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Graphical Abstract. Neural oscillations are ubiquitous features of neural field data, with great potential for 65 
informing our understanding of neural function and how it relates to cognition. However, there is a great 66 
degree of variability in methods for investigating them, and findings that are reported. In this piece, we 67 
explore methodological considerations for analyzing neural oscillations, that may underlie some potential 68 
misinterpretations, and propose best practice guidelines for addressing them.  69 
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Abstract 70 

 71 
Neural oscillations are ubiquitous across recording methodologies and species, broadly 72 

associated with cognitive tasks, and amenable to computational modeling that investigates neural 73 

circuit generating mechanisms and neural population dynamics. Because of this, neural 74 

oscillations offer an exciting potential opportunity for linking theory, physiology, and mechanisms 75 

of cognition. However, despite their prevalence, there are many concerns—new and old—about 76 

how our analysis assumptions are violated by known properties of field potential data. For 77 

investigations of neural oscillations to be properly interpreted, and ultimately developed into 78 

mechanistic theories, it is necessary to carefully consider the underlying assumptions of the 79 

methods we employ. Here, we discuss seven methodological considerations for analyzing neural 80 

oscillations. The considerations are to 1) verify the presence of oscillations, as they may be 81 

absent; 2) validate oscillation band definitions, to address variable peak frequencies; 3) account 82 

for concurrent non-oscillatory aperiodic activity, which might otherwise confound measures; 83 

measure and account for 4) temporal variability and 5) waveform shape of neural oscillations, 84 

which are often bursty and/or nonsinusoidal, potentially leading to spurious results; 6) separate 85 

spatially overlapping rhythms, which may interfere with each other; and 7) consider the required 86 

signal-to-noise ratio for obtaining reliable estimates. For each topic, we provide relevant 87 

examples, demonstrate potential errors of interpretation, and offer suggestions to address these 88 

issues. We primarily focus on univariate measures, such as power and phase estimates, though 89 

we discuss how these issues can propagate to multivariate measures. These considerations and 90 

recommendations offer a helpful guide for measuring and interpreting neural oscillations. 91 

 92 
Keywords 93 
neural field data, digital signal processing, electrophysiology, time series analysis,  94 
spectral analysis 95 
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Introduction 100 

Recordings of electrical or magnetic fields in the brain, collectively referred to as neural 101 

field recordings, are commonly used for investigating links between physiology and behavior, 102 

cognition, and disease. A striking feature of such recordings is the prominent rhythmic activity, 103 

termed neural oscillations (Buzsáki & Draguhn, 2004), that stands out in the otherwise seemingly 104 

chaotic activity of the brain. Neural oscillations have been a feature of interest since the early 105 

days of electrical brain recordings (Brazier, 1958), and are widely observed, being ubiquitously 106 

present across species (Buzsáki et al., 2013). Physiologically, field potential recordings largely 107 

reflect the aggregate postsynaptic and transmembrane currents of thousands to millions of 108 

neurons (Buzsáki et al., 2012), with neural oscillations thought to relate to population synchrony 109 

(Wang, 2010). As such, neural oscillations potentially offer insight into the coordination of neural 110 

activity at the population level. Theories of the functions of oscillations argue that they facilitate 111 

dynamic temporal and spatial organization of neural activity (Fries, 2005; VanRullen, 2016; Varela 112 

et al., 2001; Voytek & Knight, 2015). Disruptions of oscillations have also been widely linked to 113 

neurological and psychiatric disease, and have been explored as potential biomarkers of disease 114 

status, drug efficacy, and other clinical indicators (Başar, 2013; Buzsáki & Watson, 2012; Newson 115 

& Thiagarajan, 2019). 116 

Reflecting this broad interest, thousands of investigations conducted across many 117 

decades have reported associations between oscillations and just about every aspect of behavior 118 

and cognition that can be operationalized (Başar et al., 2001; Lopes da Silva, 2013; Mazaheri et 119 

al., 2018). As neural oscillations appear at many different temporal scales (Buzsáki et al., 2013), 120 

investigations often focus on predefined canonical frequency band ranges that are thought to 121 

capture distinct oscillations. For example, sleep researchers often study delta (1-4 Hz), memory 122 

researchers theta (4-8 Hz), visual researchers alpha (8-12 Hz), and cognitive and motor 123 

researchers beta (13-30 Hz) frequency bands. In doing so, research in neural oscillations spans 124 

across different recording modalities (Buzsáki et al., 2012)—including both non-invasive and 125 

invasive methods—and across different brain regions (Frauscher et al., 2018; Mahjoory et al., 126 

2020).  127 

While oscillations provide an exciting possibility to link cognition and disease to theory and 128 

physiology, there are often inconsistent reports regarding which oscillations are modulated by 129 

which conditions and how. In part, this likely reflects the variety of approaches taken, with limited 130 

consistency in terms of experimental design, analysis methods, parameter choices, and 131 

theoretical frameworks used across studies. Open challenges include developing more consistent 132 
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terminology and interpretations (Cohen & Gulbinaite, 2014), and the need for explicitly 133 

considering replicability in electrophysiological investigations (Cohen, 2017a). Accordingly, best 134 

practice guidelines for research (Gross et al., 2013; Keil et al., 2014; Pernet et al., 2020; Pesaran 135 

et al., 2018) and clinical investigations (Babiloni et al., 2020) have been proposed to improve 136 

standards of reporting, and therefore reproducibility, for research using neural field recordings. 137 

As an extension of these general guidelines, here we examine common interpretational 138 

considerations in analyzing neural field recordings. Given the advances in both methods 139 

development and our understanding of the empirical properties of the data under study, it is 140 

critically important to ensure that common analysis methods are appropriately applied, as this is 141 

a core requisite for accurate interpretation. There is a large toolkit of analysis methods for studying 142 

neural oscillations, across both the spectral and temporal domains, borrowed and adapted from 143 

the field of digital signal processing. These methods are described and compared in other work 144 

focused on methodological properties of particular estimation techniques (Bruns, 2004; Gross, 145 

2014; van Vugt et al., 2007; Wacker & Witte, 2013).  146 

Here, we focus more explicitly on properties of neural oscillations, and how these 147 

properties relate to commonly applied methods, rather than focus on the methods themselves. 148 

We address how common analysis approaches can give rise to results that are easy for 149 

researchers to misinterpret, due to the misalignment between methodological or experimental 150 

assumptions, and properties of the data. As such, these considerations are not restricted to 151 

individual estimators (such as using particular filters, or a particular estimate of power), as they 152 

reflect more general properties of signal processing methods and neural data. Importantly, these 153 

are not failures of the algorithms per se, which do, mathematically, exactly what they should; the 154 

potential pitfalls lay in how we interpret their outputs. If and when there is a misalignment between 155 

methodological assumptions and data properties, computed measures can lack validity which can 156 

lead to inconsistent results. This in turn impedes us from properly grounding oscillation research 157 

in physiology and theory. 158 

To address these issues, we examine common interpretational considerations in studying 159 

neural oscillations, in order to identify and address possible methodological concerns that may 160 

lead to interpretation errors. We consider recurring themes based on our developing 161 

understanding of neural field data, and how this understanding relates to the application of 162 

analysis methods. For example, a common assumption is that neural field data can be quantified 163 

as a series of oscillatory signals, often assumed to be stationary. However, in empirical 164 

neurophysiological data, oscillations show large variability in their presence and extent across 165 

time, as well as across participants and cortical regions (Donoghue et al., 2020b; Frauscher et 166 
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al., 2018; Groppe et al., 2013). Even when oscillations are present, they are highly variable 167 

(Jones, 2016; Neymotin, Barczak, et al., 2020), waxing and waning in short bursts and including 168 

longer, more tonic rhythms, with rapidly changing amplitude, frequency, and phase dynamics that 169 

are not easily captured by common analyses and predefined canonical frequency ranges. This 170 

potentially meaningful variation of cycle features across time can be blurred by narrowband 171 

filtering (de Cheveigné & Nelken, 2019) and lead to misinterpretations of which features of the 172 

oscillation have truly changed (Cole & Voytek, 2019). All of these properties, and more, need to 173 

be explicitly considered in order to accurately and reliably measure oscillatory neural activity. 174 

We organize methodological considerations for analyzing neural oscillations into seven 175 

areas, each with example demonstrations (see Box 1). The primary focus is on univariate 176 

measures of oscillatory power, frequency, and phase, including potential pitfalls and 177 

considerations for ensuring accurate measurement and interpretation of these aspects, as well 178 

as discussions of how these issues can propagate to multivariate analyses, such as cross-179 

frequency coupling. These demonstrations make use of simulated data, which is created to match 180 

known properties of neural field recordings whereby key features of the simulated neural field 181 

activity were chosen and manipulated to reflect experimentally observed variations in empirical 182 

data. We analyze the simulated data using common spectral and time-domain analysis methods 183 

in order to evaluate their performance in relation to the interplay of data properties and method 184 

assumptions. Each consideration is then contextualized within the broader literature, and specific 185 

practical recommendations are made to help guide the analysis of neural oscillations. The 186 

simulated data and analysis methods were created and used from the NeuroDSP module (Cole 187 

et al., 2019), with all associated code for recreating and further exploring the illustrations openly 188 

available in the project repository (https://github.com/voytekresearch/oscillationmethods). 189 

  190 
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Box 1: Overview of methodological considerations for measuring neural oscillations 191 

Topic Data Properties Methodological Issues Recommendation 

#1 
Oscillation 
Presence 

neural oscillations are 
variably present, and 
may not be present in 

the recording 

if there are no oscillations, 
applied measures won’t reflect 

oscillatory activity, but will 
return a value reflecting 

aperiodic activity 

verify the presence of an 
oscillation, such as with 

spectral peak detection or with 
burst detection in the time 

domain 

#2 
Frequency 
Variation 

neural oscillations 
have variable peak 

frequencies 

measures applied using 
canonically defined frequency 
bands may fail to accurately 
capture oscillatory activity 

verify frequency ranges and 
individualize as needed 

#3 
Aperiodic  

Activity 

neural oscillations co-
exist with dynamic 
aperiodic activity 

measured variation may arise 
due to changes in aperiodic 

activity, rather than changes in 
oscillations 

measure and control for 
changes in aperiodic neural 
activity, evaluating whether it 
explains measured changes 

#4 
Temporal 
Variability 

neural oscillations are 
variable across time, 
exhibiting burst-like 

properties 

burst properties may be 
conflated when analyzing 
spectral power, and trial 

averages may suggest illusory 
sustained activity 

examine single trial data for 
temporal variation, and use  
burst detection to evaluate 

 burst properties 

#5 
Waveform 

Shape 

neural oscillations 
have non-sinusoidal 

waveform shape 

analysis methods often 
assume sinusoidal structure, 

and may return spurious 
results in the case of non-

sinusoidal oscillations 

examine waveform shape 
measures to evaluate if 

waveform shape may underlie 
the results 

#6 
Overlapping 
Oscillations 

multiple neural 
oscillations co-exist 

across the brain, and 
may overlap across 

space 

multiple distinct sources may 
create destructive interference, 
in which case measures won’t 
accurately reflect underlying 

activity 

apply source separation 
techniques in order to reduce 
overlap of different types of 

oscillations 

#7:  
Signal-to- 

 Noise Ratio 

neural oscillations 
have variable signal-

to-noise ratio 

without adequate signal to  
noise ratio, measures may be 

unreliable or inaccurate 

evaluate the required signal-to-
noise ratio, and potential ways 

to optimize it for all applied 
measures 

  192 
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#1 Neural oscillations are not always present 193 

Why this matters 194 

 Neural field recordings are characterized not only by oscillatory activity, but also aperiodic 195 

‘1/f’ or ‘1/f-like’ activity, in which signal power decreases exponentially as a function of frequency 196 

(Freeman et al., 2003; B. J. He, 2014). This is usually formalized as 1/fχ where χ represents the 197 

decay of power across frequencies. In neural data, χ often ranges between 0 and 4, where a 198 

signal with χ=0 is white noise, with equal power across all frequencies, and higher values of χ 199 

indicate increasingly ‘steeper’ spectra. Aperiodic neural activity has been linked to the underlying 200 

activity of postsynaptic potentials and is a ubiquitous and sometimes dominant feature of neural 201 

field data (Gao et al., 2017; K. J. Miller et al., 2009).  202 

The fact that aperiodic activity is omnipresent together with the large observable variability 203 

of neural oscillations (Donoghue et al., 2020b; Frauscher et al., 2018; Groppe et al., 2013) 204 

requires care in how band-limited power obtained by spectral analysis is measured and 205 

interpreted. Due to the presence of aperiodic activity, there is always non-zero power at all 206 

frequency bands. This means that any spectral measure—including computing a power spectrum, 207 

narrowband filtering, and average band-power measures—will always return a numerical value 208 

for power for a given frequency band, even if there is no oscillatory activity present. That is, just 209 

because there is power in a frequency band does not imply that there is an oscillation in that same 210 

frequency band (Bullock et al., 2003). It is a fallacy to presume that an analysis of a predefined 211 

narrowband frequency range necessarily reflects physiological oscillatory activity.  212 

To introduce how transient and aperiodic signals are represented in the spectral domain, 213 

the Dirac delta can be used, whereby a single non-zero value in the time domain is represented 214 

by constant power across all frequencies in the frequency domain (Fig. 1A). This illustrates that 215 

power in a specific frequency band does not generally correspond to a present oscillation in the 216 

time domain. Similarly, 1/f-like aperiodic activity, which is common in neural data, shows power 217 

across all frequencies, with decreasing power for higher frequencies (Fig. 1B). Despite the lack 218 

of periodic activity in aperiodic time series, narrowband filtering, which imposes a sinusoidal basis, 219 

extracts components that appear to be oscillatory, when filtered into canonical band ranges (Fig. 220 

1C). By comparison, rhythmic signals, such as a pure sinusoid, exhibit as a frequency specific 221 

peak in the power spectrum (Fig. 1D). Neural field recordings can be simulated as a summation 222 

of oscillatory and aperiodic components, resulting in a power spectrum that exhibits a spectral 223 

peak exceeding the aperiodic component, reflecting a high amount of band-specific power (Fig. 224 
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1E). In this case, the presence of the spectral peak is indicative of oscillatory power. In general, 225 

since different signal components can contribute to spectral power across different frequency 226 

ranges, power in a frequency band may not reflect oscillatory activity. 227 

Recommendations 228 

Investigations of oscillations should start with a detection step, verifying the presence of 229 

oscillations of interest. This verification step can be done in both the frequency and time domains. 230 

In the time domain, visualizing the data allows for examining if there are clear rhythmic segments 231 

in the data. In the frequency domain, oscillations manifest as peaks of power over and above the 232 

aperiodic signal (Buzsáki et al., 2013). As an initial check, visually inspecting power spectra can 233 

help to verify the presence of prominent oscillations. Including figures of power spectra in 234 

manuscripts is recommended, as it provides supporting evidence to the reader that there is 235 

oscillatory activity in the data under study.  236 

Numerous quantitative methods also exist to detect oscillatory activity in neural field data, 237 

such as automated methods that detect narrowband spectral peaks (Pascual-Marqui et al., 1988). 238 

This can be systematically done by parameterizing the power spectrum, in which a mathematical 239 

model that quantifies periodic and aperiodic activity is applied to detect any putative oscillatory 240 

peaks above the measured aperiodic component (Donoghue et al., 2020b) (see Fig. 1F). 241 

Similarly, both the ‘multiple oscillation detection algorithm’ (MODAL) method (Watrous et al., 242 

2018) and the ‘extended better oscillation detection’ (eBOSC) method (Kosciessa et al., 2020), 243 

which is itself an extension of prior methods (Caplan et al., 2015; Whitten et al., 2011), use a fit 244 

of the aperiodic activity to detect frequency specific activity.  245 

It may also be useful to examine rhythmic properties of the data, to search for putative 246 

oscillatory activity in situations in which a spectral peak may be difficult to observe (Pesaran et 247 

al., 2018). For example, oscillations may be present in the form of rare or infrequent bursts, which 248 

will not appear as  clear spectral peaks when the spectrum is calculated across the whole time 249 

interval. In such situations, examining shorter time ranges, and selecting time windows with higher 250 

band power and/or around events of interest may be required to resolve peaks in the frequency 251 

domain. Alternatively, time domain and burst detection methods, further described in sections 4 252 

and 5, may be more applicable. Another potential approach for addressing this is lagged 253 

coherence (Fransen et al., 2015), which explicitly quantifies the rhythmicity in time series, in 254 

contrast to measuring solely spectral power, and can also be used to differentiate between 255 

oscillatory signals and transients (see Fig. 1A).  256 
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Because oscillations can vary in their presence within and between participants, and 257 

across different frequency bands (Donoghue et al., 2020b; Frauscher et al., 2018) oscillation 258 

detection should be performed for each frequency band of interest, participant and analyzed 259 

region. If oscillations are not detected, this may preclude further analyses.   Group-level analyses 260 

may obscure variation in oscillatory presence in individual participants. For example, if not all 261 

participants display a clear rhythm, effect size estimates of oscillatory changes at the group level 262 

may be confounded by including the subset of participants without any clear oscillatory activity. 263 

Alternatively, a comparison of oscillatory power between regions without doing oscillation 264 

detection may conflate a change in oscillatory power with a difference in oscillatory presence. 265 

Analyses that include filtering or band-specific measures without first examining if an oscillation 266 

is present can provide ambiguous results that may reflect aperiodic activity, in which case it is a 267 

misinterpretation to describe physiological oscillatory activity. Applying analyses to detect 268 

oscillatory presence can assure that measures reflect oscillatory activity.  269 

  270 
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 271 
Figure 1: Without verified oscillatory activity, applied measures may reflect aperiodic activity. A) 272 
Non-oscillatory signals such as the dirac delta function exhibit power across all frequencies. B) Similarly, a 273 
non-oscillatory 1/f signal also has power across all frequencies, including canonical narrowband regions: 274 
delta (yellow), theta (green), alpha (blue), and beta (purple). This power spectrum illustrates the fact that 275 
just because there is power at a frequency, that does not imply there is a dominant oscillation at that 276 
frequency. C) Narrowband filtered traces of the signal shown in B, that appear to be rhythmic. Note that 277 
this reflects band-power from the aperiodic activity, rather than any narrowband oscillation. D) Rhythmic 278 
signals, such as a pure sinusoid, exhibit as a dominant peak in the power spectrum. E) A combined signal 279 
that contains aperiodic activity and a narrowband alpha oscillation. In this case, the oscillation is visible as 280 
a peak in the power spectrum above the spectral contribution from the aperiodic 1/f-like signal. F) Spectral 281 
peaks can be detected in order to identify putative oscillations in the data, as shown by the identified peak, 282 
in green. Spectral peak detection can be used to select frequency bands for further analysis, for example 283 
selecting the alpha range to be filtered for subsequent analysis (bottom).  284 
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#2 Neural oscillations vary in their peak frequencies 285 

Why this matters 286 

Neural oscillations display significant variations in their peak frequencies, including 287 

variation across age (Lindsley, 1939), within and between participants (Haegens et al., 2014), 288 

and across cortical locations (Mahjoory et al., 2020). Alpha peak frequency, for example, is 289 

considered a stable trait marker (Grandy et al., 2013), and is also associated with some clinical 290 

disorders, displaying, for example, a slower frequency in attention-deficit hyperactivity disorder 291 

(ADHD) (Lansbergen et al., 2011). The frequency of neural oscillations can also vary within 292 

participants within a task (Benwell et al., 2019), including in task relevant ways (Wutz et al., 2018). 293 

Due to frequency variation, even if the presence of oscillations is verified, the use of 294 

canonically defined frequency ranges may still fail to accurately reflect the data, as this may 295 

misestimate power of an oscillation if the spectral peak is not well captured in the canonical range. 296 

For example, in Figure 2, a canonically defined alpha range of 8-12 Hz captures the peak of a 10 297 

Hz oscillation (Fig. 2A), but fails to accurately capture a 8 Hz peak (Fig. 2B). Despite the signals 298 

being simulated with the same amount of oscillatory power, estimated alpha power using a 299 

canonical frequency range differs between the signals (Fig. 2C), due to an underestimate of the 300 

power in the signal with an idiosyncratic peak frequency. This issue also impacts the result of 301 

band-pass filtering, as a canonical filter range underestimates the amount of alpha power present, 302 

as compared to an individualized band in which the filter range is made to reflect the oscillation 303 

in the data (Fig. 2D). Using individualized frequency band ranges to control for frequency 304 

differences accurately captures the alpha power in each signal (Fig. 2E). Overall, predefined 305 

frequency band definitions may fail to address variation in peak frequencies, and lead to 306 

misestimations.  307 

Potential differences in peak frequency are important for analyses that compute an 308 

estimate within a specific frequency range, such as calculating band power, or narrowband 309 

filtering to a frequency range of interest. Applying a fixed frequency range may lead to information 310 

loss when the individual peak frequency lies near the border or outside of the defined range; it 311 

can also be non-specific if the range captures an adjacent oscillation or aperiodic activity. These 312 

issues apply both to analyses of individual frequency bands, as well as to composite measures 313 

such as ratios computed between the power of different frequency bands, since variation in the 314 

peak frequency or bandwidth of peaks can impact measured results (Donoghue et al., 2020a). 315 

For example, what had previously been reported as a difference in the theta / beta ratio of 316 



Oscillation Methods 

14 

participants with ADHD was found to be partially driven by a slowed alpha peak in the ADHD 317 

group, changing the interpretation of the data (Lansbergen et al., 2011).  318 

Recommendations 319 

In order to address the variability of peak frequencies, any analyses that employ 320 

narrowband frequency ranges should assess how well the chosen ranges match the data. Visual 321 

inspection can help determine how well the defined frequency boundaries reflect actual peaks in 322 

the power spectra. This should be done for all analyzed frequency bands at the level of individual 323 

participants, because individual participants may have idiosyncratic peak frequencies that could 324 

influence group level results if they are misestimated. For within-subject analyses, changes in 325 

peak frequency over time or between tasks should also be considered in order to address whether 326 

a measured change in power could reflect a change in peak frequency, in which frequencies may 327 

‘drift’ outside defined ranges of interest. Including power spectra in manuscripts also enables 328 

readers to observe that applied band ranges match the peaks observed in the data.  329 

If canonically defined frequency ranges do appropriately match the data, then they can 330 

safely be used for subsequent analyses. However, if chosen band ranges of interest do not 331 

appropriately reflect the data, then individualized frequency bands may be applied (Klimesch, 332 

1999). Methods for computing individualized frequency bands often do so by measuring spectral 333 

peaks (Haegens et al., 2014; Pascual-Marqui et al., 1988). Automated approaches have also 334 

been developed, that include spectral smoothing to improve performance (Corcoran et al., 2018). 335 

Such approaches don’t always generalize to multiple peaks or bands, though some approaches 336 

use ‘anchor frequencies’ (Klimesch, 1999), defining, for example, theta as a range below the 337 

identified range of alpha. This approach has the limitation of not considering the oscillation 338 

detection step. Peak detection for multiple putative peaks, without predefining frequency ranges, 339 

can also be done with spectral parameterization (Donoghue et al., 2020b), after which peaks can 340 

be grouped into observed bands of interest.  341 

 Beyond spectral peak detection, methods for detecting oscillations can be used to detect 342 

frequencies with peak rhythmicity, for example, by applying lagged coherence across frequencies 343 

(Fransen et al., 2015). Some methods also allow for jointly learning multiple band definitions. For 344 

example, the Oscillation ReConstruction Algorithm (ORCA) evaluates multiple band definitions in 345 

terms of how well each definition is able to reconstruct the data (Watrous & Buchanan, 2020), 346 

and the gedBounds method identifies frequency boundaries by clustering similarities across 347 

frequencies (Cohen, 2021). These methods, which examine all analyzed frequencies together, 348 

may help to obtain more consistent groups of frequency ranges within and across participants. 349 
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Collectively, some form of evaluation needs to be done to verify frequency bands, in order to 350 

ensure that applied measures accurately capture the intended oscillatory activity. 351 

  352 



Oscillation Methods 

16 

Figure 2: Canonical frequency band ranges may fail to capture narrowband peaks. A) A simulated 353 
signal, and corresponding power spectrum, with a prominent 10 Hz alpha oscillation. Shaded in blue is the 354 
canonical alpha range (8-12 Hz). B) Another signal with a prominent alpha oscillation, with a peak frequency 355 
of 8 Hz. C) Using canonical band ranges, the amount of alpha power is found to be significantly different 356 
between the signals from A & B. When examining adjacent frequency bands, (right), there is also a 357 
measured difference in theta power, due to the alpha peak drifting into the canonical theta range. These 358 
results suggest differences in oscillatory power between signals, however this is actually driven by a 359 
difference in alpha peak frequency. D) The time series from B, filtered into the alpha frequency range, using 360 
both the canonical range (blue) and an individualized range (green). The individualized range is tuned to 361 
the peak frequency of the time series (see inset power spectra). Note that the individualized filter captures 362 
more narrowband activity. E) Using individualized frequency bands, a difference in measured alpha power 363 
is no longer seen, consistent with the measured difference in C being due to a mismatch in peak frequency.  364 
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#3 Neural oscillations coexist with aperiodic activity 365 

Why this matters 366 

As previously introduced, neural field recordings contain aperiodic activity (B. J. He, 2014). 367 

This activity is not only ubiquitously present, but is also variable and dynamic within and between 368 

subjects (Freeman & Zhai, 2009; Podvalny et al., 2015). Between subject variability of aperiodic 369 

activity can relate to age (W. He et al., 2019; Voytek et al., 2015), and clinical diagnoses 370 

(Robertson et al., 2019), whereas within subjects, aperiodic activity varies with state, such as 371 

sleep (Lendner et al., 2020), relates to behavioral tasks (Podvalny et al., 2015) and can be 372 

influenced by exogenous stimuli and cognitive demands (Waschke et al., 2021). This dynamic 373 

aperiodic activity has different putative generators, physiological interpretations, and task related 374 

dynamics (Gao et al., 2017, 2020; K. J. Miller et al., 2009, 2014), as compared to oscillations, 375 

making it an interesting feature of interest in itself. Altogether, aperiodic neural activity is dynamic 376 

in many contexts in which neural oscillations are usually the focus of inquiry.  377 

This dynamic quality of aperiodic activity is an important consideration for detecting neural 378 

oscillations, as previously discussed (see #1), as well as for interpreting measured changes in 379 

the data. With multiple dynamic components, analyses must adjudicate which aspects of the data 380 

are changing, and how, in order to allow for appropriate interpretations. Since aperiodic activity 381 

has power at all frequencies, changes or differences in aperiodic activity can induce patterns of 382 

differential activity across all frequencies. This can be seen by comparing white (χ = 0) and pink 383 

(χ = 1) noise 1/fχ signals, which have different amounts of power in a canonically defined alpha-384 

band (Fig. 3A). Even with a validated spectral peak and frequency range, a difference in band-385 

power between two conditions within a given frequency range may not be specific to oscillatory 386 

changes, as it may reflect a global change in aperiodic activity. For example, in Fig. 3B, a 387 

measured difference in alpha-band power between two conditions reflects a change in the 388 

aperiodic exponent, not changes relating to a spectral peak in the alpha-band, since the periodic 389 

activity is the same in the two signals.  390 

Considering aperiodic activity is particularly important for analyses that investigate band-391 

power across a series of frequency bands, since systematic patterns of measured changes across 392 

bands may not reflect any changes in oscillatory activity. For example, in Fig. 3C, the band-power 393 

of two conditions is compared across five different frequency bands. Despite this analysis 394 

suggesting a pattern of changes in band power across a series of canonically defined frequency 395 

bands (Fig. 3D), the changes are actually driven by a change in aperiodic activity. Patterns of 396 
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correlated changes across frequency bands can therefore sometimes be more parsimoniously 397 

explained by a change in aperiodic activity, rather than as multiple distinct oscillatory changes, as 398 

has been shown to be the case in development (W. He et al., 2019). 399 

Changes in global power, due to aperiodic changes, can also impact relative or normalized 400 

measures of oscillatory activity. In the spectra in Fig. 3C, there is a visible spectral peak in the 401 

alpha-band. Even though there is no change in peak power, a relative power measure suggests 402 

a change in alpha power, due to a change in the power across all frequencies, that is driven by a 403 

change in aperiodic activity (Fig. 3E). This issue also impacts other compound measures, such 404 

as ratios of band-power, including the theta/beta-ratio, often investigated as a potential biomarker 405 

for ADHD (Lansbergen et al., 2011; Robertson et al., 2019), as it has been shown that band ratio 406 

measures often reflect a change of the aperiodic activity (Donoghue et al., 2020a), and that the 407 

putative relationship between ADHD and theta/beta-ratio appears to be driven by aperiodic 408 

activity (Robertson et al., 2019). 409 

Recommendations 410 

As both oscillatory and aperiodic components are dynamic, it is important for analyses to 411 

validate which elements of the data are specifically changing, in order to appropriately interpret 412 

results. This is relevant for any analysis investigating putative narrowband power, including 413 

investigations that examine multiple oscillation bands. Aperiodic activity should be explicitly 414 

measured to evaluate whether it explains the band-specific changes, including whether correlated 415 

patterns of changes across frequency bands may be more parsimoniously explained as a change 416 

in the broadband aperiodic activity. Approaches that assume oscillations exist upon a stationary 417 

‘background’, such as relative power measures that divide by power across all frequencies, or 418 

band ratio measures, should be avoided, as they conflate changes in oscillatory and aperiodic 419 

components (Donoghue et al., 2020a). For example, a change in a relative power measure could 420 

arise from a change in band-specific power of interest, or be due to a change in aperiodic 421 

component that changes the measured power across all frequencies that is used as the 422 

denominator.  423 

Explicitly measuring aperiodic activity requires methods that explicitly conceptualize both 424 

aperiodic and periodic activity, to avoid erroneously attributing aperiodic activity as oscillatory 425 

changes. Methods that define and measure oscillatory activity relative to aperiodic activity, 426 

including previously introduced methods such as spectral parameterization (Donoghue et al., 427 

2020b) and eBOSC (Kosciessa et al., 2020), are designed to measure and control for aperiodic 428 

activity, and so address this issue. There are also dedicated methods for measuring aperiodic 429 
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activity. For example, the irregular-resampling auto-spectral analysis (IRASA) method leverages 430 

the scale-free nature of aperiodic activity by proposing a resampling procedure to isolate aperiodic 431 

activity (Wen & Liu, 2016). IRASA can be used to separate and measure aperiodic neural activity, 432 

after which analyses can evaluate each component to examine whether measures of interest 433 

specifically reflect the intended component. Overall, controlling for aperiodic activity requires 434 

employing an oscillation detection step and evaluating oscillatory power relative to the aperiodic 435 

component in order to assess whether measured changes are capturing oscillatory or aperiodic 436 

activity. 437 

  438 
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 439 
Figure 3: Variations in aperiodic activity influence band-power measures. A) Examples of aperiodic 440 
white (black) and pink (red) noise signals that display different patterns of power across frequencies, as 441 
seen in their power spectra. Shaded in blue is the canonical alpha range, with time-series filtered in the 442 
alpha-range shown in the inset. Note that the pink noise signal appears to have increased ‘alpha’ power. 443 
B) Simulated combined signals containing both aperiodic and oscillatory power (black), and a transformed 444 
version of the signal with the same periodic component with a change in the aperiodic component (red), 445 
after being rotated in the spectral domain. Note that in A & B, what appears to be band-specific changes 446 
actually reflect differences in aperiodic activity. C) A comparison between power spectra for combined 447 
signals simulated with the same oscillatory component with different aperiodic activity. Shading reflects 448 
different frequency bands, including delta (yellow), theta (green), alpha (blue), beta (purple) and gamma 449 
(red). D) Absolute differences in power, calculated separately for each frequency band, for the spectra in 450 
C. Note that despite the difference in the data being simulated as a change in the aperiodic component, a 451 
band-by-band analysis suggests a pattern of changes across distinct frequency bands. E) Relative alpha 452 
power (bottom) is calculated as absolute band power (top left), divided by the power across all frequencies 453 
(top right). Note that despite no difference in the amount of alpha power, there is measured change in 454 
relative power, due to systematically different aperiodic activity between the signals.  455 

  456 
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#4 Neural oscillations are variable across time 457 

Why this matters 458 

 Neural oscillations often display burst-like temporal dynamics (Lundqvist et al., 2016; 459 

Sherman et al., 2016) and are rarely, if ever, completely consistent and continuous. These 460 

temporal dynamics of neural oscillations are a potentially important feature; for example, the rate 461 

of burst events has been found to be predictive of behavior across tasks and species (Shin et al., 462 

2017), including in investigations of working memory (Lundqvist et al., 2016) and motor activity 463 

(Wessel, 2020). Some generative models of oscillations predict non-continuous events in a way 464 

that is consistent with what is seen in empirical data (Sherman et al., 2016).  465 

 Despite this, many methods implicitly assume stationarity of the signal under study, when 466 

analyzing, for example, average band power across time or trials. In such cases, variability of 467 

oscillation presence or temporal dynamics can be misinterpreted as differences in power. For 468 

example, in simulations with stochastic onset and offset of oscillatory activity, signals can display 469 

different proportions of the data with oscillatory activity present, with the oscillatory power when 470 

present is equivalent (Fig. 4A). Measured power in such cases reports a different amount of band 471 

specific power, typically interpreted as reflecting a change in the overall amplitude of the 472 

oscillation, however, measured differences can be due to temporal variability (Fig. 4B). These 473 

kinds of averaging effects are also important in scenarios such as time-frequency analyses that 474 

average across trials, which may create an illusion of sustained activity in averaged data (Feingold 475 

et al., 2015; Jones, 2016). This can happen if individual trials have burst-like temporal dynamics 476 

that occur at different times across different trials, which can average together in a way as to 477 

suggest a sustained response in average data, despite such continuity not occurring in any 478 

individual trial (Fig. 4C). The temporal variability of neural oscillations motivates the importance 479 

of considering single trial dynamics (Kosciessa et al., 2020; Rey et al., 2015; Stokes & Spaak, 480 

2016). 481 

Oscillatory bursts can vary in multiple ways that can lead to similar measured changes in 482 

band power, which may be misinterpreted as reflecting changes in tonic band power. This 483 

includes changes in burst duration (Fig. 4D), burst occurrence (Fig. 4E), or burst amplitude (4F), 484 

each of which can vary within or between analyzed time periods (Quinn et al., 2019; Zich et al., 485 

2020). Understanding the different sources of variability has implications on how these signals 486 

should be interpreted, as a change in the length, number, or size of bursts each likely reflect 487 

different circuit mechanisms and putative relationships to neural function. However, this can not 488 
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be appropriately evaluated unless methods acknowledge oscillations as potentially transient, with 489 

potential variability in rate, timing, and duration as well as amplitude (van Ede et al., 2018). 490 

Recommendations 491 

Analyses of neural oscillations must therefore evaluate whether temporal variability, rather 492 

than overall power, may be driving measured changes. In order to address temporal variability, 493 

both the spectral and temporal domain have to be considered together (Zich et al., 2020). Time-494 

frequency analyses, such as spectrograms, can be used to examine spectral properties across 495 

time in order to adjudicate between changes in the average power of oscillations and changes in 496 

their temporal dynamics. In doing so, it is important to analyze single-trials (Rey et al., 2015; 497 

Stokes & Spaak, 2016), to avoid misinterpreting averaged power. If reporting spectrograms, 498 

single-trial examples should be included in order to evaluate whether apparent sustained activity 499 

is truly sustained, or arises as a result of averaging many short bursts. 500 

Burst detection methods can also be applied to identify segments of the signal in which 501 

oscillations are present, which can then be characterized in terms of the durations of the bursts, 502 

the number of bursts, and/or the amplitude of the bursts. A common approach for burst detection 503 

is to use an amplitude threshold, detecting segments of power in which frequency specific power 504 

is greater than a chosen threshold level (Feingold et al., 2015). The previously described eBOSC 505 

algorithm (Kosciessa et al., 2020) can be considered to be a threshold based burst detection, in 506 

which the threshold is based on the aperiodic component, and can be used for burst detection. 507 

Other algorithms for burst detection include matching pursuit, in which a dictionary of 508 

atoms, which can include oscillatory bursts, is fit to the data, providing potentially more accurate 509 

estimates of burst onset and duration (Chandran KS et al., 2018). Alternatively, methods such as 510 

hidden markov modelling can be used, which seek to characterize state transitions, and can be 511 

used to model transitions into and out of oscillatory states in a probabilistic way (Quinn et al., 512 

2019; Vidaurre et al., 2016). Time-domain measures that identify oscillations by characterizing 513 

individual cycles, further described in #5, can also be used to detect and analyze the number and 514 

duration of bursts, and their cycle-by-cycle properties (Cole & Voytek, 2019; Schaworonkow & 515 

Nikulin, 2019). After detection, analyses of burst-like neural activity typically involve subsequent 516 

analysis of the identified bursts, in order to evaluate whether they are changing in their duration, 517 

occurrence, and/or amplitude. 518 

  519 
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 520 
Figure 4: Temporal dynamics of neural oscillations influence spectral measures. A) Two simulated 521 
signals with lower (top; blue) and higher (bottom; green) levels of bursting activity in the alpha band, 522 
simulated with probabilistic burst onset and offset. Segments identified as bursts are shaded in red. Note 523 
that oscillation power, when present, is the same in both signals. B) Power spectra for the signals in A. 524 
Note the difference in size of the alpha peak, suggesting a difference in alpha power between the signals. 525 
However, when quantifying the power within the bursts (inset bar plot), the power is found to be 526 
approximately the same. The apparent difference in power is due to differences in temporal variability. C) 527 
Temporal variability can lead to spurious sustained power in averaged results. Spectrograms for individual 528 
trials (top) show short bursts of oscillatory power, which average to create what appears to be a sustained 529 
response (bottom). D-F) Measured differences in power can arise due to multiple features of bursting 530 
oscillations, including changes in the duration (D), occurrence (E), and/or amplitude (F) of the bursts. In 531 
these simulations, one feature differed between the two time series, while all others were held constant. 532 
Each feature creates a similar difference in the resultant alpha peaks, demonstrating that measured power 533 
can reflect multiple facets of temporal variability of analyzed time series. 534 
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#5 Neural oscillations are non-sinusoidal  536 

Why this matters 537 

The waveform shape of neural oscillations is often non-sinusoidal (Cole & Voytek, 2017; 538 

Jones, 2016), as seen, for example, in the arc-shaped sensorimotor mu-rhythm, visual alpha, 539 

which can be triangular, and the sawtooth-shaped hippocampal theta-rhythm. These waveform 540 

properties of neural oscillations may reflect physiological properties, for example the 541 

synchronization of neural activity (Schaworonkow & Nikulin, 2019), spiking patterns of underlying 542 

neurons (Cole & Voytek, 2018), or behavioral correlates such as running speed (Ghosh et al., 543 

2020). Waveform shape can therefore be an important feature of interest, with potential to impose 544 

constraints on generative circuit models of oscillations (Sherman et al., 2016) as well as time 545 

constants of involved synaptic currents. 546 

The variable waveform shape of oscillations also creates substantial methodological and 547 

interpretation hurdles, due to the assumed sinusoidal basis underlying most methods. For 548 

instance, estimating instantaneous phase typically involves narrowband filtering the signal before 549 

applying a Hilbert transform. Applying a narrowband filter on data with variations in waveform 550 

shape can be problematic, as the phases of sinusoidal outputs of narrowband filtering will not 551 

correspond to phases of a non-sinusoidal signal (Fig. 5A). This occurs because in the spectral 552 

domain, nonsinusoidal shapes are represented by power across multiple frequencies, and if the 553 

signal content in the harmonic frequencies is removed, the resulting filtered signal will have shifted 554 

peaks and troughs compared to the original non-sinusoidal signal (Fig. 5A). This is an important 555 

consideration for any analyses that examine cycle properties, such as the location of signal peaks 556 

and troughs, as putatively corresponding to specific physiological states. For analyses that rely 557 

on exact temporal characteristics (e.g. investigating the effects of pre-stimulus phase on 558 

behavioral measures), controlling for waveform shape may be beneficial.  559 

In spectral analysis, non-sinusoidal waveforms are reflected in the power spectrum as 560 

harmonics occurring at multiples of the dominant frequency, as illustrated in Fig. 5B. This can 561 

result in interpreting these separate peaks as independent physiological rhythms. In the case of 562 

an arc-shaped mu-rhythm, for example, the waveform shape of the oscillation will create peaks 563 

in both the alpha- and beta-frequency ranges. This may be interpreted as separate alpha- and 564 

beta-rhythms with an assumed phase- and amplitude-coupled relationship, when in reality only 565 

one non-sinusoidal rhythm is present. Differentiating between those situations is complicated by 566 

the fact that several types of rhythms can be found across the cortex (see section #6). Fig. 5C 567 
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shows how the degree of non-sinusoidality is reflected in the power of harmonic frequencies, with 568 

higher power in the harmonic frequency range for increasing non-sinusoidality. This should be 569 

considered when evaluating differences in spectral power between conditions, to control for 570 

potential changes in waveform shape.  571 

The spurious coupling that waveform shape can induce between frequencies (Kramer et 572 

al., 2008) is especially important when considering measures such as phase-amplitude coupling 573 

that are greatly influenced by waveform shape (Cole et al., 2017; Lozano-Soldevilla et al., 2016). 574 

Waveform shape can result in systematic changes in the amplitude at harmonic frequencies, as 575 

seen in Fig. 5D, which can depend on the phase of the base oscillation, as quantified in Fig. 5E. 576 

This results in significant measures of cross-frequency phase-amplitude coupling. Numerically, 577 

these values are not objectionable, as they reflect a relationship between frequencies in the 578 

spectral domain. However, there is possible fallacy in the interpretation, if this relationship is taken 579 

to reflect significant coupling between independent rhythms, when in fact no such interaction 580 

between multiple rhythms need exist. Because of these methodological limitations, careful work 581 

needs to be done to adjudicate between phase amplitude coupling measures that reflect 582 

waveform shape versus those that truly reflect nested oscillations (Giehl et al., 2021; Vaz et al., 583 

2017).  584 

Recommendations 585 

In order to evaluate and control for waveform shape, explicit measurement of waveform 586 

and cycle properties should be done. Time domain measures of individual cycles can be used to 587 

characterize waveform shape by, for example, calculating measures such as the rise/decay 588 

symmetry or peak sharpness (Cole & Voytek, 2019; Schaworonkow & Nikulin, 2019). Other 589 

methods aim at learning and grouping waveforms into observed categories, for example through 590 

attempting to learn recurring patterns in the data by sliding-window matching (Gips et al., 2017) 591 

or by attempting to learn a dictionary of observed shapes in the data and finding occurrences of 592 

particular waveforms in the data based on templates (Barthélemy et al., 2013; Brockmeier & 593 

Principe, 2016; Jas & Dupré, 2017).  594 

 In the frequency domain, specific waveforms can create stereotypical patterns in power 595 

spectra and time-frequency representations, which can complicate the detection of oscillations 596 

(see #1). If spectral peaks are present at exact multiples of slower frequencies, quantifying 597 

waveform shape may help to distinguish between an independent oscillation at that particular 598 

frequency or harmonic spectral peaks induced by waveform shape. Since different waveform 599 

shapes may exhibit similar time-frequency representations (Jones, 2016), time-domain analyses 600 
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may be required to evaluate if and how waveform shape is contributing to spectral 601 

representations.  602 

For cross-frequency coupling analysis, the frequency extent of local coupling within a 603 

region (e.g., for phase amplitude coupling, the range of higher frequencies that are coupled to the 604 

low frequency phase) can suggest whether it is likely to be genuine oscillatory coupling or a shape 605 

effect (Cole et al., 2017; Vaz et al., 2017), with narrow ranges at exactly multiples of the base 606 

frequencies indicative of possible coupling caused by waveform shape. Applying and comparing 607 

multiple measures of cross-frequency coupling can dissociate harmonic and non-harmonic 608 

phase-amplitude coupling (Giehl et al., 2021). More generally, frequency domain methods such 609 

as bicoherence, a measure of non-linear interactions between frequencies, can also be used to 610 

investigate waveform shape in the frequency domain (Bartz et al., 2019).  611 

  612 
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Figure 5: Waveform shape of neural oscillations influences power and coupling measures. A) Four 613 
different time domain signals with varying rise-decay asymmetry (colored traces) and their narrowband 614 
filtered versions (black traces). Narrowband filtering of asymmetric oscillations shifts the peak times of the 615 
signals as indicated by the shaded regions marking the distance between the peaks of original signal and 616 
the filtered version. B) In the corresponding power spectrum, there are emerging spectral peaks at harmonic 617 
frequencies (exactly two and three times the frequency) as a result of the asymmetry. C) The scale of these 618 
harmonic peaks relates to the asymmetry, such that increasing waveform asymmetry can exhibit as 619 
increased power in the beta-frequency range. D) Non-sinusoidal rhythms can also create spurious phase 620 
amplitude coupling. A 10 Hz non-sinusoidal alpha signal is band-pass filtered around the beta peak 621 
frequency (15 - 25 Hz). The beta signal shows deviations in amplitude depending on alpha phase driven 622 
by the non-sinusoidal waveform shape (inset shows power spectra for each signal). E) Phase amplitude 623 
coupling is quantified by calculating beta envelope as a function of alpha phase. In contrast to a pure beta-624 
sinusoid, the beta envelope from the non-sinusoidal signal shows a minimum for a specific alpha phase, 625 
indicating phase-amplitude coupling, which is driven by the waveform shape of the alpha rhythm. 626 
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#6 Multiple oscillations coexist across the brain 628 

Why this matters 629 

Non-invasive recordings of neural oscillations reflect aggregate activity across relatively 630 

large cortical areas. Through volume conduction, a term used to describe the propagation of 631 

electrical fields from their original source across tissues to recording sensors, recording 632 

electrodes can reflect activity from multiple local sources, as well contributions from more distant 633 

sources that overlap both spatially as well as temporally (Buzsáki et al., 2012; Nunez & 634 

Srinivasan, 2006). For instance, in the context of MEG/EEG, there are several alpha-rhythm 635 

sources, with locations in somatosensory, occipital, parietal and temporal cortex (Hindriks et al., 636 

2017), which can be co-active at the same time. In many studies, recordings are analyzed in 637 

sensor space, by directly analyzing activity from recording electrodes. In such cases, the 638 

aggregate signal may appear markedly different from the underlying sources of interest due to 639 

the spatial and temporal overlap of multiple distinct sources. Measures applied to these combined 640 

signals may therefore not accurately reflect the underlying sources, with distortions in measures 641 

of temporal dynamics or waveform shape (Schaworonkow & Nikulin, 2019).  642 

Examining how spectral and time domain measures can be affected by overlapping 643 

sources is shown in an example in which sensor space activity from a single electrode is 644 

composed of activity from two underlying sources in the parietal and visual cortices (Fig. 6A). In 645 

the spectral domain, this configuration can result in two peaks in the alpha-frequency range (Fig. 646 

6B), when the two sources have slightly different peak frequencies. This has been observed in 647 

empirical data as ‘double alpha’ or ‘split alpha’ peaks (Chiang et al., 2008). Analyses in sensor 648 

space may lead to the interpretation that a specific circuit generates signals with two 649 

simultaneously present peak frequencies, which in turn will influence theories of generating 650 

mechanisms. Spatial summation of multiple underlying rhythms of similar peak frequencies can 651 

also mask temporal features of interest of the underlying rhythms, as seen in Fig. 6C, due to 652 

constructive and destructive interference effects (Schaworonkow & Nikulin, 2019). Phase 653 

differences between sources of similar frequencies can attenuate the oscillation in sensor space, 654 

due to interference, even though oscillatory power has not changed in the underlying sources. 655 

This may lead to erroneous interpretations regarding changing oscillatory power of the sources, 656 

when it may be that only their relative temporal relationship has changed. 657 

Inter-regional connectivity measures are also impacted by the simultaneous presence of 658 

multiple sources. Computing connectivity measures using sensor space signals can lead to 659 
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spurious findings, because volume conduction influences these measures (Haufe et al., 2013; J. 660 

M. Palva et al., 2018; S. Palva & Palva, 2012; Schoffelen & Gross, 2009). Because individual 661 

sources propagate to multiple sensors, regularities in amplitude and phase will be present across 662 

multiple sensors. This can yield highly significant statistical relationships between electrodes, 663 

reflecting signal content that is present due to a common source rather than genuine interregional 664 

coupling, which may lead to erroneous interpretation of connectivity between oscillatory sources.  665 

Recommendations 666 

Due to overlapping sources, analyzing sensor level time series or power spectra can be 667 

misleading regarding which aspects of the oscillation are present and/or are changing. Whenever 668 

possible, sensor space analysis should be complemented by source-level analysis. Source 669 

separation methods can be applied to attempt to separate different narrowband periodic 670 

components in the signal, which can help to reveal features that are not visible in sensor space 671 

data, as well as helping to localize sources. There are many possible approaches for source 672 

separation. Because inferring the activity of many more sources than channels is not possible, 673 

constraints are needed to arrive at a specific decomposition. The choice of the appropriate 674 

method also depends on the specific goals of source separation, including, for example, localizing 675 

activity to specific regions and/or decomposing time series into components based on statistical 676 

properties. 677 

Based on these goals, two main approaches with different optimization criteria can be 678 

used for estimating source activity from sensor space activity. The first main type of methods use 679 

anatomical information to constrain the inverse solution based on individual or template structural 680 

MRI, in combination with methods such as beamformer or minimum norm estimation techniques 681 

(Hauk et al., 2019). The second main type of methods are agnostic to anatomical information and 682 

rely solely on the statistical structure of signals across channels. In this approach, channel activity 683 

is assumed to be a linear mixture of multiple underlying sources, defined by a leadfield matrix, 684 

which describes how individual sources map onto sensors (Parra et al., 2005). By assuming 685 

specific statistical properties of the source time series as well as mixing properties, demixing can 686 

be attempted. Methods in this realm include joint decorrelation (de Cheveigné & Parra, 2014) or 687 

independent component analysis (Hyvärinen & Oja, 2000). In the context of investigating neural 688 

oscillations, there are variants that specifically maximize SNR of narrowband oscillatory 689 

components, while minimizing SNR in flanking bands or in comparison to broadband activity. For 690 

enhancing oscillatory SNR, spatial-spectral decomposition (Nikulin et al., 2011) or generalized 691 

eigendecomposition (Cohen, 2017b) can be used. The Common Spatial Patterns algorithm 692 
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(Koles, 1991) and its variants (Lotte & Cuntai Guan, 2011) can be used for maximizing differences 693 

in narrowband activity between task conditions. For investigating relationships between 694 

narrowband activity and a continuous variable, Source Power Correlation analysis (Dähne et al., 695 

2014) may be of interest. Spatial filtering methods can also be used as a preprocessing step for 696 

dimensionality reduction (Haufe, Dähne, et al., 2014), easing statistical comparisons and 697 

computational needs. 698 

Components that result from source separation need validation, since different methods 699 

or parameter settings can yield highly different results, and solutions are not guaranteed to reflect 700 

physiologically meaningful activity. As such, source separation can be non-trivial and has its own 701 

set of methodological considerations as well as reporting guidelines (Cohen & Gulbinaite, 2014; 702 

Haufe, Meinecke, et al., 2014; Mahjoory et al., 2017). These guidelines can be used to evaluate 703 

robustness of the solution, such as with goodness of fit and/or localization error metrics, and to 704 

adequately convey reconstruction quality and method details to the reader.  705 

  706 
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Figure 6: Multiple simultaneous rhythms can interfere and impact sensor level data. A) A realistic 707 
head model with two oscillatory sources (red and blue) placed in the posterior cortex which project on the 708 
highlighted electrode (green). Underneath are the topographies of the two sources that contribute to the 709 
recording electrode. The leadfield coefficients for the two sources have approximately equal values, 710 
indicating equal contribution to the activity recorded at the green electrode. B) In this simulation, the 711 
electrode signal (green; bottom) reflects multiple underlying sources, including two distinct rhythmic 712 
components, with slightly different peak frequencies. These sources can be seen as two spectral peaks in 713 
the power spectrum. C) A separate simulation of two oscillatory sources with the same peak frequency, 714 
with a phase difference. Due to a phase difference of pi, the two sources sum together destructively. In this 715 
scenario, interference of the sources cancel each other out at the electrode level, even though the 716 
oscillatory power of the individual sources is stable and consistent.  717 
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#7 Measures of neural oscillations require sufficient signal-to-noise ratio 718 

Why this matters 719 

Neural oscillations are embedded in complex recordings containing multiple rhythmic 720 

signals, aperiodic activity, and transient events. Analyzing oscillatory signals of interest requires 721 

defining features of interest (signal), and extracting this signal from the rest of the data (noise). 722 

As with all measures, methods for analyzing oscillations require an adequate signal to noise ratio 723 

(SNR). Indeed, ubiquitous processing steps such as filtering are used largely in order to increase 724 

the SNR (Widmann et al., 2015). Many of the considerations thus far (detecting oscillations, 725 

adjusting frequency ranges, controlling for aperiodic activity, burst detection, and source 726 

separation) can all be conceptualized as aiming to increase SNR by tuning analyses to specific 727 

properties of the data. Beyond these specific properties, applied measures can still be 728 

inaccurately estimated if SNR is low or variable. 729 

The SNR of oscillatory activity relates to the ratio of oscillatory power to noise, typically 730 

the aperiodic background. Oscillatory power is a dynamic property, which can be seen by the 731 

variable height of oscillatory peaks over and above the aperiodic component (Fig. 7A). Many 732 

experimental paradigms will change oscillatory power, as presentation of stimuli may result in 733 

event-related attenuation of oscillations (Pfurtscheller & Lopes da Silva, 1999). This change in 734 

oscillatory power changes SNR, which in turn may influence accuracy and stability of other 735 

oscillatory measures such as instantaneous phase and frequency. When SNR is high, estimations 736 

of phase and frequency can be reliably estimated (Fig. 7B). However, when SNR is low, 737 

estimation can be very noisy (Sameni & Seraj, 2017) as can be seen in Fig. 7C, leading to 738 

artifactual large variations, often referred to as phase slips.  739 

Changes in oscillatory power which change SNR and corrupt phase estimations can lead 740 

to inaccurate estimates of derived measures, such as the phase-locking value 741 

(Muthukumaraswamy & Singh, 2011) or inter-trial coherence (van Diepen & Mazaheri, 2018). Low 742 

SNR makes it difficult to reliably extract oscillations of interest (Fig. 7D), leading to variable phase 743 

estimates (Fig. 7E). When computing coupling measures on such estimates, differences in SNR, 744 

absent any true changes in phase alignment, can erode the detection of phase-locking between 745 

two signals (Fig. 7F). Unstable estimation of oscillatory measures can also propagate to 746 

multivariate analysis, such as cross-frequency coupling, whereby oscillatory power changes that 747 

influence SNR can lead to a change in measured cross-frequency coupling (Aru et al., 2015). 748 
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Time domain analyses, such as those designed for analyzing waveform shape, are also strongly 749 

dependent on their being adequate SNR to meaningfully measure the properties of interest. 750 

In cases of low SNR, unreliable estimates could, for example, lead to false-negatives due 751 

to noisy estimations that are not able to adequately capture measures of interest. Conversely, 752 

certain analyses may return false positive results, if the measured variability of the signal is mis-753 

interpreted as a feature of interest, and/or leads to an artifactual measured change between 754 

conditions due to variable SNR. This may be an issue when comparing between groups who are 755 

known to have differences in relative power of oscillations, and/or when comparing within 756 

participants across conditions that may have different SNR. 757 

Recommendations 758 

Considering the SNR required for stable estimation of measures of oscillations starts by 759 

choosing appropriate experimental designs. When designing the protocol and tasks, 760 

experimenters should consider what is known about the reliability and effect size of effects of 761 

interest, and consider doing a power analysis to design well powered studies. This includes 762 

considering recording modalities, as different modalities have different sensitivities to different 763 

source locations (Piastra et al., 2020), as well as the different temporal, spatial, and frequency 764 

resolutions they offer. When recording the data, best practices should be employed to minimize 765 

non-neuronal noise, and use appropriate preprocessing in order to increase the quality of the data 766 

with the respect to desired analyses (Keil et al., 2014; Pernet et al., 2020). 767 

Once recordings have been collected, or if considering existing datasets for potential re-768 

analysis, signal-to-noise ratio has to be considered to validate if the dataset is appropriate for the 769 

desired analyses. This requires explicitly measuring SNR to verify that applied measures are 770 

robust in the SNR regime of the data. If the SNR is too low to provide accurate measurements, 771 

the analyses may be non-viable, as any measurements will be uninterpretable. If the analysis can 772 

be run, then SNR should still be continuously verified, to evaluate whether potential changes of 773 

SNR across time or between conditions may explain measured changes in results (van Diepen & 774 

Mazaheri, 2018). 775 

General approaches for optimizing SNR include good filter design (de Cheveigné & 776 

Nelken, 2019; Widmann et al., 2015), and using information about spectral estimators and signals 777 

of interest to select the most appropriate methods to improve the accuracy and stability of 778 

estimates (Chavez et al., 2006; Lepage et al., 2013). There are also specific methods for more 779 

robust estimations of phase in low power situations, including Monte Carlo estimation (Sameni & 780 

Seraj, 2017) and applying a Kalman smoother (Mortezapouraghdam et al., 2018). Many of the 781 
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previously described methods such as detecting oscillatory peaks, using individualized frequency 782 

ranges, and using burst detection can all improve SNR. Source separation techniques, including 783 

those that explicitly optimize SNR (Cheveigné & Arzounian, 2015; Nikulin et al., 2011) can be 784 

used to extract oscillatory components with higher SNR.  785 

  786 
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Figure 7: Low oscillatory signal-to-noise ratio impacts measures. A) Power spectra for simulated 787 
signals with variable SNR for an alpha oscillation, as seen in the different peak heights. B) One of the 788 
simulated signals, with a high SNR, with the alpha filtered signal (top; blue), from which the instantaneous 789 
phase (middle; red) and frequency (bottom; green) are computed. Note that the simulated signal has 790 
consistent phase and frequency. C) The same as B, for a signal with low SNR. Note that in this case, the 791 
estimates of phase and frequency are variable, due to misestimations because of the low SNR. This leads 792 
to phase slips, indicated by the arrows, in instantaneous phase, which also leads to erratic estimates of 793 
instantaneous frequency. D) Filtered versions of high and low SNR signals. In the simulated signals, the 794 
underlying signals (grey) are the same, other than a power difference, and have uniform phase. The filtered 795 
traces (blue) diverge from the underlying signal, especially in the low SNR signal. E) Phase estimates of 796 
the signals in D, in which the solid red is the true phase of the simulated oscillation, and the shading reflects 797 
the standard deviation of estimated phase across multiple iterations of phase estimation within each SNR 798 
regime. This shows that there is higher variance of phase estimates with lower SNR. These unstable phase 799 
estimates will impact subsequent measures, such as phase coupling. F) The phase locking value computed 800 
between a high powered oscillation, and simulated signals with decreasing power, as shown in A. Note that 801 
the simulated oscillations all have the same simulated phase time course, such that there is an expected 802 
phase locking value of 1, and any estimates below this are misestimations due to low power.  803 
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Discussion 804 

How, and to what extent, neural oscillations are mechanistically involved in cognition 805 

remains undetermined. This lack of clarity likely arises in part from imprecisions in our 806 

methodological approaches for analyzing oscillations that, in turn, give rise to inconsistent results. 807 

Here, we highlight specific methodological considerations for analyzing and interpreting neural 808 

oscillations, providing explicit recommendations regarding each topic. These considerations 809 

acknowledge the heterogeneity of neural oscillations and embrace this complexity as an 810 

opportunity to consider ideas and interpretations that may help us to further understand our data. 811 

Oscillations vary in their presence and frequency, co-exist with dynamic aperiodic activity, have 812 

idiosyncratic temporal and waveform shape properties, overlap with one another, and require 813 

sufficient SNR to appropriately analyze. These topics also demonstrate that there is an increasing 814 

set of features that can be defined for neural oscillations, with an increasing toolkit of estimation 815 

methods. Hopefully, these recommendations can serve as guidelines for potentially reducing 816 

misinterpretations and conflicting results, and can increase clarity in our understanding of neural 817 

oscillations.  818 

These considerations relate broadly to studies investigating neural oscillations, including 819 

investigations of endogenous activity, and/or of rhythmic neural activity that may be induced by 820 

stimulus presentation (Doelling et al., 2019; Lakatos et al., 2008). The potential impact of the 821 

considerations may vary across different studies. In many cases, these considerations may not 822 

change the analyses or interpretations, but may still offer potential avenues for further analyses, 823 

and deeper understanding of the data. In some situations, these considerations may greatly 824 

impact results and interpretations, potentially reflecting fundamental confounds that do need to 825 

be addressed, or even reflect issues that cannot be addressed by current methods, such that it 826 

precludes particular analyses from being appropriately applied. Overall, with a range of possible 827 

impacts, the general recommendation is to check for all of these possible issues, to identify which 828 

topics may matter in each scenario, and proceed accordingly. 829 

Though we present the considerations as seven distinct points, it is important to note that 830 

these considerations do not manifest in isolation from one another and can interact. For example, 831 

variable aperiodic activity (#3) can interfere with spectral peak (#1) and/or burst (#4) detection, 832 

as it complicates approaches that use a threshold criterion to define bursts or spectral peaks. 833 

Oscillations may also be difficult to detect (#1) and/or to individualize frequencies for (#2) if they 834 

are temporally rare (#4), and/or have low SNR (#7). Further, waveform shape (#5) may 835 

systematically vary in relation to underlying sources (#6) (Schaworonkow & Nikulin, 2019) and/or 836 
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detected peaks (#1) may be volume conducted from remote sources (#6), resulting, for example, 837 

in ‘double alpha’ peaks due to the overlap of occipital and sensorimotor rhythms in the alpha-838 

band (Chiang et al., 2008). Multiple oscillatory features, such as power, waveform shape, burst 839 

rate, etc., can covary. These potential multicollinearities need to be explicitly considered and 840 

tested by robust analyses that control for multiple potentially confounding features by, for 841 

example, addressing overlapping periodic and aperiodic activity (Donoghue et al., 2020b; 842 

Kosciessa et al., 2020), controlling for waveform shape, which may result in spurious power- 843 

and/or phase-coupling (Cole & Voytek, 2019; Schaworonkow & Nikulin, 2019), and examining 844 

trial-by-trial dynamics that may be masked or conflated in average measures (Jones, 2016; 845 

Stokes & Spaak, 2016; Zich et al., 2020). 846 

This investigation used a simulation approach that attempts to mimic the properties seen 847 

in empirical data, including dynamic aperiodic activity, and oscillatory components that can vary 848 

across multiple features (Cole et al., 2019). Because ground-truth properties of physiological data 849 

are not known in a way that can be used to evaluate the accuracy of applied measures, simulated 850 

data are an important tool for diagnosing available methods. In using simulated data, we must 851 

endeavor to reflect on our empirical data—simulating heterogeneous oscillatory features 852 

embedded within dynamic aperiodic activity—in order to be representative of empirical data and 853 

realistic use cases. As well as the tool used here, there are other approaches for simulating data, 854 

including for specific modalities such as EEG (Krol et al., 2018), or that emulate neural circuits 855 

(Neymotin, Daniels, et al., 2020), or whole brain recordings (Sanz Leon et al., 2013). Simulation 856 

analyses should be employed when developing new analysis approaches, as novel methods 857 

require validation and comparison to existing methods, such that best practice guidelines can be 858 

continuously developed and updated. All time-frequency methods include settings that should 859 

also be validated and explored. Sensitivity analyses, in which one repeats the analyses across 860 

mild perturbations of method settings to evaluate the robustness of the measured results, should 861 

be used to ensure that results are not overly dependent on specific parameter regimes.  862 

Estimates of oscillatory features of interest are typically further analyzed and compared 863 

using statistical methods. Notably, many neuroscientific parameters exhibit skewed distributions 864 

(Buzsáki & Mizuseki, 2014), including oscillatory power (Kiebel et al., 2005). Therefore, 865 

distributional properties of data should be carefully considered such that appropriate statistical 866 

tests can be chosen (Maris, 2012; Maris & Oostenveld, 2007). This is especially important when 867 

considering that power-law distributed variables can result in spurious correlations when using 868 

methods that assume normality (Schaworonkow et al., 2015). Statistical analyses, in particular in 869 

the context of new methods and measures, should also evaluate consistency across participants 870 
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(Grice et al., 2020), reliability within participants, and effect size measures, which can be 871 

computed using estimation statistics (Calin-Jageman & Cumming, 2019). Considering effect sizes 872 

can also aid in designing studies that are sufficiently powered (Button et al., 2013). Adopting the 873 

best practices proposed here may also help to increase statistical power, insofar as they help to 874 

better and more specifically characterize features of interest, improving SNR. 875 

In our examples, we focused primarily on univariate measures, such as estimating 876 

oscillatory power or phase. Issues that affect these estimates also propagate to derived 877 

measures, such as correlations between amplitude or phase, as is done in functional connectivity 878 

(Haufe et al., 2013) and cross-frequency coupling analyses (Aru et al., 2015). If phase estimates 879 

are unreliable due to low oscillatory SNR (Sameni & Seraj, 2017), or if amplitude estimates are 880 

biased by changes in aperiodic activity (Donoghue et al., 2020b), or if burst properties vary 881 

between analyzed signals (Jones, 2016), then derived measures may fail to reflect the intended 882 

oscillatory properties. Methodological limitations are likely to propagate and compound in 883 

multivariate or mass univariate analyses, and must therefore be considered for any analyses 884 

including, or built on top, of the univariate methods demonstrated here. 885 

Though beyond the scope of this article, investigations of neural oscillations also require 886 

employing best-practices for designing, collecting, and preprocessing data in order to ensure 887 

sound research design, high quality data, and methodological validity. These considerations are 888 

covered in available textbooks (Cohen, 2014; Hari & Puce, 2017), as well as individual reports 889 

that discuss topics such as including best practices for reporting and conducting MEG/EEG 890 

research (Gross et al., 2013; Keil et al., 2014; Pernet et al., 2020), pre-processing (de Cheveigné 891 

& Arzounian, 2018), artifact rejection and data cleaning (Jas et al., 2017; Urigüen & Garcia-892 

Zapirain, 2015), and guides to using common software tools such as MNE (Gramfort, 2013; Jas 893 

et al., 2018) and FieldTrip (Oostenveld et al., 2011; Popov et al., 2018). Other work also features 894 

dedicated discussion for specific methods such as filtering (de Cheveigné & Nelken, 2019; 895 

Widmann et al., 2015), phase estimations (Chavez et al., 2006; Lepage et al., 2013), functional 896 

connectivity (O’Neill et al., 2018), and cross-frequency coupling analyses (Aru et al., 2015). 897 

Broader strategies are also required for addressing reproducibility in the field of neural 898 

oscillations, including pursuing replication studies, providing clear descriptions of methods and 899 

results, and publishing null results (Cohen, 2017a). Open-science practices, including making 900 

data and analysis code available, can help foster reproducibility and develop transparency 901 

(Gleeson et al., 2017; Kathawalla et al., 2020; Voytek, 2016). Due to their computational nature, 902 

investigations of neural oscillations also benefit from good code practice (Wilson et al., 2017). 903 

Standardized procedures for organizing datasets also increase shareability, organization, and can 904 
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assist in standardized pipelines, making it easier to apply novel methods (Holdgraf et al., 2019; 905 

Niso et al., 2018; Pernet et al., 2019). Adopting open science practices provides opportunities for 906 

using open tools and datasets that can foster transparency and efficiently allow for revisiting the 907 

evidence for how neural oscillations relate to cognition and disease. 908 

Importantly, these considerations also reflect opportunities for developing new theory and 909 

understanding of neural field data, which is still in many ways a mystery (Cohen, 2017c). Aperiodic 910 

activity is itself a physiologically informative feature (Gao et al., 2017, 2020), reflecting processes 911 

distinct from neural oscillations (Donoghue et al., 2020b; B. J. He, 2014). New methods provide 912 

new opportunities, for example, the ability to jointly analyze multiple components of the data, such 913 

as how oscillations and aperiodic activity jointly contribute to cognitive processing (Cross et al., 914 

2020). New features of interest offer the potential for better understanding underlying physiology 915 

and putative computational roles of neural oscillations. For example, modelling that explicitly 916 

considers waveform shape and/or burst properties has contributed to physiological models of 917 

neocortical beta generation (Sherman et al., 2016), and models proposing mechanisms of beta 918 

and gamma activity in working memory (E. K. Miller et al., 2018).  919 

Our emerging understanding of the data under study and how to measure it provides new 920 

vistas of opportunity for continuing to understand neural field data, and how it relates to cognition 921 

and disease. These methods and topics reflect the current status of methodological 922 

considerations for research related to neural oscillations. As our understanding of the many 923 

complexities of neural data continues to evolve, future investigations of neural oscillations must 924 

continue a consistent process of interrogating the assumptions of our methods and how they 925 

relate to current knowledge of the data to validate measures of the data, and develop evolving 926 

best practices.  927 

  928 
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Conclusion 929 

Productively investigating neural oscillations requires dedicated and carefully applied 930 

methods that reflect our current understanding of the data. As methodological validity is a 931 

prerequisite for appropriate interpretation, analysis methods must reflect that neural field data 932 

consists of a complex combination of multiple oscillatory components, variable aperiodic activity, 933 

and transient events, within which oscillations vary across multiple dimensions. Here, we have 934 

proposed a checklist of methodological considerations for neural oscillations, with 935 

recommendations to 1) validate that oscillations are present; 2) verify that used frequency ranges 936 

are appropriate; 3) control for potential confounds due to aperiodic activity; consider the 4) 937 

temporal variation and 5) waveform shape of neural oscillations; 6) apply source separation, as 938 

needed, to separate multiple oscillatory processes; and 7) evaluate that the SNR is adequate for 939 

the analyses at hand. These considerations, and new methods that have been developed to 940 

address them, reflect our emerging understanding of neural field data and offer new possibilities 941 

for investigating, and ultimately, understanding, neural oscillations. 942 

  943 
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Materials and Methods 944 

A simulation-based approach was used to create the demonstrations in this manuscript. 945 

Simulated time series were created with the NeuroDSP toolbox (Cole et al., 2019), version 2.2.0. 946 

In most cases, the time series were created as a combination of oscillatory and aperiodic activity, 947 

sampled at 1000 Hz. Oscillatory activity was simulated as sine waves unless otherwise noted. 948 

Each oscillation was simulated at a specific frequency, typically in the alpha band, unless 949 

otherwise specified. Aperiodic activity was simulated by spectrally rotating white noise to the 950 

desired 1/f exponent (Timmer & Konig, 1995). Aperiodic and oscillatory signal components were 951 

weighted according to a specified variance and combined together in an additive manner. Across 952 

all analyses, power spectra were estimated using Welch’s method (Welch, 1967), using Hanning 953 

windowed 1 second segments with 12.5% overlap. Filtering was done with finite impulse response 954 

bandpass filters, with linear phase and filter lengths set to a default of 3 cycles of the highpass 955 

frequency, and enforced to be odd (Type I). Canonical band ranges were defined as delta (2-4 956 

Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz), unless otherwise specified. Analysis 957 

methods were also used as available in the NeuroDSP toolbox, or with custom code included in 958 

the project repository (https://github.com/voytekresearch/oscillationmethods).  959 

Several of the figure demonstrations used additional processing. For the peak detection 960 

in Figure 1, the spectral peak was detected and quantified using spectral parameterization, which 961 

models the power spectrum as a combination of aperiodic and oscillatory components, and can 962 

be used to detects peaks of putative oscillatory power over and above the measured aperiodic 963 

component (Donoghue et al., 2020b). For the individual frequency example in Figure 2, canonical 964 

alpha was defined as +/- 2 Hz around 10 Hz, and individualized alpha bands were defined as +/- 965 

2 Hz around the individual peak frequency. For the demonstrations of varying aperiodic activity in 966 

Figure 3, generated time series were spectrally rotated, in the same manner as done to simulate 967 

the aperiodic activity (Timmer & Konig, 1995). Relative power was computed as the sum of power 968 

in a frequency band of interest, divided by the sum of power across all frequencies in the 969 

frequency range of 2-50 Hz.  970 

For the temporal variation demonstrations in Figure 4, bursty oscillations were simulated 971 

by specifying time segments that should include an oscillation, optionally controlling the duration, 972 

occurrence, and amplitude of the bursts. Burst specific power was calculated by sub-selecting 973 

segments of the data with an oscillation present. For the examinations of waveform shape in 974 

Figure 5, oscillations were simulated as asymmetric sine waves, and the bycycle toolbox (version 975 

1.0.0) was used to quantify waveform shape in the time domain (Cole & Voytek, 2019). For this, 976 
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signals were band-pass filtered around the frequency of interest (here: 10 Hz) to extract the time 977 

points of zero-crossings of the signal. The time points were used to segment the broadband data 978 

into cycles, determining several cycle parameters. For this example, simulated time series were 979 

created with varying rise-decay symmetry, which is the ratio of time in the rising and decaying 980 

segments of the oscillation, which creates asymmetric oscillations.  981 

For the spatial mixing demonstration in Figure 6, the New York Head (ICBM-NY) was used 982 

(Huang et al., 2016) as a head model. Two sources are placed in the posterior cortex, and the 983 

corresponding sensor signals are calculated using the leadfield. Oscillations were simulated as 984 

asymmetric waves, created as the sum of two sines waves with a fixed phase lag. Topographies 985 

were visualized using MNE-python (Gramfort, 2013). In Figure 7, instantaneous measures were 986 

computed by applying the Hilbert transform to signals that had been bandpass filtered into the 987 

alpha range (8-12 Hz), taking the angle as the phase estimate, and using the derivative of the 988 

instantaneous phase as a measure of instantaneous frequency. Phase synchrony was measured 989 

using the phase locking value (Lachaux et al., 1999).  990 

  991 
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