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Abstract

Local field potential (LFP) oscillations are primarily shaped by the superposition of postsynaptic currents.

Hippocampal LFP oscillations in the 25- to 50-Hz range (“slow �”) are proposed to support memory retrieval

independent of other frequencies. However, � harmonics extend up to 48 Hz, necessitating a study to determine

whether these oscillations are fundamentally the same. We compared the spectral analysis methods of wavelet,

ensemble empirical-mode decomposition (EEMD), and Fourier transform. EEMD, as previously applied, failed to

account for the � harmonics. Depending on analytical parameters selected, wavelet may convolve over high-order

� harmonics due to the variable time-frequency atoms, creating the appearance of a broad 25- to 50-Hz rhythm.

As an illustration of this issue, wavelet and EEMD depicted slow � in a synthetic dataset that only contained � and

its harmonics. Oscillatory transience cannot explain the difference in approaches as Fourier decomposition

identifies ripples triggered to epochs of high-power, 120- to 250-Hz events. When Fourier is applied to high

power, 25- to 50-Hz events, only � harmonics are resolved. This analysis challenges the identification of the slow

� rhythm as a unique fundamental hippocampal oscillation. While there may be instances in which slow � is

present in the rat hippocampus, the analysis presented here shows that unless care is exerted in the application

of EEMD and wavelet techniques, the results may be misleading, in this case misrepresenting � harmonics.

Moreover, it is necessary to reconsider the characteristics that define a fundamental hippocampal oscillation as

well as theories based on multiple independent � bands.
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Significance Statement

Fourier, Wavelet and ensemble empirical-mode decomposition (EEMD) converge on conflicting represen-

tations of the same time series. Fourier reveals � harmonics whereas wavelet and EEMD have identified a

“slow �” oscillation. In a comparison of spectral decomposition methods, we find that wavelet and EEMD

give the erroneous impression of a slow � band. Fourier decomposition does not display any spectral

deviation that is indicative of slow �. These data emphasize the importance of multiple analytical ap-

proaches with well-understood parameters when decomposing LFP in relation to behavior. On a funda-

mental level, our analysis points to an imprecise definition of a fundamental rhythm, requiring a

reconsideration of both characteristics that define a hippocampal oscillation as well as theories based on

multiple � bands.
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Introduction
Oscillations in the local field potential (LFP) were initially

hypothesized to be organized in an energy cascade

framework (Bak et al., 1987; Buzsáki and Draguhn, 2004;

Buzsáki, 2006). In this framework, higher amplitude, lower

frequency rhythms provide the energy into lower

amplitude-higher frequency rhythms, suggesting that ev-

ery frequency is interdependent. Activity across all fre-

quencies reflects a single unified process. This theory had

a significant amount of traction, explaining how the cross-

scale energy cascade is responsible for the redistribution

of power across frequencies and the increase in �-�

coupling with velocity (Ahmed and Mehta, 2012;

Sheremet et al., 2019a,b).

The energy cascade hypothesis, however, was all but

abandoned following the report of independent “slow �”

(25–50 Hz) and “high �” (65–140 Hz) bands (Colgin et al.,

2009). The slow � rhythm identified in the CA1 pyramidal

layer correlated with activity in the CA3 region, whereas

the higher frequency � rhythm showed coherence with the

medial entorhinal cortex. This led to the two � hypothesis

by which each rhythm is statistically independent and

supports dissociable psychological processes (Colgin,

2015b).

The identification of two independent � rhythms was

predicated on a cross-frequency coherence analysis us-

ing a Morlet wavelet estimation of power and frequency,

showing coherence of slow and fast � with the � rhythm

(Colgin et al., 2009, their Fig. 1C; n.b., 50-Hz alternating

current noise overlaps with the � � slow � interaction in

this figure). Other decomposition methods, however, only

found interactions between �, a single � (30–80 Hz) and a

120- to 160-Hz oscillation (Zhang et al., 2016), or �, �

harmonics and a single � (Sheremet et al., 2019a, their

Fig. 6), failing to observe interactions between � and the

slow � band. Other absences in the detection of slow �

include cross-frequency power correlations or bicoher-

ence analyses (Buzsáki et al., 2003; Masimore et al., 2004;

Johnson and Redish, 2007; Sheremet et al., 2016, 2019a).

These studies, however, have been eclipsed by reports on

slow � that have reconfirmed the phenomenon through

wavelet decomposition (Belluscio et al., 2012; Lasztóczi

and Klausberger, 2014, 2016; Tamura et al., 2017; Zhong
et al., 2017; Dvorak et al., 2018).

To fully appreciate the equivocal foundation of slow �, it
pays to examine the lack of consistency in its described
properties across studies. Although harmonics of � were
described relatively early (Harper, 1971) and noted to
extend into the 32- to 40-Hz band (Leung et al., 2005),
they were not isolated in the initial description of slow �
(Colgin et al., 2009). Furthermore, there is a notable in-
congruence between the contemporarily defined ranges
of slow � bands across publications (Fig. 1). For instance,
the slow � range defined by Schomburg et al. (2014),
30–80 Hz, broadens the initial range identified by Colgin
et al. (2009) and precisely mirrors the filter parameters of
Csicsvari et al. (2003), which describes a single � band.
Reverting the filter parameters to ranges used in earlier
reports obfuscates the phenomenon being discussed and
points to an incongruency in how we define a fundamental
hippocampal rhythm. As “fundamental rhythms” are often
defined by a substantial “peak above noise” observation
(Pesaran et al., 2018; e.g., why spectral whitening is often
implemented), it is necessary to understand the initial
rationale behind subdividing � an how this relates to the
harmonics of �, which extend as high as 48 Hz (Sheremet
et al., 2016).

The current work revisits prior decomposition tech-
niques employed to identify slow � frequencies. Our in-
vestigation demonstrates that different analysis methods
result in contradictory results. Ensemble empirical-mode
decomposition (EEMD), as implemented by Lopes-Dos-
Santos et al. (2018), fails to account for the higher order
harmonics of �. The analytical parameters chosen in the
wavelet analysis of Colgin et al. (2009) produce a corrupt
representation of the high-order � harmonics leading to
the appearance of a broad 25- to 50-Hz deflection in the
power spectrum. In contrast, � harmonics are readily
identified by short-timescale Fourier decomposition. Crit-
ically, spectral decomposition methods as contemporarily
implemented yield distinct representations of the same
data. To resolve these incongruencies, these three de-
composition methods were run on a synthetic benchmark
dataset. Notably, both Fourier and wavelet with larger
temporal support yielded results closer to the known
parameters than EEMD or standard wavelet parameters.
The current observations suggest that it is necessary to
consider if decomposition methods are appropriately ap-
plied and to implement multiple analytical approaches
with well-understood parameters when decomposing
time-series signals in relation to behavior.

Materials and Methods

Subjects and behavioral training
All behavioral and surgical procedures were performed

in accordance with the National Institutes of Health guide-
lines for rodents and protocols approved by the University
of Florida Institutional Animal Care and Use Committee.
LFP data were obtained from four- to 10-month-old Fisher
344xBrown Norway F1 hybrid rats from the National In-
stitute on Aging colony (Charles River). Datasets used to
compare spectral decompositions methods were ob-
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Figure 1. Left, Historical definition of medial temporal lobe oscillatory bands. For each manuscript, a bar spans the range defined for

a specific oscillation. In the instance that a range is not defined, but an oscillation is noted (Lopes-Dos-Santos et al., 2018; Sheremet

et al., 2019a), a marker covering a short frequency range was used. Furthermore, some ranges were inferred (Sirota et al., 2008

describe a high 32- to 40-Hz harmonic, indicative that the 16- and 24-Hz subdivisions also exist). Note that, before the subdivision

of � into multiple bands, multiple harmonics of � were reported. For example, Leung et al. (1982) verified the presence of harmonics

through bicoherence analysis. Following the observation of multiple � bands, few manuscripts account for the harmonics of �. The

notable exceptions are Schomburg et al. (2014), cautioning that pyramidal neuron spike modulation in the 20- to 30-Hz band may be
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tained from three rats (mixed sex cohort: 2 male, 1 fe-
male). On arrival, rats acclimated to the colony room for
one week. The rats were housed and maintained on a
12/12 h light/dark cycle. All training sessions and electro-
physiological recordings took place during the dark phase
of the rats’ light/dark cycle. Training consisted of shaping
the rats to traverse a circular track for food reward (45 mg,
unflavored dustless precision pellets; product #F0021,
BioServ). During this time, their body weight was slowly
reduced to 85% of their free-feeding baseline. Once the
rat reliably performed more than one lap per minute, they
were implanted with a custom single shank silicon probe
from NeuroNexus or Cambridge NeuroTech. The Neu-
roNexus probe was designed such that thirty-two record-
ing sites, each with a recording area of 177 �m, were
spaced 60 �m apart allowing incremental recording
across the hippocampal lamina. The Cambridge Neuro-
Tech probe consisted of sixty-four recording sites, each
with an area of 165 �m and spaced 50 �m apart, allowing
for 3.15 mm of vertical coverage. In preparation for sur-
gery, the probes were cleaned in a 4% dilution of Contrad
detergent (Decon Contrad 70 Liquid Detergent, Fisher
Scientific) and then rinsed in distilled water.

Surgical procedures
Rats were initially sedated in an induction chamber

containing 3–5% isoflurane. Once anesthetized, the rat
was moved to a nose cone, the head was shaved, and the
rat was transferred to the stereotax. During surgical im-
plantation, the rats were maintained under anesthesia
with isoflurane administered at doses ranging from 0.5 to
2.5%. The probe implant coordinates targeted the dorsal
hippocampus (AP: –3.2 mm, ML: 1.5 relative to bregma,
DV: –3.7 mm from brain surface). Once the location of the
implant was identified, a 3 � 3-mm contour was drilled
out around these coordinates, but not completed. This
was followed by the placement of seven anchor screws in

the bone as well as a reference over the cerebellum and

ground screw placed over the cortex. Once the screws

were secured, a thin layer of adhesive cement (C&B-

Metabond, Parkell) followed by dental acrylic [Grip Ce-

ment Industrial Grade, 675571 (powder) 675572 (solvent);

Dentsply Caulk] were applied taking care to not obscure

the craniotomy location. Finally, the craniotomy location

was completed, irrigating and managing bleeding as nec-

essary once the bone fragment was removed. Next, a

portion of the dura was removed, taking care to avoid

damaging the vessels and the surface of the neocortex.

Small bleeding was managed with saline irrigation and gel

foam (sterile absorbable gelatin sponges manufactured

by Pharmacia & Upjohn Co). Once the probes were in

place, the craniotomy was covered with SILASTIC (Kwik-

Sil, World Precision Instruments) and then secured to the

anchor screws with dental acrylic. Four copper mesh

flaps were placed around the probe providing protection

as well as acting as a potential Faraday cage. The wires

from the reference and ground screws were soldered to

the appropriate pins of the electrode interface board.

Adjacent regions of the copper-mesh flaps were soldered

together to ensure their electrical continuity, and the

ground wire soldered to the copper mesh taking care to

isolate the reference from contact with the ground. Once

the probe was secured, the rat received 10 cc of sterile

saline as well as Metacam (1.0 mg/kg) subcutaneously

(the non-steroidal anti-inflammatory is also known as

meloxicam; Boehringer Ingelheim Vetmedica, Inc.). The

rat was placed in a cage and monitored until fully recov-

ered. Over the next 7 d, the rat was observed to ensure

recovery and no behavioral anomalies. Metacam was ad-

ministered the day following surgery as well. Antibiotics

(sulfamethoxazole/trimethoprim oral suspension at 200

mg/40 mg per 5 ml; Aurobindo Pharma USA, Inc.) were

administered in the rat mash for an additional 5 d.

continued

related to the third harmonic of � and not slow �, and Scheffer-Teixeira and Tort (2016) cautioned that � wave asymmetry may

erroneously contribute to cross-frequency coupling. Cowen et al. (2018) observed up to the fifth harmonic (40�Hz) in both old and

young rats which overlapped with their slow � range, but did not clarify the difference between harmonics and slow �. Zheng et al.

(2015) also increased the lower bound of their slow � definition in the medial entorhinal cortex in an attempt to avoid the lower order

� harmonics. The recent implementation of bicoherence analysis, however, reveals that the harmonics of � can extend as high as 48

Hz (Sheremet et al., 2016, 2019a). Note that before the discovery of slow �, only � harmonic were reported in the 25- to 50-Hz range.

Following the slow � discovery, reports of harmonics became rare. Right top, An examination of the most extensive defined ranges

of all oscillations. Note that � harmonics spill into the lowest range of traditional and (s)low �. Therefore, it is evident that harmonics

potentially contribute to the � band up to 50 Hz. No attempt has been made to decipher if the medium � (Belluscio et al., 2012) was

equivalent to fast/high � across manuscripts. Right bottom, Perhaps more concerning is that when examining the lowest defined

ranges (defined by identifying the lowest high pass and the lowest low pass ranges), the (s)low � band does not overlap across

studies, demonstrating inconsistency. Critically, a meaningful definition of what is a fundamental rhythm is missing. Black: � and �
harmonics; gray: “fast oscillation” and non-subdivided �; yellow: �; red: (s)low �; green: medium �; blue: fast/high � (Petsche and

Stumpf, 1960; Stumpf, 1965; Harper, 1971; Coenen, 1975; Leung and Vanderwolf, 1980; Leung, 1982, 1984, 1985; Buzsáki et al.,

1983, 1985, 2003; Leung and Buzsáki, 1983; Bullock et al., 1990; Ning and Bronzino, 1993; Lee et al., 1994; Bragin et al., 1995;

Rezvova et al., 1995; Breen and Morzorati, 1996; Traub et al., 1996; Chrobak and Buzsáki, 1998; Penttonen et al., 1998; Czurkó et al.,

1999; Buhl et al., 2003; Csicsvari et al., 2003; Leung et al., 2005; Terrazas et al., 2005; Robbe et al., 2006; Montgomery and Buzsáki,

2007; Montgomery et al., 2008; Senior et al., 2008; Sirota et al., 2008; Cappaert et al., 2009; Colgin et al., 2009; Sabolek et al., 2009;

Tort et al., 2009; Wulff et al., 2009; Chen et al., 2011; Jackson et al., 2011; Sullivan et al., 2011; Ahmed and Mehta, 2012; Belluscio

et al., 2012; Buzsáki and Wang, 2012; Carr et al., 2012; Insel et al., 2012; Scheffer-Teixeira et al., 2012; Jacobson et al., 2013; Kemere

et al., 2013; Bieri et al., 2014; Cabral et al., 2014; Lasztóczi and Klausberger, 2014, 2016; Schomburg et al., 2014; Trimper et al., 2014;

Rangel et al., 2015; Zheng et al., 2015, 2016; Lansink et al., 2016; Scheffer-Teixeira and Tort, 2016; Sheremet et al., 2016, 2019a;

Fernández-Ruiz et al., 2017; Zhong et al., 2017; Cowen et al., 2018; Dvorak et al., 2018; Lopes-Dos-Santos et al., 2018).
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Neurophysiology
Following recovery from surgery, rats were retrained to

run unidirectionally on a circle (outer diameter: 115 cm,
inner diameter: 88 cm), or figure-8 track (112 cm wide �

91 cm length) for food reward at a single location. The
local-field potential was recorded on a Tucker-Davis Neu-
rophysiology System at 24 kHz (PZ2 and RZ2, Tucker-
Davis Technologies). The animal’s position was recorded
at 30 frames/s (Tucker-Davis Technologies). Spatial res-
olution was �0.5 cm/pixel. Running speed was calculated
as the derivative of the smoothed position. The LFP data
were analyzed in MATLAB (MathWorks) using custom-
written code as well as code imported from the HOSA-
toolbox. Raw LFP records sampled at 24 kHz (Tucker-
Davis System) were down-sampled to 2 kHz and divided
into fragments of 2048 time samples (�1 s). To eliminate
the effects of anatomic variations in electrode depth be-
tween rats, the position of the hippocampal layers with
respect to the recording channels was determined by
estimating the distribution of current-source density to
identify the CA1 pyramidal cell layer (Rappelsberger et al.,
1981; Mitzdorf, 1985; Buzsáki et al., 1986; Bragin et al.,
1995). Unless otherwise noted, all decomposition analy-
ses were conducted on LFP traces from the CA1 pyrami-
dal cell layer.

Additional LFP datasets
To investigate cross-frequency interactions and as to

not be redundant with previously published data from our
lab, LFP recordings from two additional rats from the
Buzsáki laboratory were included (https://buzsakilab.
nyumc.org/datasets/FernandezRuiz_Oliva/AB1/day11/;
https://buzsakilab.nyumc.org/datasets/FernandezRuiz_
Oliva/AYA1/AYA1_140808/; sex unknown). The electrode
configuration of these probes consisted of eight shanks with
32 sites per shank. Electrode position was determined using
current source density analyses (Rappelsberger et al., 1981;
Mitzdorf, 1985; Buzsáki et al., 1986; Bragin et al., 1995)
triggered to detected ripple events. The distribution of the
current sources and sinks of the raw LFP triggered to ripples
matched the regional distribution of activity to input layers
(Ylinen et al., 1995; Sullivan et al., 2011; Sheremet et al.,
2019a). Following current source density analysis, a single
channel was selected in the CA1 pyramidal layer of each rat.

Fourier and wavelet transforms
Transforms

The Fourier and wavelet transform can be introduced
formally as decomposition on a set of “elementary” func-
tions. In the case of the Fourier transform, the functions
form a basis. In the case of the wavelet transform, the
most common elementary function sets form frame, a
class with weaker properties than a basis. Procedures to
extract orthogonal subsets from wavelet frames are avail-
able (e.g., the diadic construction; Mallat, 1999). Without
going into the details, let S be some class of real functions
and let �f, with (f � R), be a basis in S; then any g � S can
be written uniquely as

G�f� � � g�t��
f
�t�dt, g�t� � � G�f��f

�t�df . (1)

The “coefficients” G(f) of the decomposition (also re-
ferred to as the transform of g) are obtained by taking the
inner product of the function g with the basis elements
[i.e., projecting g(t) onto the basis], The pair of equations
(Eqs. 2, 3) are best known as direct and inverse trans-
forms, sometimes also called analysis and synthesis.

The Fourier transform pair is obtained letting �f(t) �

e2�ift

G�f� � �
	





g�t�e	2�iftdt, g�t� � �
	





G�f�e2�iftdf . (2)

The wavelet transform and its inverse are given by

G�s, �� � �
	





g�t��s�
�t�dt, g�t� � ��

	





G�s, ���s�
�t�dsd� ,

(3)

where the functions �s, ��t� � �� t 	 � / s� are “copies” of
the “mother wavelet” (t), shifted in time by � and scaled
by s, with � a normalization constant. The full set of
wavelets {�s,�(t)}s,��R is in general complete but not inde-
pendent (i.e., larger than a basis). The wavelet represen-
tation was designed for two main applications:
compression and resolving short-time transient coherent
structures such as solitons and chirps. For these pur-
poses, the lack of orthogonality of the decomposing
modes is not an inconvenience, because the structure of
the decomposition in the dual space is not important.
Compression algorithms only need a small number of
modes and the synthesis rule for reconstructing the sig-
nal, while the identification of transients focuses on opti-
mizing the time-scale localization (see the discussion of
the time-scale atoms below). The lack of orthogonality of
the wavelet elementary function set creates problems in
applications where one seeks to assign meaning to the
actual components of the decomposition. Here, meaning
means repetition (an implied stochastic process model)
and requires the ability to attribute variance unequivocally
to each of the decomposition modes. For such an appli-
cation, the lack of orthogonality of the wavelet decompo-
sition becomes a major inconvenience, because one
cannot attribute unique variance to any single wavelet
mode.

Discrete transforms
Unless the set of functions are carefully defined, Equa-

tions 2, 3 are only formal, and in most cases, they do not
have any elementary mathematical meaning; when they
do, their usefulness is limited. For example, if g(t) � 1, the
Riemann integral in the equation does not exist; however,
a rather restrictive elementary theory can be built for
T-periodic functions.

Evolving the generic Fourier and wavelet equations into
useful analysis tools has complexities that required the
development of full theories (e.g., the theory of distribu-
tions, or generalized functions; Schwartz, 1950; Lighthill,
1958). For example, in Fourier equations �f(t) � e2�ift are
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orthogonal in the sense that �
	





e2�iftdt � ��f�, where � is the

Dirac delta function (Vladimirov, 2002; Strichartz, 2003). A
complete discussion of these is far beyond the scope of
this study, and is also unnecessary, because time series
measured in practical applications are always of finite
length T, sampled at time intervals �t (T � n�t), that is.,
are finite sequences of real numbers g(t) � {g1, g2, Ê, gN},
with gj � g(tj). Such sequences naturally form
N-dimensional spaces, in which integral Transforms, such
as the Fourier or wavelet equations, are represented by
finite-dimensional linear operators, that is, N � N matri-
ces. These discretized versions of the Fourier and wavelet
representations are called the discrete transforms (Briggs,
1995; Mallat, 1999; Strang, 2006).

The discrete Fourier transform pair is (in MATLAB con-
vention)

Gm �
1

N �
n�0

N	1

gn�mn, gn � �
m�0

N	1

Gm�mn
� , �mn � e	2�i

mn

N ,(4)

where �mn � �m�tn� � e	2�ifmtn are the basis vectors. This
pair of equationsare sometimes called the analysis and
synthesis of the signal g(t).

Here, fm � m�f and tn � n�t represent the discretized
frequency and time grids, with �f � 1 / T , and �t �
T / N . Basis functions are orthogonal in the sense that, for

any integerm, with m � 0 and m � N, �
n�0

N	1

e	2�i mn / N � 0.

A discrete version of wavelet transform is

Gmn � �
k�0

N	1

gkmnk, withmnk � s	
m

2 �s	m�k 	 n��sm��

(5)

where �� is a time-shift increment. The wavelets mnk

form orthogonal only for compact-support wavelet
shapes  (e.g., Haar, and Daubechies wavelets; Dau-
bechies, 1988, 1992; Mallat, 1999).

The Parseval relation ensures that the discrete Fourier
equations conserve the variance of the time sequence
and its transform (Briggs, 1995), i.e., �g

� �G, where �g
�

	n|gn|2 is the variance of g. The discrete wavelet transform
does conserve variance (�g

� �G) and in general, the
variance ratio depends on g, which means that a universal
correction factor does not exist.

Windowed Fourier transform (WFT)
To investigate the evolution of spectra over time, WFT is

introduced where the original signal is multiplied by a
window function which is nonzero for only a short period
of time

Gwin��, f� � �
	





g�t�w�t 	 ��e	2�iftdt (6)

where w is the window function (Priestley, 1981; Roads,
2004). The window function slides along the time axis,
which gives rise to a time-frequency representation of the
original time series. This time-frequency representation

can be plotted as the spectrogram. Typically, window
functions are smooth, “bell-shaped,” time-localized
curves, the Fourier transform of the window function is

W�f� � �
	





w�t�e	2�iftdt . (7)

In frequency space, the window function w is usually
composed of a bell-shaped main lobe and symmetric side
lobes. The bandwidth of a window function is defined as

B �
� 	



 �W�f��2df

�W�f��max
2

. (8)

The spectrum estimation depends critically on the win-
dow bandwidth as it will smooth the spectrum and influ-
ence the frequency resolution (Fig. 2). The time-frequency
resolution of transforms will be further discussed in the
following section.

EEMD
A brief description of empirical mode decomposition

(EMD) is given in Figure 3, where the original time series is
decomposed into intrinsic mode functions and a non-
oscillatory residual. The intrinsic mode functions gener-
ated by EMD have two properties: (1) the number of
extrema and the number of zero-crossings will either be
equal or differ at most by one; (2) the upper envelope and
lower envelope are symmetric. These two properties
guarantee the intrinsic mode functions have a well-
behaved Hilbert transform. However, the decomposing
process doesn’t ensure orthogonality of intrinsic mode
functions, and except for those two properties, we have
limited prior knowledge about the decompose results.
The question, why the symmetric mode functions are
favorable, and why a well-behaved Hilbert transform is
desired should be asked before applying the EMD. How-
ever, EMD suffers from the mode mixing problem which
renders the algorithm unstable (Gledhill, 2003). To solve
this issue, EEMD is proposed. In the EEMD algorithm,
white noise is added to the original signal before decom-
position to alleviate mode mixing and is canceled out after
the decomposition by averaging over ensemble (Wu and
Huang, 2009). In this study, following the procedure of
Lopes-Dos-Santos et al. (2018), the ratio between the
variance of added white noise and the original LFP was
0.5, and the ensemble number was 200. After applying the
EEMD, the power spectrum for each intrinsic mode func-
tion was used to identify the peak frequency. The supra-�
signal is defined as the sum of all the intrinsic mode
functions with peak frequency above 12 Hz. The time-
scale power distribution of supra-� signal was obtained
by Morlet wavelet transform with a constant ratio for the
wavelet family set as 7 (Colgin et al., 2009; the meaning of
this parameter is introduced in the numerical implemen-
tation section).

Time-frequency atoms
For the Fourier transform, the duration T of the time
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sequence and the frequency resolution �f of the trans-
formed sequence are related through the reciprocity rela-
tion T�f � 1, which implies that increasing the frequency
resolution �f is equivalent to increasing the time duration
T of the analyzed signal. The T�f � 1 equation highlights
an important limitation of the Fourier transform: if g(t) is
highly localized, its transform G(t) has a wide frequency
support. This means that very high sampling rates cover
the wide frequency domain, and the interpretation of the
high-frequency content can become difficult. Restricting
the Fourier analysis equation to a specified duration T is
equivalent to multiplying the time series g(t) by finite sup-
port rectangular window w(t – �) � 1 if �t 	 �� � T / 2 and
zero otherwise. In other words, the integral operator

�
�	T / 2

��T / 2

dte	2�ift (9)

may be written as

�
	





dt&w�t 	 ��e	2�ift � �
	





dtf�
� �t� , (10)

which may be interpreted as a projection of g onto func-
tions (t) � w(t)�(t). The function  could be described as
a localized oscillation. If one constructs in the time-
frequency plane a rectangle of sides T and �f centered,
say, at t0 � T / 2 and f0 � T�f / 2�t , the T�f � 1 equation
states that the area of this rectangle is constant, regard-
less of the value of T. This rectangle is sometimes called
the Heisenberg box (Mallat, 1999). This is in fact an ex-

ample of the application of the general Heisenberg uncer-
tainty principle, which states that the area of a Heisenberg
box cannot be made arbitrarily small. For an arbitrarily-
shaped localized oscillation (t) with Fourier transform (f)

and unit variance ��
	





��2dt � �
	





���2dt � 1�, defining the

time and frequency widths as

�t � �
	





�t 	 t0�2��2dt, �f � �
	





�f 	 f0�2���2dt,(11)

one can show (Gabor, 1946; Percival and Walden, 1993;
Mallat, 1999) that �t�f � 1 / 4� .

In other words, it is impossible to achieve simultaneous
arbitrary resolutions both in time and frequency. While the
time-frequency resolution (area of Heisenberg boxes)
cannot be made arbitrarily small, it can be minimized.
Gabor (1946) showed that the minimal area for a Heisen-
berg box is achieved by localized oscillation (t) �

w(t)e2�ift where w is a Gaussian-shaped window. Follow-
ing his work, Goupillaud et al. (1984) used this shape, later
called the Morlet wavelet, to introduce the continuous
wavelet transform (Grossmann and Morlet, 1984; Mallat,
1999). The limitations imposed by the Heisenberg uncer-
tainty principle are illustrated in Figure 4. A Morlet wavelet
results as a product of a sine function with a Gaussian
window. The resulting function is the mother wavelet. The
wavelet transform then uses scaled versions of the
mother wavelet as elementary functions. It is important to
note that the wavelets shown in Figure 4D, are not har-
monic; therefore, they are not uniquely characterized by a
single frequency value; instead, they are characterized by

Figure 2. WFT atoms. A, For WFT, a window function is applied to all the frequency components. B, Adoption of a Hanning window

with wide time support to fast and slow oscillations, which (C) gives rise to fast and slow oscillations that decay slowly in the time

domain. D, In the frequency domain, the power (amplitude square) of these slowly decaying oscillations have a relatively narrow

frequency band, and the bandwidth is the same for fast and slow oscillations. This results in a transform with coarse time resolution

but fine frequency resolution. E, On the contrary, applying a Hanning window with narrow time leads to (F) fast decay oscillations in

the time domain. G, However, these fast decay oscillations have a wide frequency band, which (H) results in a transform with fine time

resolution but coarse frequency resolution.
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a frequency interval, say, corresponding to the width of
the frequency spread of their power (as given by the
Fourier transform). The frequency distribution of power is,
as expected, narrower for the larger-scale wavelets, and
wider for smaller-scale wavelets. Therefore, the wavelet
Heisenberg boxes coverage of the frequency axis is not
uniform, and consequently, using wavelets as a “fre-
quency” representation results in a non-uniform fre-
quency resolution, with resolution degrading at higher
frequencies.

It is worth noting that, theoretically, wavelet transform
can acquire arbitrary frequency resolution at a given fre-
quency range by dilating the width of the mother wavelet.
However, an appropriate choice of mother wavelet re-
quires a good understanding of the process under inves-
tigation. In the analysis of � harmonics, if we want to
obtain the frequency resolution of 2 Hz when the central
frequency is around 30 Hz, the mother wavelet will have
�20 oscillations before decaying (compare Fig. 4D, which
is the typical wavelet used in the confirmation of slow �

analysis). Thus, it is worth noting that wavelet is capable
of resolving harmonics, but not in the implementation of
Colgin et al. (2009).

Numerical implementation
Fourier and wavelet analysis procedures were imple-

mented in the MATLAB environment using available MAT-
LAB toolboxes. The Fourier spectrum was estimated by
dividing the LFP time series into 2048-point (1 s) seg-
ments sorted by rat speed and windowed using a Ham-
ming window. The wavelet transform used the Morlet
wavelet, with the central frequency of the Morlet wavelet
defined as the nominal frequency. The Morlet wavelet
family is characterized by the constant ratio between the
central frequency of wavelet and SD of the applied
Gaussian window, which is set to 7 in our analysis to
match the methods of Colgin et al. (2009).

The wavelet scalogram is defined as the logarithm of
the squared modulus |Gmn|2 of the wavelet coefficients.
The power spectral density (PSD) for the wavelet trans-

Figure 3. Description of empirical mode decomposition and the wavelet analysis as used by Lopes-Dos-Santos et al. (2018). For a

given time series, the mean envelope can be obtained by averaging upper envelope and lower envelope. Subtracting the mean

envelope from the original time series and repeating this process until the time series has an almost symmetric upper and lower

envelopes. The obtained time series is defined as the first order intrinsic mode function (the 1st row in the figure). Subtracting the 1st

intrinsic mode function from the time series and repeating the process, we can get high order intrinsic mode functions (the 2nd and

the 3rd rows). Following this process, the time series will be decomposed into intrinsic mode functions and a residual, which has

overlapped upper and lower envelopes. Inset, Rather than use the wavelet steps of Colgin et al. (2009), Lopes-Dos-Santos et al. (2018)

opted to use steps of 1 Hz between Morlet wavelets making for a highly redundant, overly convolved representation.
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form was computed as the time marginal of the wavelet
transform (Abry et al., 1993). The Fourier spectra were
estimated using the Welch method (Welch, 1967).

Methodological limitation
At this point, it needs to be stressed that the wavelet

and EEMD assignment of variance to a specific frequency
(e.g., in the construction of a PSD) is ultimately arbitrary
and potentially meaningless since the elementary func-
tions used for the decompositions are not harmonics
functions (sine/cosine). The data presented here are for
illustrative and replication purposes. We believe this
methodological treatment is flawed and should be treated
with circumspection.

Bicoherence analysis
Higher-order spectra provide information regarding the

degree of cross-frequency coupling. The bispectrum, the
“lowest” of the high-order spectra, has had a long history
in the field of wave dynamics (Hasselmann et al., 1963;
Rosenblatt and Van Ness, 1965; Coppi et al., 1969). The
bispectrum has been thoroughly reviewed in terms of

both statistical and mathematical background (Harris,

1967) as well as its application to nonlinear wave interac-

tion (Kim and Powers, 1979). Furthermore, the relation-

ship between a time series and the third-order statistic is

well understood (Haubrich and MacKenzie, 1965; Masuda

and Kuo, 1981; Elgar, 1987). As noted previously

(Sheremet et al., 2016; Kovach et al., 2018), bispectral

analysis (the Fourier transform of the third-order cumu-

lant) quantifies the degree of phase-envelope amplitude

coupling between the frequencies of the LFP, while the

bicoherence quantifies the degree of cross-frequency

coupling independent from the amplitude (Barnett et al.,

1971; Ning and Bronzino, 1989; Sigl and Chamoun, 1994;

Bullock et al., 1997; Muthuswamy et al., 1999; Hagihira

et al., 2001; Gloveli et al., 2005; Li et al., 2009; Wang et al.,

2017; Shahbazi Avarvand et al., 2018). It is emphasized

here as well as elsewhere (Van Milligen et al., 1995;

Pradhan et al., 2012) that the bispectrum measures phase

coupling, defined to occur when the sum of phases be-

tween two frequencies is equal to the value of a third

frequency plus a constant. Furthermore, the real and

Figure 4. A schematic of the Heisenberg boxes of the wavelet transform. A–C, The mother wavelet is obtained by the multiplication

of a sine function with a window. D, Wavelets at three scales resulting by the scaling of the mother wavelet. E, Frequency distribution

of the power of wavelets. F, Heisenberg boxes of the wavelet transform. G, Frequency distributions of the first 22 wavelet scales used

in Colgin et al. (2009). Note that the 8-Hz bin only overlaps with approximately three wavelets, 16 Hz overlap with nearly five wavelets,

24 Hz overlaps with approximately seven wavelets, and 32 Hz overlaps with more than 10 wavelets. It is this decimation that results

in distributing the power of the 24-Hz and higher harmonics of � over multiple frequency bands. The implementation of Lopes-Dos-

Santos (2018) accentuates this effect through their use of 1-Hz steps between Morlet wavelets.
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imaginary part of the normalized bispectrum provides
information regarding how cross-frequency interactions
contribute to skewness and asymmetry, respectively (for
more information, see Sheremet et al., 2016, 2019a). Al-
though it is starting to become common practice to ac-
count for asymmetry, a cnoidal wave is both symmetric
and nonlinear which will cast harmonics when decom-
posed. Therefore, bicoherence analysis assures that all
forms of distortion that result in harmonics can be ac-
counted for (Aru et al., 2015). Notably, traditional mea-
sures of phase-amplitude coupling tend to fall short when
compared to bispectral analysis (Kovach et al., 2018). For
a Fourier based approach that assesses hippocampal
phase amplitude coupling, we refer to our prior publica-
tion (Sheremet et al., 2019a). A thorough discussion of
bicoherence and bispectral analysis, are beyond the
scope of the current paper, and have been described in
detail elsewhere (Dumermuth et al., 1971; Aru et al., 2015;
Kovach et al., 2018).

Power-power correlation
As the hippocampal LFP transitions between quiescent

activity with intermittent sharp-waves/ripples during rest
and high-amplitude � during awake-behavior, the time
series at long time scales is undeniably non-stationary
(that is, the mean and variance of the recorded voltage
change over time). Therefore, the use of an average power
spectrum over large time series has a marginalized mean-
ing as it can average out intermittent events. To address
this, a simple way to determine how the power spectra
changes over time and investigate frequency interactions
is to calculate the correlation coefficients across different
Fourier transforms (Masimore et al., 2004, 2005) using
locally stationary segments of LFP. For instance, should
an increase in the 8-Hz rhythm be accompanied by a
decrease in the 12-Hz range, a negative correlation
should exist. Furthermore, if the spectrum undergoes lo-
cal change (e.g., increases in the 8-Hz rhythm is accom-
panied by an increase in the adjacent 7- and 9-Hz band,
a non-zero width will be present (Masimore et al., 2004,
2005). Velocity is a primary driver of variance for both �
and � (Sheremet et al., 2019a,b). Thus, all velocities were
considered together, as this approach enabled the para-
metric space to detect potential relationships across fre-
quency bands.

Power triggered spectral decomposition
Stationarity describes the property of a time series in

which the overall characteristics, such as the average and
variance of the power, remain constant over time. It has
been previously argued that slow and fast � rhythms are
non-stationary and highly transient. However, nonstation-
ary events, such as ripples, can be treated as “locally
stationary” should it be possible to detect the event and in
turn, realize the spectra (Pesaran et al., 2018). This ap-
proach allows one to discuss statistical characteristics of
ripples such as the average frequency and power. Know-
ing that slow � is defined by a frequency range between
25 and 55 Hz, and these theoretical events have been
detected by instances of power that exceed 2 SDs above
the mean power (Bieri et al., 2014), then it should be

possible to calculate the Fourier spectra on slow � using
this approach. The utility of detecting such transient
events can be compared by running the same procedure
on ripples.

Therefore, instances of high-power slow � events or
ripple events were identified as described previously
(Maurer et al., 2006; Skaggs et al., 2007). Briefly, the raw
LFP was filtered either in 25- to 55-Hz range (slow �) or
120- to 250-Hz range (ripple) and rectified by squaring the
filtered trace. The mean and SD of the upper envelope of
the rectified trace was calculated. For every instance in
which the envelope exceeded the mean plus 2 SDs of the
entire trace, 2 s of the raw LFP was extracted and spec-
trally decomposed using either Fourier decomposition
with Thomson’s multi-taper or wavelet decomposition.

Spike frequency analysis
Often the presence or absence of an oscillation is but-

tressed by whether single-unit firing is modulated at a
specific frequency by examining the phase relationship
between an oscillation and neuron spiking. Thus, to de-
termine the frequency in which neuronal spiking occurred,
we implemented spectral analyses on spike trains (Leung
and Buzsáki, 1983; Sheremet et al., 2016). Single-unit
data were generously provided by the Buzsáki laboratory
and curated by the Collaborative Research in Computa-
tional Neuroscience (Mizuseki et al., 2014; Pastalkova
et al., 2015; seven datasets: maze05.005, maze06.002,
i01_maze06.005, i01_maze08.001, i01_maze08.004,
maze13.003, and maze15.002). For these datasets, the
rat performed a delayed alternation task on a figure-8
maze, running in a wheel during the delay. Only datasets
in which CA1 neuron recordings were obtained bilaterally
were used for the analysis. Action potentials for pyramidal
cells and interneurons were initially sorted into velocity
bins, analyzing the 5–15 or 35� cm/s conditions separately.
These spike times were converted into a binary time series
with a sampling frequency of 1250 Hz. As this bin size is
slightly smaller than the traditional window of 1 ms used for
waveforms, a boxcar convolution was performed such that a
single spike registers as one across three adjacent bins. This
output was then passed through the pmtmPH (https://
www.mathworks.com/matlabcentral/fileexchange/2927-
pmtmph-m) function to calculate the PSD based on
multi-taper analysis. Each unit’s power was normalized
by the total power and then sorted by peak � frequen-
cies to align the harmonics between units. The average
and standard error power spectra are presented.

Spike-LFP coherence
The general theory behind spike-LFP coherence is that

synaptic events, which are the primary component in
shaping the local-field potentials (Buzsáki et al., 2012), are
responsible for generating action potentials, which in turn
generate further synaptic events (Pesaran et al., 2018).
Thus, if action potentials occur in support of a fundamen-
tal rhythm, then a peak in spike-field coherence may be
evident even in the absence of a peak in the LFP spectrum
(Pesaran et al., 2018). Therefore, using the CRCNS data-
sets from the Buzsáki laboratory described above, we
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calculated the spike-LFP coherence (Leung and Buzsáki,
1983) as a function of running speed.

Spike preferred frequency of modulation analysis
While spike-LFP coherence quantifies the degree to

which neurons fire to a particular phase of an oscillation,
in related studies, spike-LFP coupling was determined
through a modulation analysis (Colgin et al., 2009;
Schomburg et al., 2014). Therefore, we revisited these
analyses. Using the CRCNS data, the phase of neurons
was calculated relative to a narrow band filter of the LFP,
in 1 Hz steps from 2–120 Hz. Cells were considered to be
phase locked if they differed significantly from a uniform
distribution (using a p � 0.01 as in Schomburg et al.,
2014). In the instance that the cell exhibited significant
phase locking, the preferred phase, and depth-of-
modulation (Skaggs et al., 1996) was calculated. For all
significant cells, a mean modulation index providing the
phase and vector magnitude of modulation can be real-
ized for each frequency. Finally, this approach provides
the ability to determine the fraction of cells that are sig-
nificantly modulated at each frequency as well as the
primary preferred frequency of each neuron. To be in-
cluded in this analysis, neurons must have had an average
firing rate above 0.25 Hz.

Results

Investigation of cross-frequency interactions within
the hippocampus

We have previously conducted an extensive investiga-
tion of cross-frequency interactions between � and � in
the hippocampus (Sheremet et al., 2019a). Using filterless
approaches of power-power correlations (Masimore et al.,
2004, 2005) and phase-coupling assessed through bico-
herence analysis (Sheremet et al., 2016, 2019a), we found
interactions between �, harmonics, and a broad unitary
50- to 120-Hz band. Notably absent in our results was the
25- to 55-Hz slow � band. Instead, at high velocities,
frequencies between 25 and 55 Hz were dominated by the
harmonics of �. While it could be argued that slow � is
transient to the point of being averaged out (considered
below), the same transience argument has been made for
the 60- to 100-/140-Hz fast � rhythm (Colgin et al., 2009;
Bieri et al., 2014), which was resolved by both cross-
frequency analytical approaches. With this consideration
that there may be something unique to our rats or data
collection methodologies that preclude finding slow �,
and to enhance scientific rigor we revisited cross-
frequency interactions using data from two rats gener-
ously made available from the Buzsáki laboratory (see
Materials and Methods).

Using current-source density, an “electroanatomic” re-
construction of position can be conducted to identify
recording location (Berényi et al., 2014). As the CA1 py-
ramidal layer was the site of the initial description of slow
� (Colgin et al., 2009) as well as recent replication (Lopes-
Dos-Santos et al., 2018), the electrode in the layer was
identified based on current source densities triggered to
ripple events (Fig. 5A,B). In agreement with our prior
publications (Sheremet et al., 2016, 2019a,b), there are

multiple prominent peaks in the CA1 pyramidal layer that
align with 7–10, 14–20, and 21–30 Hz indicative of �
harmonics (Fig. 5C). Within the 50- to 120-Hz range, there
was a mild increase in power with velocity (Ahmed and
Mehta, 2012). While � and the harmonics increased, the
frequency bands less than �, between � and the first
harmonic and between the 18- and 27-Hz harmonic lost
power with velocity. Finally, there was a redistribution of
power between the 27-Hz harmonic and the start of the
50- to 120-Hz � range.

The power spectra were calculated for non-overlapping
1-s segments. By correlating the vector of power of one
frequency band with another, it is possible to determine
whether there is a positive or negative relationship (Masi-
more et al., 2004, 2005). As can be seen in Figure 5D, as
� power increases, there is a concurrent increase in �
harmonic power, as indicated by the multiple low-
frequency correlations. Furthermore, there is a correlation
between �, the first harmonic (18 Hz) and a broad, unitary
� (50–130 Hz). Note that there is an inverse correlation
between the frequencies �9 Hz and the unitary � band,
revealing that the 50–130 Hz increases in power while the
low frequencies lose power. That is, while � and the
harmonics increased in power, the inter-harmonic inter-
vals lost power. This redistribution of power is reflected in
the positive correlation between the sub � frequency and
the �14- to 15-Hz band. Finally, there is little in the way of
structure between the 36 Hz � harmonic and the start of
the unitary � band at 50 Hz.

While this is descriptive of the LFP, it does not account
for the potential effects of volume conduction. Therefore,
to ensure that our observations were carried by local
voltage changes, the PSD of the current source density
was calculated for the pyramidal layer. Specifically, any
signal that was common to the electrode above and
below the pyramidal cell electrode was removed. Once
again, as velocity increases, there was a redistribution of
power such that � and harmonics become more preva-
lent. Power also increased in the 50- to 120-Hz range.
Moreover, there was a loss of power in the inter-harmonic
intervals (Fig. 5F). The average power correlation of the
current source density reflects this observation with pos-
itive correlations between � and its harmonics, �, and the
50- to 130-Hz range and the inter-harmonic intervals.
Negative correlations were notable between � and the
inter-harmonic intervals and � and the inter-harmonic
intervals. Again, there was little structure between the last
interaction indicative of a harmonics and the start of the
50- to 130-Hz interaction, which is the range typically
corresponding to slow �.

Therefore, the data up to this point do not support the
idea there is a slow � band that interacts with �. � Has long
been documented to increase in power with velocity
(Whishaw and Vanderwolf, 1973; Morris and Hagan, 1983;
Rivas et al., 1996; Shen et al., 1997; Maurer et al., 2005).
Should there be any systematic change in slow � with
velocity, it should be evident in the power correlations
(Fig. 5D,F). However, as � power increases, the slow �
band neither increase nor decreases. It is worth noting
here that the literature is obtuse regarding changes in
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Figure 5. Cross-frequency interactions as a function of velocity. A, B, Current source density plots of local-field potential data

triggered to ripples for two rats generously made available by the Buzsáki laboratory. Using the source-sink profile, layers can be

easily identified. The location of the white asterisks depicts the channel location selected for each rat for the following analyses. C,

Rat average CA1 pyramidal layer PSD as a function of velocity. Overall, the PSD has an inverse relationship between amplitude and

frequency (A � f-�) such that lower frequencies are higher power. As running speed increases, the power of � as well as the peaks

at 18 and 27 Hz increase with velocity. There is also an associated increase in the 50- to 120-Hz range with velocity (described as

a moving front; Sheremet et al., 2019b). At low frequency and within the inter-harmonic intervals, there is a loss of power. D, To

examine the redistribution of power across frequencies, multiple different PSD realizations were cross-correlated. Major regions of

interactions include what appears to between harmonics of � and between � and a broad � band 
50 Hz. Negative correlations are
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slow � with velocity: Zheng et al. (2015) reported a mini-
mal change with increasing velocity, Kemere et al. (2013)
reported a decrease, Chen et al. (2011) found an increase,
and Ahmed and Mehta (2012) suggest that there is only
one � band that increases in frequency and power with
velocity. In light of this ambiguity, any potential result risks
being construed as supporting slow �. For instance, the
power of slow � is not modulated by the power of �, but
the interaction resides in phase coupling. Or it may be
argued that the highest correlation observed near 36 Hz is
actually slow �.

Therefore, to address these two possibilities, we imple-
mented bicoherence analysis to quantify the degree of
cross-frequency phase coupling in the LFP (see Materials
and Methods). Bicoherence is uniquely suited to identify
harmonics as well as other forms of phase coupling (Aru
et al., 2015; Sheremet et al., 2016). As slow � phase has
been reported to be coupled to � phase (Belluscio et al.,
2012; Colgin, 2015a), should this be true, then an inter-
action should be evident.

In congruence with our prior reports, the presence of �
harmonics became more prominent with running speed
across all layers (Sheremet et al., 2016, 2019a; Fig. 5G,H).
There is a peak at 9 and 27 Hz indicating a harmonic at 36
Hz and a mild peak between 18 and 27 Hz suggestive of
a 45-Hz harmonic (for instructions on how to read a
bicoherence plot, see Sheremet et al., 2016). As the
power of � harmonics increases with velocity (Sheremet
et al., 2016, 2019a) and a harmonic is defined as being a
phase coupled integer to a fundamental rhythm, the in-
crease in the bicoherence between the harmonics with
velocity support the interpretation that the low frequen-
cies correlations in Figure 5D,F are indeed harmonics and
not slow �.

The redistribution of power in the Fourier spectrum
As described above, power spectra undergo a redistri-

bution of power across frequencies with velocity. �, the
harmonics and the 50- to 120-Hz � band increase in
power, whereas the inter-harmonic intervals decrease in
power. Investigations into the relationship between slow �
and velocity have been contradictory (Chen et al., 2011;
Kemere et al., 2013; Zheng et al., 2015). As an alternative
to the two � hypothesis, it has been argued that there is a
single � frequency which increases with running speed,
resulting in a decrease in amplitude of low-frequencies
and an increase at higher frequencies (Ahmed and Mehta,
2012). As described by Ahmed and Mehta (2012), the
redistribution of power across frequencies is a conse-
quence of increasing afferent drive onto interneurons

(Traub et al., 1996). Specifically, with a low level of afferent
input, neurons are weakly entrained exhibiting a range of
oscillations. These same neurons become strongly en-
trained with energy (increasing afferent input) and velocity
(Sheremet et al., 2019a). By allowing neurons to interact
with each other, a general frequency of entrainment is
selected, accompanied by accretion of power in one band
with erosion of power in the adjacent bands (Wiener,
1965, 1966; Strogatz, 1994).

We, therefore, examined the relationship between run-
ning speed and the power spectra with higher velocity
resolution. Figure 6 shows the power spectra between 0
Hz and 1000 Hz and for a narrower frequency range
(25–240 Hz). Consistent with previous reports (Czurkó
et al., 1999; Terrazas et al., 2005; Sheremet et al., 2016,
2019a), as running velocity increases, there is an associ-
ated increase in � power and its harmonics. As described
above, the increase in � power and its related harmonics
was associated with decreases in power in the frequency
ranges surrounding � and its harmonics. Because CA1
neurons are tuned to fire at � frequency (see Oscillatory
modulation of CA1 neuron firing), these observed in-
creases in power at faster running speeds, which also
produce higher firing rates of both pyramidal cells and
interneurons (McNaughton et al., 1983), can be viewed as
the energy into the hippocampus increasing resonance or
bringing otherwise incoherent neural activity into coher-
ent, dynamic patterns. A similar idea has been proposed
by Traub et al. (1996), in which � oscillations increase in
frequency with increasing drive with the only extension

here being that the drive comes in bouts of �. From this

perspective, it becomes odd to describe slow � as a

fundamental oscillation that is maximal in power at low

velocities. Accurately, low velocity describes the lowest

firing rate condition and a minimal capability of neurons to

interact on each other in a manner described by Wiener

and Strogatz (Wiener, 1965, 1966; Strogatz, 1994). To

consider the loss of power to be data that supports a slow

� rhythm is contradictory as the low velocity/low afferent

input state implies that neurons are free to “drift,” and by

lacking entrainment with each other, have limited coher-

ence to the LFP. Given this rationale, we explored the

frequency of spike modulation, spike-LFP coherence

analysis, and a phase-locking (“depth of modulation”)

analysis as a function of velocity.

Oscillatory modulation of CA1 neuron firing

Prior analyses of hippocampal neuron spike times have
described modulation by slow � (Colgin et al., 2009).

continued

evident between frequencies that lose power with running speed (e.g., �6 Hz) and those that increase in power with running speed

(e.g., 9 Hz). E, In the instance that slow � may be overpowered by a volume conducted oscillation, the PSD was also conducted on

the same CA1 pyramidal channel after calculating the current source density using the adjacent channels. The redistribution of power

becomes more evident in this depiction with the inter-harmonic intervals losing power as the � and harmonics increase in power. F,

The PSD correlation of the current source density trace from the CA1 layer. Note little interaction between 32-50 Hz and �, suggesting

that this band range does not demonstrably change as a function of velocity. G, H, Average bicoherence of the CA1 LFP at low and

high velocities, respectively. Note that while there is a three-wave interaction among the harmonics of � (Sheremet et al., 2016), there

is a notable dearth of interaction in the slow � range.
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When examining the preferred phase of the firing of neu-
rons to the hippocampal � rhythm, however, the spike
depth of modulation plots are not pure sinusoids. Rather,
there is a definite skew and asymmetry (Skaggs et al.,
1996; Quilichini et al., 2010). Furthermore, spectral de-
composition of spike trains has revealed the presence of
a �16-Hz harmonic modulation (Sheremet et al., 2016). In
light of the skewness, the concern has been raised that
modulation in the 20- to 30-Hz band may not actually be
related to slow � but rather coupled to the asymmetry of
� (Schomburg et al., 2014). Therefore, we compared the
phase coupling of neurons to slow � versus higher-order
� harmonics in the LFP in relation to the animal’s running
speed.

First, we replicated the analysis of Schomburg et al.
(2014), determining the preferred frequency of modulation
as well as the proportion of neurons modulated across
frequencies (Fig. 7). The only major difference between
our approach and that of Schomburg et al. (2014) is that
our phase assignment was not conducted via wavelet but
through phase assignment relative to a narrow band filter.
When considering all frequencies between 4 and 128 Hz,
it is evident that most cells exhibit their strongest modu-
lation relative to the 7- to 9-Hz � rhythm (Fig. 7A). Over
90% of interneurons preferred � at high velocities. Includ-
ing pyramidal cells, it can be safely stated that nearly
every hippocampal neuron is first and foremost modu-
lated by �. As � preference eclipses all other frequencies,
the explicit consequence is that -during behavior- any
other frequency modulation is secondary. Therefore, to
explore potential “secondary preferred frequencies,” the
same analysis was performed for oscillations 
20 Hz (Fig.
7B). A small clustering is evident in the 21- to 27-Hz range
(although the proportion is much lower than Fig. 7A).
Parsimoniously this can be explained by harmonic effects:
(1) most neurons are strongly modulated by � (Fig. 7A), (2)

depth of modulation plots of neurons relative to � are

asymmetric (Skaggs et al., 1996; Quilichini et al., 2010),

and (3) harmonic modulation can carry this effect (Schom-

burg et al., 2014). This approach, however, is “either/or,”

not explicitly considering the proportion of the population

that is modulated by all frequencies. When asking the

question from this angle (Fig. 7C), as anticipated, the

maximum peak was observed at � followed by the 14- to

18-Hz harmonic and the 21- to 27-Hz harmonic (interneu-

ron; high velocity). While these values are indicative of

significant phase coupling, the average depth of modula-

tion describes how tightly coupled the neuron spikes are

to a specific phase (Skaggs et al., 1996; Fig. 7D). In the

pyramidal cells, low firing rates at low velocity skew the

depth of modulation to an artificially high level (that is,

bins with a single spike at the trough will cause artificial

inflation). With that consideration, the largest depth of

modulation resides at � at both low and high velocity for

pyramidal neurons. The interneurons exhibit a similar pat-

tern with the additional peak at the first harmonic of � at

high velocity. These values steadily decrease from � to-

ward higher frequencies, approaching an asymptotic floor

near 32–64 Hz (slow �).

Finally, as the depth of modulation analysis provides

the preferred phase of firing as well as the strength of the

modulation, we calculated the average preferred vector of

firing for neurons that were significant (as determined by a

Rayleigh test p � 0.01) as a function of velocity (Fig. 7E).

As anticipated from Figure 7D, the magnitude of modula-

tion was larger at low velocities, although with little con-

sistency in adjacent frequencies. As running speed

increases, adjacent frequencies tend to have similar

phase preferences. Note well that almost every neuron

was modulated by �, making any other frequency modu-

lation secondary. With respect to other frequencies, as

Figure 6. Spectral changes with velocity. A, The PSD across low to high velocities for frequency ranges up to 500 Hz. The power of

� and its associated harmonics increases with faster running velocities. This increase in � and harmonic power is associated with a

decrease in the power in the inter-�/harmonic frequency bands at higher running speeds. B, The PSD across the 25- to 240-Hz

frequency ranges. At higher velocities, power in the 25–50 range decreases. Compare to Ahmed and Mehta (2012; Fig. 2).
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Figure 7. Neuronal depth of modulation can be found for all frequency bands but with little evidence for a slow � band. A, The

maximum preferred phase of neuron modulation was determined for all cells should the neuron have a significant phase locking (as

determined by a Rayleigh test p � 0.01). When conducting this analysis across a broad band (4–128 Hz) and as a function of velocity,

it becomes evident that neurons are primarily modulated by �. B, However, � modulation analyses are often conducted without

considering the contribution of �. Therefore, we examined the maximum preferred phase 
20 Hz. The major mass of spikes falls near

the third harmonic of �, consistent with the heavy � modulation seen in panel A as well as hypothesized by Schomburg et al. (2014).

Note the difference in y-axes between panels A, B. C, Similar to Schomburg et al. (2014), the proportion of cells that exhibited

significant phase locking (as determined by a Rayleigh test p � 0.01) was plotted as a function of frequency. However, the primary

difference between Schomburg et al. (2014), and the present study was that the aforementioned study implemented wavelet to

determine phase, whereas the current study used a narrow band filter (see Materials and Methods). Note that the majority of cells were

modulated by the 7- to 9-Hz � rhythm. Should they exhibit a skewed distribution in their phase preference (Skaggs et al., 1996), then

it is conceivable that they would also exhibit significant phase locking to harmonics. D, For each neuron that exhibited significant

phase locking to a specific band, the depth of modulation was calculated. In this instance, the sparse firing of pyramidal neurons

favors greater depths of modulation at lower velocities (as depth of modulation is the maximum bin value minus the minimum bin value

normalized to the maximum; see Materials and Methods). At both low and high velocities, for pyramidal cells and interneurons, the

maximum depth of modulation was to the �. Although there was a large proportion of interneurons modulated by the 21- to 27-Hz

harmonic of � (C, bottom), the depth of modulation values in this range approach a minimum, hitting the lowest values in the slow �
range. E, For the significantly modulated neurons, a vector length (depth of modulation) and angle (preferred phase) was determined

to allow the calculation of the average modulation vector as a function of frequency. The color and angle depict the phase (see key)

while the magnitude of the line is the depth of modulation. At low velocities, there is a high degree of variance across adjacent

frequencies which becomes smaller at higher velocities. For of all these plots, while it may be tempting to derive a conclusion for

frequencies 
16 Hz, we emphasize caution. After the � range, spike-field coherence values fall well below 0.05 (weak coherence,

despite being significant, is closer to an incoherent, random phase assignment than coherence; Fig. 8). Therefore, although it is

possible to find significant coupling across the range of bands between 4 and 128 Hz, there is no rationale to suggest that a slow �
modulation exists in the spiking activity of the units.

Theory/New Concepts 15 of 30

July/August 2019, 6(4) ENEURO.0142-19.2019 eNeuro.org



only the neurons that passed a Rayleigh test went into

this analysis, it demonstrates that depth of modulation

within a singular frequency band is not sufficient evi-

dence in support of a fundamental rhythm. One can

always find a significant proportion of neurons modu-

lated to a narrow band. Concerning slow �, modulation

to 25–50 Hz may be a consequence of aliasing and/or

coupling to � harmonics (Schomburg et al., 2014;

Sheremet et al., 2016).

This analysis, however, may not be comprehensive

enough to dismiss slow � modulation. Therefore, we

considered the alternative approaches of spike PSD

and spike-LFP coherence. First, the point-process

spike trains (available on the CRCNS.org website; see

Materials and Methods) were sorted into either a low or

high-velocity bin, based on the running speed of the rat,

and converted into a binary time series. These spike

trains were spectrally decomposed to examine the

burst frequency modulation (Leung and Buzsáki, 1983;

Sheremet et al., 2016). “Power” in this analysis is re-

lated to the neurons firing rate which, in the hippocam-

pus follows a logarithmic distribution across the

population (Mizuseki and Buzsáki, 2013). Therefore, to

ensure that a high firing rate neuron does not skew the

overall results, each neuron was normalized by overall

power (resulting in power being presented in arbitrary

units; Fig. 8). As Bieri et al. (2014) found the most slow

� epochs in the center of a linear track, coinciding with

locations of the highest running speed, it may be an-

ticipated that there would be a single peak in the slow

� range of the spike spectrograms at high velocity.

Investigations of the spectrograms, however, do not

support this idea. Instead, the small observable peaks

tend to coincide with � and the first harmonic. There is

no evidence of a slow � modulation in the neuron spike

trains for either interneurons or pyramidal cells. Nota-

bly, interneuron firing appeared to be modulated within

the 50- to 90-Hz range (Fig. 8A,B). Finally, we consid-

ered that, despite the absence of a depth of modulation

and the absence of spikes bursting at slow � frequency,

there might be spike-LFP coherence indicative of an

oscillation (Pesaran et al., 2018). Therefore, we calcu-

lated spike-LFP coherence by neuron type and as a

function of velocity (Fig. 8C,D).

Coupling was only evident in the � and harmonic bands.

However, as the Spike-LFP coherence falls below 0.05 at

frequencies 
18 Hz, we emphasize caution as these

values lean toward “incoherence” (see Buzsáki and

Schomburg, 2015).

Again, there was little in the way that would suggest

that slow � exists. These results beg the question that,

if slow � is absent in the Fourier decomposition, what is

responsible for the description becoming dogma? As

the initial description of slow � was predicated on

wavelet decomposition, it is tenable that the different

methods yield different decompositions with the prop-

osition that one is not maintaining fidelity with the

underlying biology.

Comparison of Fourier, wavelet decomposition, and

EEMD

Fourier analysis operates by decomposing a time series
into a sum of sine wave oscillations each with a fixed
amplitude. There is a fixed decimation in time and fre-
quency resolution in this approach (Fig. 2). A wavelet, on
the other hand, has a trade-off between time and fre-
quency such that low frequencies will have a low tempo-
ral, high-frequency precision. As the mother wavelet is
compressed for higher temporal resolution, it comes at
the sacrifice of frequency resolution (Fig. 4). A non-
sinusoidal oscillation such as �, a skewed and asymmetric
oscillation at �8 Hz, would be represented in the Fourier
domain as an 8-Hz oscillation plus the phase locked,
integer related harmonics to the fundamental. That is, for
the superposition of sine waves to be recombined in a
way that reconstructs a non-sinusoidal time series re-
quires the use of harmonics. A wavelet, while also capable
of decomposing the same time series, will treat non-
sinusoidal oscillations differently. Consider the initial re-
port of slow � in which the mother Morlet wavelet was set
to have a ratio of 7 between the central frequency of
wavelet and SD of the applied Gaussian window (Colgin
et al., 2009). This setting, based on the Heisenberg time-
frequency resolution boxes, is theoretically capable of
resolving � with high-frequency resolution but low tempo-
ral precision. For the superposition of wavelets to recreate
a nonlinear time series (such as a sawtooth wave), the
same method is subject to assigning a high amount of
power across a broad range of frequencies in a transient
manner. This places the wavelet decomposition method
at risk of distorting the frequency-power representation of
a non-sinusoidal time series. The 24 Hz and other high-
order harmonics of � would erroneously be decimated
into Heisenberg boxes with lower frequency resolution
and higher temporal resolution. The consequence being
that the 24 Hz, 32 Hz, and higher harmonics of � could be
depicted as a broadband 25- to 50-Hz oscillation. In
addition to wavelet analysis, EEMD has been put forward
as a method theoretically capable of breaking the LFP into
� and supra-� bands (Lopes-Dos-Santos et al., 2018).
Specifically, Lopes-Dos-Santos and colleagues claim
that, following EEMD, the remaining supra-� signal is
“harmonic free.”

Validity describes the ability of a test or procedure to
measure what it claims to measure. As each spectral
decomposition method asserts to be capable of decom-
posing a time series into a frequency-power representa-
tion, a simple test is to evaluate their outcomes against a
synthetic trace with known frequencies and powers.
Therefore, an initial benchmark comparison of Fourier
decomposition versus wavelet decomposition and EEMD
was conducted using a synthetic time series of pink noise
embedded with an oscillation at 8 Hz and harmonics at
16, 24, and 32 Hz (Fig. 9A–D). The first synthetic trace was
generated by the superposition of harmonics to create a
saw-tooth wave while harmonics in the second trace
summed to make a completely symmetric, cnoidal wave
(demonstrating that simple asymmetry calculations are
insufficient to account for harmonics). Notably, the power
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Figure 8. PSD of neuron spike trains and spike-LFP coherence as a function of velocity. A, Individual power spectra for spike trains

at low velocity (5–15 cm/s) and high running speed (35� cm/s; color axes are to the same scale between plot) for interneurons and

pyramidal cells. A spike threshold 
0.25 Hz was applied to each running bin to ensure that only neurons with a considerable number

of spikes were analyzed. The rows are sorted by the maximum frequency between 4 and 12 Hz. B, The average PSDs at low (blue)

and high velocities (red); error bars are the SEM (different axes are used to allow the spectral shape to be compared). Note that there

is an absence of a spike-frequency peak in the slow � range although both the interneurons and pyramidal cells exhibit harmonic

modulation. Moreover, at high velocity, there is a potential peak in the interneurons that coincides with the traditional � range of

40–100 Hz (Bragin et al., 1995). Note that the axes are in arbitrary units as power in this circumstance is determined by the number

of spikes and thus, each trace was normalized by total power. C, Individual spike-LFP coherence plots for interneurons and pyramidal

cells at different running speeds. Once again, the color axis is equal across plots. D, Average spike-LFP coherence by cell type as

a function of velocity. While there is a notable difference in overall coherence as a function of velocity, the only peak are at �, the 14-

to 18-Hz harmonic and the 21- to 27-Hz harmonic (prominent at high velocity in the interneurons). Broad modulation in the 25- to

50-Hz band (slow �) is absent. We emphasize strong caution in interpreting small coherence values (for a similar opinion, also see

Buzsáki and Schomburg, 2015). A coherence of 1 would indicate no variance in the phase difference across signals, while 0 would
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estimate of the Fourier decomposition closely matched
the theoretical distribution. However, as a consequence
of the multi-resolution analysis of wavelet decomposition,
the power estimate significantly expands the frequency
representation of the harmonics to cover a wide band,
overlapping with reports of slow � (Colgin et al., 2009) as
well as � (15–30 Hz; Rangel et al., 2015, 2016). Although
harmonics were implemented in the construction of these
time series, EEMD expressed the same peaks as wavelet
demonstrating a failure to remove these components. The
three decomposition methods were then applied to the
analysis of hippocampal LFP from the CA1 pyramidal cell
layer (Fig. 9E,F). Again, both the wavelet decomposition
and EEMD give the impression of convolved harmonics.
This is despite the claim that EEMD is free of harmonic
effects (Lopes-Dos-Santos et al., 2018). To explore the

degree to which EEMD accounts for the harmonics, both
the synthetic trace from Figure 9A and the LFP data from
rat 782 (Fig. 9E) were processed with EEMD, and the
resulting trace run through bicoherence, capable of de-
tecting harmonics (Aru et al., 2015). The results of Figure
10 reveal multiple interactions at integers of �. As phase-
locked integer oscillations define harmonics, this analysis
demonstrates the incapability of EEMD for generating a
harmonic free LFP challenging the validity of the initial
claim. Furthermore, the implementation of wavelet with a
ratio of 7 between the central frequency of wavelet and
SD of the applied Gaussian window (Colgin et al., 2009)
“convolves” over the higher-order harmonics (plausibly
accounting for why studies using wavelet decomposition
rarely identify a harmonic above 16 Hz). Importantly, this
convolution loses fidelity to the underlying oscillation gen-

continued

be indicative of a random phase assignment. As the majority of coherence values related to frequencies greater than the 16-Hz �
harmonic fall below 0.05, concluding that units are capable of organizing, or being organized into higher frequencies based on this

data are dangerous.

Figure 9. Example of Fourier, wavelet and EEMD analysis on synthetic time series and hippocampal LFP. A, A synthetic time series

emulating an LFP recording dominated by an asymmetric � signal. The signal is constructed from an asymmetric sine function (dashed

line; an 8-Hz fundamental oscillation with phase-coupled harmonics), and pink (f�1.5) noise (solid line). The inclusion of pink noise

provides a more realistic spectrum for comparison to the raw LFP. B, Estimates of PSD using different methods. C, D, A synthetic

time series and spectral decomposition as in A, B but with a different alignment, generating a cnoidal wave. E, F, Actual LFP from

the CA1 pyramidal layer and the respective spectral decomposition. As anticipated from the spectral leakage inherent in wavelet

decomposition (Fig. 4), neither the wavelet nor EEMD approaches are capable of accounting for higher order harmonics larger than

16 Hz. Rather, the method artificially distributes power over a wide band giving the erroneous impression of a slow � when there is

none in the underlying signal. Once again, we remind the reader that, for wavelet and EEMD, the assignment of variance to any

specific frequency is ultimately arbitrary and meaningless.
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erating an invalid power-frequency plot, that is, does not
match the true relationship between frequency and power
in the synthetic trace.

With this concern, we proceeded to revisit the wavelet
scalogram to investigate the interaction between � fre-
quency and the � oscillation (Colgin et al., 2009) as well as
determine whether a more reasonable decomposition
could be achieved with wavelet. This was first conducted
for synthetically generated data (a sawtooth wave and an
oscillation with integer locked harmonics) as well as data
collected from CA1 pyramidal cell layer (Fig. 11). Often
understated is that the selection of Morlet wavelet param-
eters will dramatically alter the decomposition. The
mother Morlet wavelet is characterized as the frequency
of a carrier oscillation and the deviation of the Gaussian

envelope. This parameter effectively alters the trade-off
between the time-frequency resolution. Therefore, we
also investigated the ability of each Morlet ratio to resolve
the underlying frequencies in relation to time. For the
scalogram decomposition of the sawtooth wave, the low
Morlet wavelet ratios (4 and 7) capture the instantaneous
change in amplitude by distributing power across a wide
frequency band. The higher Morlet wavelet ratio (30) ef-
fectively does the reverse, capturing the nonlinear oscil-
lation as a series of harmonic oscillations that are well
resolved in frequency. While this is a simulation to an
extreme derivative, the time-frequency representation of
the synthetic harmonic series (8, 16, 24, 32, and 40 Hz),
generating a mild sawtooth wave is nearly identical to the
initial report of slow � in the CA1 pyramidal cell layer for

Figure 10. Post-EEMD bicoherence plots demonstrating failure to account for harmonics. In a prior study, it was suggested that

“EEMD also provides supra-� components that are virtually free from harmonic artifacts (Wu and Huang, 2009). . .” (Lopes-Dos-

Santos et al., 2018, their supplemental p. e3). However, the parent study of Wu and Huang provide no evidence testing the validity

of this claim. Therefore, using a synthetic trace as well as LFP data, the post-EEMD processed time series were analyzed with

bicoherence. Note that, in both instances, the contour lines outline four distinct regions of triad phase correlations ([8, 8, 16 Hz], [16,

8, 24 Hz], [24, 8, 32 Hz], and [16, 16, 32 Hz]), demonstrative of strong harmonics.
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the low ratio wavelets (Colgin et al., 2009). Note that in this
simulated trace, the highest frequency is 40 Hz, whereas
the low ratio wavelet scalograms skew the power toward

60 Hz. The higher ratio wavelet, however, resolved each of
these individual harmonics at the cost of assigning the
power to a specific time. Nevertheless, as the synthetic

Figure 11. Scalograms for synthetic time series and LFP recordings in the CA1 pyramidal cell layer using different wavelet parameters.

The averaged time series for one � period (8 Hz) and wavelet scalograms were obtained for three time series: (1) synthetic sawtooth

waves (left to right, the 1st column); (2) time series with fundamental 8-Hz oscillation and its harmonics (16, 24, 32, and 40 Hz; the

2nd column); (3) LFP recorded in CA1 pyramidal cell layer (the 3rd column). Synthetic time series have a total length of 10 s and were

added with a pink background noise. LFP recordings were selected during high speed running with a total length of 30 s. The

averaged time series were obtained by averaging over � periods (top row). The wavelet scalograms for averaged time series were

computed with three different wavelet transforms (the three middle rows). The Morlet wavelet family is characterized by the constant

ratio between the central frequency of wavelet 2 SD of the applied Gaussian window. Therefore, the results for three different Morlet

wavelets are presented. Averaged time series were filtered within � band (7.5–8.5 Hz) which represent the � phase (bottom row). A

sawtooth wave is decimated into an infinite series of harmonics in Fourier decomposition (https://en.wikipedia.org/wiki/Sawtooth-

_wave). The lowest ratio of 4 optimizes for temporal resolution over frequency resolution, whereas the highest ratio of 30 has an

increased frequency resolution at the expense of temporal resolution with results that are more in line with Fourier analysis. This is

depicted in the sawtooth scalograms as a temporally localized, wide frequency band event in the Morlet ratio of 4 but as frequency

specific, time diffuse bands in the Morlet ratio of 30 condition. Note that the latter condition resolves harmonics. This effect is also

evident when combining an 8-Hz oscillation with its first few harmonics (16, 24, 32, and 40 Hz) through additive synthesis in

developing a sawtooth wave. The Morlet ratio of 4 convolves over the higher-order harmonics, giving the impression of a 25- to 50-Hz

cross-frequency interaction, whereas the wider ratio of 30 resolves each individual component. These effects carry over to LFP data

collected from the CA1 pyramidal layer. The middle ratio of 7 was selected to match the methods of Colgin et al. (2009). Note that

the parameters for the ratio of 7 are more closely aligned with the ratio of 4 in that the harmonics are heavily convolved across a wide

frequency band, giving the impression of a wideband oscillation when none exists.
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harmonics are convolved by the lower ratio wavelets (7
being the one implemented in the initial description of
slow �) to give the impression of a broad slow � band, LFP
collected from the CA1 pyramidal layer is subject to an
identical distortion (Fig. 11). When comparing Figure 11 to
the initial report of slow � (Colgin et al., 2009, their Fig. 1E)
there are dramatic differences in power across frequen-
cies. Although the power spectrum has a relationship
such that low frequencies have high power and high
frequencies have low power (often described as the A �

f-� slope), the scalograms in Colgin et al. (2009) suggests
that the power in the 
100-Hz band is significantly larger
than the 50-Hz band. This is due to the application of a
pre-whitening filter resulting in the caveat that “. . .power

magnitudes depicted in these illustrations should be ig-
nored since they do not accurately reflect the actual size
of waveforms in the original local field potential record-
ings” (Colgin et al., 2009, their supplementary information,
p. 38). While whitening was implemented to visualize
power at higher frequencies, the initial depiction justifying
the division of slow � was acknowledged to be an inap-
propriate representation of the raw data. This issue is
compounded when considering the validity of the wavelet
parameters selected for decomposition.

As the results of wavelet and EEMD are often portrayed
in terms of a time-power-frequency representation, we
furthered the comparison using two different time scales
of analysis (Fig. 12). Both in the long (3-min Fourier trans-

Figure 12. Spectrograms and power spectra obtained from recordings while rats were running on a maze. Spectrogram and power

spectrum were computed for a long run epoch (column a, 5 min) and a short epoch (column b, 6 s). For each epoch, the spectrograms

were estimated with three methods: (1) Fourier transform (1st row) with a window length of 1 s and window increment of 0.1 s; (2)

wavelet transform (2nd row) with Morlet wavelet; 3) wavelet spectrogram of supra-� signal (3rd row). The supra-� signal was obtained

from EEMD with noise level equaling to 0.5 total variance and ensemble number equaling to 200. The supra-� was defined as the sum

of decomposed modes whose central frequencies were larger than 12 Hz. The wavelet spectrogram of supra-� was computed with

the method described above. Power spectra were computed by averaging the spectrogram over time (bottom row). For both epochs,

the Fourier transform identifies � and high order harmonics while wavelet analysis tends to resolve a � rhythm and a wide-band

frequency component (16–30 Hz). By considering this band as independent from � in this manner gives the unintentional represen-

tation that there are “bursts” of �. Stated differently, the 24-Hz oscillation is inherently dependent on the nonlinearity of � (“sawtooth”

shape of �) and thus is incorrectly decomposed by the wavelet.
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form) and short (6 s Fourier transform), there is the definite
presence of a third-order � harmonic (�24–27 Hz) and a
trace of a fourth harmonic (�32–36 Hz; Fig. 12, top pan-
els). However, as anticipated from the Heisenberg boxes
(Fig. 4), the wavelet decomposition as implemented in
previous studies results in a convolution and apparent
intermittency of the �24- to 27-Hz frequency band that is
particularly evident at the 6-s time scale. Because the 24-
to 27-Hz component is a direct consequence of � being
skewed and asymmetric (for example, more “saw tooth”
shape than a sinusoid; Buzsáki et al., 1983, 1985; Terra-
zas et al., 2005; Sheremet et al., 2016), this frequency is
inherently coupled to the fundamental 8-Hz rhythm (that
is, as stationary as �; not a transient event). The wavelet
decomposition as implemented in prior studies, however,
artificially detaches the third harmonic from the funda-
mental by using a different decimation of time and fre-
quency (Fig. 2). This convolution and intermittency offers
a strong resemblance to experiments that report different
� cycles exhibiting unique � signatures (Colgin et al.,
2009; Bieri et al., 2014). To an extreme, using EEMD, it
has been argued that � can mix and match different �
frequencies (Bagur and Benchenane, 2018) in support of
different memory processes (Lopes-Dos-Santos et al.,
2018). Therefore, we also replicated the methods of
Lopes-Dos-Santos et al. (2018). Notably, comparing both
the long and short temporal epochs of wavelet decompo-
sition of the “supra-�” reveals the distorted remnants of
the second harmonic of � as well as the third harmonic
(Fig. 11). Finally, the summary power spectra for each
method is presented (Fig. 11, bottom panels) demonstrat-
ing the inability of either wavelet, or EEMD followed by
wavelet to resolve the � harmonics. This perspective gives
rise to another issue, that is, although the harmonics of �
effectively mirror the stationarity of �, the varying time-
frequency boxes of wavelet give the invalid impression of
transience.

Slow � and the issue of transience

The slow � (25–50 Hz) and “fast �” (60–100/140 Hz)
oscillations have often been discussed as being non-
stationary and transient (Bieri et al., 2014; Zheng et al.,
2015; Lopes-Dos-Santos et al., 2018). Therefore, it is
plausible that slow � is so transient as to be averaged out
by Fourier decomposition (although leaving one to won-
der why frequencies between 50–120 Hz and ripples are
reliably resolved by Fourier decomposition; see Buzsáki
et al., 2003 and Johnson and Redish, 2007). While wavelet
is capable of detecting the presence of a transient high-
frequency event, it is liable to distort the frequency of the
same event (as demonstrated in the analyses on the
synthetic traces above); power and frequency range
quantification will have diminished meaning. To this point,
we have demonstrated that wavelet as traditionally imple-
mented is subject to this deformation, but we have not
considered the possibility that transient 25- to 50-Hz high
power bursts exist in the LFP.

Therefore, to cross-validate the detection of slow �
events with quantification, we implemented a simple filter
method to identify transient events. First, the 25- to 55-Hz

filtered trace was squared (rectified; Fig. 13). Next, the
mean and SD of the envelope of the rectified trace was
calculated. As instances in which power (amplitude
squared) exceed 2 SDs above the mean has been re-
ported to optimize between detecting slow � events and
rejecting noise (Zheng et al., 2015), we mirrored this ap-
proach. Thus, although the statistical characteristics of
the LFP on the whole change across long time scales, by
triggering to a known event, the LFP can be treated as
locally stationary, which in turn allows the spectra to be
realized (Pesaran et al., 2018). Importantly, this method
has also proved sensitive enough to detect the transient
low amplitude, high-frequency ripples (Maurer et al.,
2006; Skaggs et al., 2007; n.b., the amplitude of ripples
are lower than lower frequency events).

Analyzing 2-s epochs centered on high power 25- to
55-Hz events using the multi-taper and previous imple-
mented wavelet methods resulted in two contradictory
representations. The Fourier based multi-taper decompo-
sition peaks at a 24 Hz and potentially a 32-Hz harmonic
of � which are absent in the wavelet decomposition. In
their place is a single, broad band 25- to 55-Hz bump
indicative that these events would most likely overlap with
the same epochs identified using the method of Bieri et al.
(2014). Note that neither of these two decompositions
offer a “mixed representation” where both harmonics and
slow � are present. Rather, the outcome is dichotomous
and dependent on the decomposition. to determine which
representation is true to the biology, the high-power ep-
ochs were then processed through bicoherence analysis
to test for harmonics (Aru et al., 2015). It is worth empha-
sizing that the wavelet power spectra give the impression
that these are indeed high power, 25- to 50-Hz events. In
the bicoherence plot, however, there is a peak interaction
between 17 and 17 Hz as well as between 8.5 and 25.5 Hz
indicative of � harmonics as high as 34 Hz. Therefore,
while the method of detecting slow � is “corroborated” by
the wavelet decomposition, the high-power 25- to 55-Hz
events are in fact a biological consequence of higher
order � harmonics.

To demonstrate that this method is indeed capable of
resolving transient events, the same approach was ap-
plied to a 120- to 250-Hz filtered trace. Despite the inter-
mittent nature of ripples, both wavelet and multi-taper
revealed a peak in the ripple band although the wider
Heisenberg uncertainty boxes of wavelet distributes the
power of ripples over a wider range. Furthermore, the
bicoherence analysis reveals interactions of the ripple
frequency with a low frequency event. Therefore, in our
data, it becomes evident that the spectral decomposition
methods selected determine whether slow � or � harmon-
ics are observed.

Discussion
Accuracy describes the proximity of a measurement to

the quantity’s true value, whereas precision is the degree
to which the method yields a consistent result under
unchanged circumstances (ISO 5725-1, 1994; VIM, 2004).
Evidence in support of slow � has come in the form of the
ability of wavelet to reliably achieve the same answer. The
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Figure 13. Power based detection of ripples and slow � and the corresponding Fourier and Wavelet decompositions. A, Raw and

filtered (25–50 Hz) trace of pyramidal layer LFP. B, High-amplitude 25- to 55-Hz events were detected by calculating the mean and

SDs of the envelope of the squared filtered trace. C, For each instance in which the slow � power exceeded 2 SDs above the mean

power, a 2-s window was extracted and processed using either Thomson’s multi-taper method or wavelet decomposition using the

same approach as Colgin et al. (2009). Interestingly, the wavelet decomposition reveals a slow � bump (suggesting that wavelet would

concur that these are slow � epochs), whereas the Fourier decomposition shows multiple bumps indicative of harmonics. D,

Frequency range of the individual wavelets implemented in Colgin et al. (2009). As the frequency increases so does the range of an

individual wavelet which is responsible for the redistribution of power across a broad band. E, Bicoherence decomposition of the

epochs in which the 25- to 55-Hz power exceeded 2 SDs above the mean. The significant regions at 18 and 18 Hz and 9 and 27 Hz

indicate an interaction with the 4th, 36-Hz harmonic (Sheremet et al., 2016). Therefore, this demonstrates based on the parameters

used in prior publications, the wavelet approach is convolving over harmonics of � to erroneously give the impression of a slow �
bump. F, Raw and filtered (120–250 Hz) trace of pyramidal layer LFP. G, Ripple events were detected when the envelope of the

rectified trace exceeded 2 SDs above the mean. H, Analyzing each detected instance of a ripple in a 2-s window reveals a significant

power in the ripple frequency demonstrating that it is possible to decompose transient events such as high-frequency ripples. I, Same
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present manuscript, however, provides evidence that
EEMD and wavelet-based methods, using common pa-
rameters, inaccurately represents the LFP. Using data
generously provided by the Buzsáki laboratory, we ob-
served cross-frequency coupling between �, � harmonics,
and a unitary 50- to 120-Hz � band (also see Sheremet
et al., 2019a). In the power spectra from the CA1 pyrami-
dal layer LFP, there was no detectable peak in the slow �
range. These results are largely in agreement with prior
publications implementing Fourier decomposition de-
scribing �, harmonics of � and a broad, high-frequency
unitary � band in CA1 (Buzsáki et al., 2003) and CA3
regions (Johnson and Redish, 2007). The absence of slow
� in CA3 is notable as this region is hypothesized to be the
communication conduit of slow � to CA1 (Colgin et al.,
2009). Fourier does not yield the same values as wavelet.

However, the absence of a peak is not indicative that a
fundamental rhythm is absent. A coherence may exist
between the LFP and spiking activity of single units (Pesa-
ran et al., 2018). Using data available on the CRCNS.org
repository provided by the Buzsáki laboratory, we ana-
lyzed the spike frequency of neurons, the spike-LFP co-
herence, and the depth-of-modulation characteristics.
When the firing frequency of spikes were analyzed, there
was modulation of both principal cell, and interneuron
firing rate by � and its first-harmonic at low and high
running speeds, but no modulation at the 25- to 50-Hz
band was observed. These results were buttressed by the
spike-LFP coherence analysis, again failing to resolve a
slow � interaction. Finally, we analyzed the spike modu-
lation by different oscillatory frequencies within the hip-
pocampus. Notably, there was modulation across all
frequencies, although � modulation eclipsed all others. As
modulation is the default, finding significant modulation
with a specific frequency band does not qualify as sup-
port for a fundamental rhythm.

In our past studies (Sheremet et al., 2016, 2019a) as
well as the present manuscript, we have thrice failed to
replicate the initial observation of a 25- to 50-Hz oscilla-
tion in the CA1 pyramidal layer with either bicoherence
analysis or Fourier decomposition (Colgin et al., 2009). If
neither spike modulation nor Fourier decomposition pro-
vides support for the slow � hypothesis, then what is
responsible for the fervent dogma for the phenomenon?
Here, we demonstrate that wavelet ratio of 7 reliably
decimates a time series into an inaccurate representation.

Fourier decomposition operates by decomposing a
time series into sine waves, allowing the construction of a
power spectrum by which each frequency is assigned a
unitary amplitude value. There is a fixed ratio between
time and frequency where increasing frequency resolution
comes at the cost of decreasing temporal resolution and
vice versa. Wavelet, on the other hand, uses a varying
time-frequency decimation in which there is a progressive
increase in temporal resolution as frequency increases.

The distortion related to the non-uniform time-frequency
decimation was noted early in the application of wavelet
to neuroscience data. Tallon-Baudry et al. (1997) investi-
gated the 30- to 70-Hz cortical � rhythm, using the same
wavelet ratio of Colgin et al. (2009) of 7, describing the
trade-off: “At 20 Hz, this leads to a wavelet duration . . . of
111.4 msec and to a spectral bandwidth . . . of 5.8 Hz, and
at 100 Hz to a duration of 22.2 msec and a bandwidth of
28.6 Hz” (Tallon-Baudry et al., 1997, p. 724). The spectral
support for this wavelet generates an overlap between the
21- to 27- and the 28- to 36-Hz range such that the power
for one � harmonic will bleed into the other (Fig. 4).
Assuming 125 ms for a single � cycle, the precision of
temporal locking measured in this manner will bleed
power across �78–106 ms for 25–50 Hz, or 
180°. De-
spite these shortcomings, wavelet was favored for its
ability to identify the temporal onset of a transient event
(Tiitinen et al., 1993; Sinkkonen et al., 1995). The hip-
pocampal � oscillation could theoretically be considered a
transient event necessitating the use of wavelets. A prob-
lem arises, however, if the same method used to detect
the events is also used to quantify the frequency should it
have a trade-off in one dimension (high temporal preci-
sion) versus another (low precision in frequency). The
non-uniform time-frequency representation distributes
the power over a wide frequency band depending on the
wavelet parameters used. As demonstrated in Figure 11,
the methods using the parameters in the initial description
of slow � are incapable of resolving harmonics in a syn-
thetic trace. Rather, power is distributed across a wide
band, giving the impression of a non-existent 25- to 50-Hz
oscillation. Note that it is possible to construct an appro-
priate wavelet that can resolve the harmonics (Fig. 11).
More recently, the application of EEMD to the LFP in the
CA1 pyramidal layer suggests that there are two � bands
�50 Hz in frequency (Lopes-Dos-Santos et al., 2018).
Although it was argued that EEMD could remove harmon-
ics, no verification was presented. When tested against
synthetic traces and the LFP, EEMD failed to remove the
harmonics (Fig. 10). As the EEMD results were then
passed to an aggressive wavelet convolution (Fig. 3) in
Lopes-Dos-Santos et al. (2018), the power in the � har-
monic range was distributed across 25–50 Hz, giving the
erroneous impression of low-frequency � bands. These
issues extended into the time-frequency spectrograms in
which a fourth harmonic was detectable by Fourier, but
not resolved with wavelet or EEMD (Fig. 12). Finally, we
considered the possibility in which slow � is transient to
the point of being averaged out by Fourier decomposition.
Epochs were analyzed in which the power of either ripples
or slow � exceeded 2 SDs above the average power,
allowing potentially non-stationary events to be treated as
locally stationary (Pesaran et al., 2018). While Fourier
based methods revealed a peak in the ripple frequency in
the decomposition, only harmonics were present in the

continued

as D. J, Bicoherence decomposition of the detected ripple epochs reveals an interaction between low-frequency events at �2–10 Hz

and a 150- to 180-Hz band (see inset). This interaction is most likely a consequence of coupling between ripples and sharp wave

related deviations.
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epochs in which the 25- to 55-Hz band exceeded 2 SDs
above the mean power. The presence of harmonics was
verified with bicoherence analysis. Wavelet run on the
same epochs, however, convolved over the harmonics
and gave the impression of a slow � band.

Moving forward we can offer two suggestions. First, as
velocity is known to increase � harmonic power (Sheremet
et al., 2016, 2019a), future approaches into spectral de-
composition should be parameterized by rat-running
speed or, at the least, sorted by overall variance
(Sheremet et al., 2019b). Second, as analytical toolboxes
become more ubiquitous, caution has been emphasized
that the user needs to be aware of the caveats or other-
wise risk generating mistakes (Marder, 2015). In light of
this, we underscore the importance of testing the decom-
position method against a synthetic trace with harmonics
as well as Fourier decomposition (confirming the validity).

This manuscript questions the validity of analytical ap-
proaches used to describe a broadband 25- to 50-Hz
slow � oscillation in the CA1 pyramidal layer as a funda-
mental hippocampal oscillation. Here, we demonstrate
that different spectral decomposition techniques yield dif-
ferent representations of the data. First, while we can
replicate the initial findings of Colgin et al. (2009) and
Lopes-Dos-Santos et al. (2018), these decompositions
are at odds with the Fourier decomposition. Second,
wavelet analysis is unstable to the change of parameters
and in fact, drifts toward the Fourier representation when
the wavelet is optimized for frequency resolution. Third,
Fourier decomposition does not offer a realization that is
supportive of the slow � observation, but rather harmon-
ics of �. Finally, it needs to be re-emphasized that none of
these methods offered a mixed representation of slow �
superimposed onto the higher order harmonics of �. In the
instance that they coexist, Fourier spectrum would be
able to represent both rhythms. However, this is not the
case for the present manuscript. The dissociable out-
comes of slow � and � harmonics were directly related to
the decomposition method and parameters selected (as
evidenced in the analysis of the synthetic trace). As each
decomposition gives a different representation of the un-
derlying time series, they all cannot be high-fidelity rep-
resentations of the actual biology. Without having access
to the data of Colgin et al. (2009) and Lopes-Dos-Santos
et al. (2018), we are incapable of determining whether
their reports are consistent with Fourier decomposition.
Although the absence of slow � in the spectral decompo-
sition is complimented by the lack of neuron action po-
tential modulation in the 25- to 50-Hz band, it is necessary
to reiterate that the current study does not refute that the
brain is capable of exhibiting slow �. The detection of
such oscillatory events in the studies where wavelet or
EEMD analyses were implemented with improperly tuned
parameters, however, cannot be used as evidence of the
existence of a 25- to 50-Hz oscillation that is independent
from other frequency bands and meaningful for behavior.

To our knowledge, this is the first attempt to disambig-
uate slow � from � harmonics. If a slow-� rhythm exists,
this analysis points, in the least, to the need of disambig-
uating it from higher order � harmonics. After accounting

for the harmonics of � here, there was little reason to
support the slow � hypothesis. Previous work has sug-
gested that the decrease in power in the 25- to 50-Hz
range that occurs as a function of velocity is in support of
the multiple � hypothesis (Fig. 6). While this figure could
be interpreted as support for two dissociable � rhythms,
change in 25- to 50-Hz power with velocity is, in fact,
equivocal. There have been reports of decreasing slow �
power with velocity (Kemere et al., 2013), no change in
power with velocity (Zheng et al., 2015), or increase
in power with velocity (Chen et al., 2011). Bieri and col-
leagues did not run an explicit analysis, but their highest
proportion of slow � events occurred in the middle of the
track where the running speed was highest and fewest
detected events occurred at the ends of the track where
velocity was the lowest (Bieri et al., 2014, their supple-
mental data), suggesting a positive relationship between
power and velocity. As an alternative hypothesis, Ahmed
and Mehta (2012) argued that there is a single � frequency
which increases with running speed, resulting in a de-
crease in amplitude of low-frequencies and an increase at
higher frequencies. They interpreted their findings as be-
ing consistent with the work of Traub et al. (1996), who
observed an increase in � frequency as a function of
feedforward drive. To our knowledge, this is the first
description of the hippocampal power spectra undergo-
ing a redistribution of power across frequencies as a
function of afferent input.

In accord with this, we observe a spectral reorganiza-
tion in which some bands increase in power while others
decrease as running speed increases (Sheremet et al.,
2019a, b). The drops in power occur between 1 and 6, 10
and 14, 19 and 23, and 25 and 40 Hz (Figs. 5, 6). This type
of spectral reorganization has been described before and
has a long history. Norbert Wiener observed an increase
in the 10-Hz � power that was associated with dips (loss
of power) in the adjacent frequencies (Wiener, 1965,
1966). The insight was that the global oscillation in the
EEG arose from the collective action of the population. As
described by Steven Strogatz in his computational model
of the phenomenon is: “. . .that the oscillators interact by
pulling on each other’s frequencies - if an oscillator is
ahead of the group, the group tends to slow it down. If it
is going too slowly, the group tends to speed it up. In this
way the population of oscillators can achieve a collective
enhancement of precision.” (Strogatz, 1994, p. 122). Os-
cillations of the hippocampus do not reside within a single
cell or a pair of cells but across the entire population. As
the hippocampus becomes more excitable with running
speed, the oscillatory dynamics achieve a “collective en-
hancement of precision” (for a similar perspective, see
Churchland et al., 2010). Therefore, the power in 25- to
50-Hz frequency band at low running speed is a conse-
quence of incohesive oscillatory dynamics among the
neurons when not entrained (making the claim that slow �
is a fundamental rhythm dubious; oscillations tend to be
equated to entrainment, not incoherence). Once input is
large enough, the oscillators fall into an en masse align-
ment, enhancing the power in some frequency bands at
the expense of others.

Theory/New Concepts 25 of 30

July/August 2019, 6(4) ENEURO.0142-19.2019 eNeuro.org



Of course, the question arises: What empirical data
would be needed to support an assertion of slow �?. The
consideration of this question raises the core issue: what
is a rhythm? Traditionally, a “rhythm” has been identified
visually, as peaks above some background level. For
instance, in the construction of the PSD, � exhibits a clear
peak above the 1/f� slope. Identifying peaks at higher
frequencies are more difficult and a clear deviation from
1/f� for a broad 50- to 120-Hz � often only becomes
evident at high running speeds (Fig. 6) when neuron firing
rate is elevated, and there is more energy in the hip-
pocampal network (Sheremet et al., 2016, 2019a). The
implied assumption is that the peaks above noise (that is,
the rhythms) are the “meaningful” signal and the back-
ground is “meaningless,” that is, noise. While the signal/
noise dichotomy is ubiquitous in physics, it serves the
purpose of defining the scale of interest, by acknowledg-
ing that the scale and physics governing the signal are
fundamentally different from that of the noise. Fourier and
wavelet decompositions both yield representations in
which there is power across all frequencies (Fig. 9). Thus,
if decomposition reveals power across all frequencies, is
it meaningful to segregate any frequency band and as-
cribe it meaning without understanding how it is different
from any of the other frequencies in terms of the network
dynamics and biophysical mechanisms that underlie that
frequency? From an alternative perspective, consider that
a single dynamic process in the network is capable of
casting multiple frequencies (akin to an EKG). In this
sense, using a correlative approach to divvy up frequen-
cies relative to behavior is not likely to provide much in the
way of insight with respect to how the brain organizes
behavior (Buzsáki, 2005). In fact, the notion of a multi-
plexed “spectral fingerprint” (Canolty et al., 2010; Siegel
et al., 2012; Knight and Eichenbaum, 2013; Watrous et al.,
2013; Akam and Kullmann, 2014; McLelland and VanRul-
len, 2016) in which different frequency bands indepen-
dently support unique aspects of cognition should be
rigorously tested alongside the alternative model of a
spectral energy cascade (Sheremet et al., 2019b).

It should be noted here that, from the biological per-
spective, the concept of multiplexing is physiologically
untenable as it is inaccurate to assume that the LFP
recorded near the soma of CA1 pyramidal cells is a linear
mirror of the LFP from its afferent inputs. The relationship
between the LFP and the source is not this simple or
straightforward (Herreras, 2016). With respect to the
“routing hypothesis” (Colgin et al., 2009), it needs to be
understood that CA3 inputs terminate into the stratum
radiatum (more proximal to the soma) whereas entorhinal
synapses terminate on the distal dendrites in the
lacunosum-moleculare (Amaral and Witter, 1989; Witter
and Amaral, 2004), further from the CA1 stratum pyrami-
dale. However, dendrites operate as low pass filters
(Golding et al., 2005) in which synaptic input may be �
paced at the dendrites, but become a bolus of low-
frequency (�) input at the soma (Vaidya and Johnston,
2013). Rather than routing information, the Schaffer col-
lateral and perforant pathway inputs can be parsimoni-
ously described as providing energy into CA1. These

synaptic inputs are going to interact, as any depolariza-
tion or hyperpolarization of the cell is going to affect the
ionic driving force. In other words, Schaffer collateral
input will influence entorhinal cortical input and vice versa.
Thus, � in the CA1 pyramidal layer is not a mirror of its
afferent input, but a consequence of local interactions
between pyramidal neurons and interneurons (Marshall
et al., 2002; Maurer et al., 2006). Should excitatory drive
into CA1 come in bouts of �, then increasing the power of
the �-paced afferent input promotes more local � rhyth-
micity (describing an energy cascade).

The spectral energy cascade hypothesis (Bak et al.,
1987; Buzsáki, 2006; Sheremet et al., 2019b) proposes
that there is a nonlinear interaction across scales, result-
ing in both energy exchange and phase coupling between
different scales (frequencies). With respect to hippocam-
pal LFP, the amplitude and phase of � will be inherently
coupled to the amplitude and phase of �. The amplitude
and phase of all meaningful high-frequency rhythms will
be coupled to higher power/lower frequency rhythms.
Should this be true, there is corollary evidence that the �
rhythm provides the necessary energetic drive for neu-
rons to engage in � rhythmicity. A big peak in � means
“big energy” to lower amplitude, higher frequency
rhythms, including �. Continuing this line of logic, as
noted above, peak and phase are inherently coupled such
that the highest amplitude is defined as phase zero. From
the energy cascade perspective, where � forces �, why is
it surprising that the phase of � exhibits a relationship to
the power of �? One would suppose that external,
�-paced input from the entorhinal cortex and septum
would trigger a cascade of higher frequency events in the
hippocampus and stronger input results in a larger ampli-
tude �. Thus, the rhythms of the hippocampus should not
be considered to have orthogonal relationships with each
other. Instead, the most straightforward description is that
all rhythms in the LFP are interdependent, coupled by the
cascade of energy across spatial and temporal (fre-
quency) scales.

Taken together, the data presented here provide a par-
simonious explanation to why wavelet and EEMD analysis
results in the appearance of a slow � band. For both
decomposition methods, this involved the parameters
that are used to optimize temporal resolution at the cost
of frequency resolution. Admittedly, this study cannot
claim to have done an exhaustive investigation of every
brain region, the entire parameter space, and all possible
decomposition methods. Thus, it is our intention that this
work will serve as the impetus for future research that
includes additional decomposition tools and brain re-
gions.
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