative to the immediate effect conditions) is 

observed because there are fewer years for which the primary policy is at “full effect.” 

Specifically, relative to conditions in which the policy had an immediate effect, bias for both the 

primary and secondary policies was larger (ranging from ~0% to 12% across all scenarios) and 

variance was larger (8-fold when the policies were enacted within 0-1 years of each other; 2-fold 

for all other lengths in difference in enactment dates). While bias remained constant across 

scenarios, variance notably improved when at least 3 years were between the enactment dates of 

the co-occurring policies. As with instantaneous models, performance is also weakened when the 

policies are ordered (see Shiny app for full results). 

 

3.5 Correctly specified and misspecified AR models: Effect of relative timing of enactment of first 

policy 

The bias and variance were greatest when the timing of the enactment for the first policy occurs 

earlier versus later in the time series, though bias for all scenarios continued to be low in the 

correctly specified models (e.g., < 7.5%; Figure 5). Variance also decreased for the estimated 

policy effects in the settings where the policies occurred later in the time series (see Shiny app). 
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Overall performance was best for the AR models shown in Figure 1 and 2 where enactment 

dates were allowed to uniformly occur over the fuller length of the time series. Notably, bias in 

the misspecified models was higher for the models where the first policy was enacted earlier in 

the time series (>95%) versus the end of the time series (~82%) with bias minimized when the 

enactment dates were allowed to occur uniformly over the time series as shown in Figure 2. 

 

3.6 Correctly specified AR model: Inclusion of states that only enacted a single policy 

As shown, adding additional states that only enact a single policy to our scenarios improved 

performance of a given model by decreasing bias and variance in the estimated effects of the 

primary and secondary policies (Figure 6). In contrast, there was a slight decrease in precision 

for both policy effects when we swapped states enacting policies in such a way that only a subset 

enacts a single policy, which presumably was because of the resulting decrease in the total 

number of policy enacting states used to estimate the policy effects. There was little influence on 

bias in these scenarios. 

 

4. Discussion 

Overall, we conducted a novel simulation study to (1) assess the minimum length of time 

between enactment of the primary and co-occurring policies needed to obtain unbiased effect 

estimates and (2) to determine the impact that model misspecification – namely, omitting the co-

occurring policy – has on estimation of the primary policy effect. We note that all simulations 

focused on the case of homogenous treatment effects that do not vary over time. As we discuss 

below, we found that the required interval between primary and co-occurring policies necessary 

to obtain robust policy estimates varied across model specifications but was generally shorter for 

AR models compared to two-way FE models. Additionally, our results demonstrated that the 
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magnitude of the bias may be quite substantial (e.g., 60%) in some contexts when confounding 

co-occurring policies are omitted from the analytic model. As such, researchers should think 

carefully about co-occurring policies that are likely to influence the outcome and ensure 

inclusion of them in analytic models. Our findings highlight several key issues regarding co-

occurring policies in the context of opioid-policy research, yet also generalize more broadly to 

evaluation of other state-level policies, such as policies related to firearms or COVID-19. 

 

This study aimed to identify the minimum interval needed between enactment of two policies to 

obtain unbiased estimates of the primary policy. Our findings indicated that AR models that 

adjusted for co-occurring policies were able to obtain accurate policy effect estimates even when 

the policies were enacted in rapid succession (0-1 years) but yielded more precise estimates 

when policies were at least 3-4 years apart. Notably, AR models outperformed classic two-way 

FE models on this front, as two-way FE models yielded estimates with much greater variance 

under all scenarios. Thus, our findings demonstrate that controlling for co-occurring policies will 

effectively mitigate confounding bias; however, effect estimates may be relatively imprecise 

(i.e., with larger variance) when policies are enacted in near succession. The relative imprecision 

of policy estimates in this setting may result in spurious null findings, in which policies are 

deemed to be ineffective when they truly are effective.     

 

These findings inform important guidance for applied researchers conducting policy evaluation 

studies in the context of concurrently enacted policies. Specifically, we strongly encourage 

researchers to carefully examine the distribution of times between enactment dates for policies 

being examined – e.g., by computing the length of time between enactment dates for each state. 
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Examining the distribution of length of time between enactment dates across states will be 

informative regarding the potential for bias in the estimated effects of the primary and co-

occurring policies. If there is sufficient time between the enactment dates of the policies (e.g., at 

least 3-4 years for AR model, at least 6-7 for two-way FE model), a regression model that 

controls for all co-occurring policies will have minimal to no confounding. In cases when the 

policies were enacted very closely together, results from our study and simulation tool can be 

used to gauge the potential size of the bias for a particular analysis.  

 

Researchers should also be sure to make a note about the ordering of the co-occurring policies. 

Performance was notably worse when the primary policy always preceded the secondary 

policies, particularly when the policies were enacted in close succession. This happens frequently 

in practice. For example, in existing research on cannabis policies, recreational legalization of 

cannabis has always occurred after the enactment of state medical cannabis legalization (Pacula 

& Smart, 2017), creating the potential for more bias on the primary policy effects when those 

policies are enacted close together. 

 

Our findings also demonstrate that, in cases where the co-occurring policy is a true confounder, 

omitting it from the regression model will introduce confounding bias into the estimate of the 

primary policy. In this scenario, the effect of the co-occurring policy was essentially attributed to 

the primary policy. Under simulation conditions that mimic realistic settings in opioid policy 

research, our results indicated that the magnitude the bias for estimate of the primary policy may 

be as large as 82% when co-occurring policies are enacted within rapid succession of each other 

(0-1 years of each other). We note that in our simulation study, we generated a single co-
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occurring policy; in reality, it is likely that there may be multiple co-occurring policies. 

Conceptually, our co-occurring policy can be thought of as the cumulative effect of all co-

occurring policies; as such, our findings could be interpreted as an upper-bound. Specifically, in 

practice, controlling for some, but not all, co-occurring policies could be expected to attenuate 

bias relative to our results from the misspecified model, assuming that all of these policies had 

effects in the same direction. We note that additional co-occurring policies enacted at different 

times, with varying confounding directions, creates a more complex scenario regarding variation 

in the length of overlap between the primary and different co-occurring policies, which may 

result in time-varying confounding or moderating effects between the policies themselves. As 

such, the complexities of multiple, time-varying co-occurring policies is an important area for 

ongoing research. In the setting of multiple co-occurring policies, we recommend a diagnostic 

step of examining the distribution of length of time between policies for all pairwise 

comparisons. This will allow researchers to identify for which sets of policies it might be 

difficult to disentangle the effects of. In practice, the strength of confounding likely varies across 

co-occurring policies; as we discuss below, researchers should prioritize adjustment for policies 

anticipated to have the strongest confounding effect.  

 

We underscore that due to the interconnected nature of the opioid ecosystem, co-occurring 

policies do not need to directly target the outcome being examined to still have a confounding 

effect on the estimated effect of the primary policy. For example, while mandatory PDMPs are 

an important co-occurring policy that might confound studies of prescribing guidelines, as both 

directly impact prescribing (Castillo-Carniglia et al., 2021; Encinosa et al., 2021; Mauri et al., 

2020; Puac-Polanco et al., 2020), such PDMPs may also be a confounder for naloxone policies 
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examining overdose since mandatory access PDMPs have also been shown to indirectly have a 

protective effect on overdose rates (Ji et al., 2021; Lee et al., 2021; Puac-Polanco et al., 2020). 

However, not all co-occurring policies are likely confounders. For example, policies likely to 

increase the number of buprenorphine waivered prescribers, such as hub-and-spoke policies 

(Snell-Rood et al., 2020), would likely have little effect on opioid analgesic prescribing. 

 

Additionally, our findings indicate that the correctly specified model was notably robust in all 

scenarios considered when fitting a linear AR model to opioid-related mortality when there is 

variation in the ordering of enactment of the primary and co-occurring policies across states. 

However, performance deteriorates meaningfully in the cases where the primary policy always 

comes first and/or when the length of time between the two policies is short (0-1 years; relative 

bias >20% for the primary policy). Intuitively this makes sense, as fixed ordering between 

policies essentially provides less information because the policy enacted second is never 

observed in the absence of the first policy. In practice, it is likely that there will be variation in 

policy ordering across states; however, in some contexts, adoption of one policy may 

consistently precede adoption of another policy (especially when the number of treated states is 

small). 

 

The study has several important limitations that should be considered alongside the findings. Our 

simulation was relatively simplistic, representing a reasonable starting point for studying model 

performance with concurrently enacted policies. Future work should consider additional nuances 

that might impact our findings and provide additional guidance to the field. For example, it 

would be meaningful to explore the ability of the models to identify potential synergistic effects 



22 

between the co-occurring policies and to consider additional outcomes. Additionally, it would be 

of interest to examine whether the use of lower-level data (e.g., individual-level or county-level 

data) can reduce bias and increase precision of state-level policy evaluations involving more than 

one policy. Finally, we note that we only considered one potential form for time-varying effects 

of our primary and secondary policies -- namely a linear phase-in period over three years. We 

note that all of the settings considered in this work assume homogeneous treatment effects across 

states. The general policy evaluation methods field is rich with calls for more robust handling of 

heterogeneous time-varying effects of policies (Callaway & Sant'Anna, 2021; Goodman-Bacon, 

2021; Sun & Abraham, 2021), yet there is a notable dearth of methods available for capturing the 

time-varying effects of multiple policies, with a notable exception being the recent working 

paper by De Chaisemartin and d'Haultfoeuille (2022) and Schell et al. (2020). Future research is 

needed to both expand current staggered adoption methods for time-varying policy effects to 

handle more than one policy as well to better understand how all of these methods compare in 

the face of different types of time-varying effects and time-varying confounding.  
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Figure Legends 

Fig. 1 Model performance for correctly-specified AR and two-way FE models 

Note:  

Simulation condition: 

• 30 treated states 

• Both policies decrease opioid-related mortality by 10% 

• Both policies have an instantaneous effect   

• Policies are randomly ordered 

 

Fig. 2 Model performance for misspecified AR and two-way FE models that omit co-occurring 

policy term 

Note:  

Simulation condition: 

• 30 treated states 

• Both policies decrease opioid-related mortality by 10% 

• Both policies have an instantaneous effect   

• Policies are randomly ordered 

 

Fig. 3 Model performance for the correctly specified linear AR model as a function of policy 

effect sizes and policy ordering 

Note:  

Simulation condition: 

• 30 treated states 
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• Policies were enacted within 0-1 years  

• Both policies have an instantaneous effect   

 

Fig. 4 Model performance for correctly-specified AR models when policy has a linear phase-in 

effect of 3 years 

Note:  

Simulation condition: 

• 30 treated states 

• Both policies decrease opioid-related mortality by 10% 

• Both policies have a 3-year linear phase-in effect   

• Policies are randomly ordered 

 

Fig. 5 Model performance for AR models as a function of the relative timing of the first enacted 

policy in the time series 

Note:  

Simulation condition: 

• 30 treated states 

• Both policies decrease opioid-related mortality by 10% 

• Both policies have an instantaneous effect   

• Policies are randomly ordered 

 

Fig. 6 Model performance for correctly specified AR models when a subset of states only 

implemented a single policy 
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Note:  

Simulation condition: 

• Both policies decrease opioid-related mortality by 10% 

• Both policies have an instantaneous effect   

• Policies are randomly ordered 
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