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Abstract 6 

Electrical impedance measurements in laboratory on silicate melts are used to interpret 7 

magnetotelluric anomalies. On the basis of two- and four-electrode measurements, we show 8 

that the influence of the electrodes of the 2-electrode system on the measured resistivity can 9 

be of significant importance for low-resistivity melts and increases with temperature. At 0 

1400°C, the resistivity of very conductive melts measured with two electrodes can reach six 1 

times the resistivity value measured with four electrodes. A short-circuit experiment is needed 2 

to correct the 2-electrode data. Electrodes contribution is also estimated for samples from 3 

other studies, for which the resistance of the electrical cell can be as high as the resistance of 4 

the sample. A correction of the resistivity data from the literature is proposed and values of 5 

the corresponding Arrhenian parameters are recommended. 6 

 7 

Keywords: impedance measurements, resistivity, melts. 8 
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INTRODUCTION 2 

The knowledge of the electrical properties of melts is needed for the interpretation of 3 

magnetotelluric profiles (Wannamaker et al. 2008; Yoshino et al. 2006; Tarits et al. 2004; 4 

Müller and Haak 2004; Roberts and Tyburczy 1999). For example, both magnetotelluric data 5 

and electrical measurements in laboratory allowed the identification of partial melt in the 6 

asthenosphere below the East Pacific Rise (Yoshino et al. 2006). The information provided by 7 

electrical measurements in laboratory is of significant interest to the interpretation of 8 

geophysical anomalies, in terms of quantitative constraints placed on potential conductive 9 

magma reservoirs (Pommier et al. 2008; Gaillard et al. 2008) and for the elaboration of 0 

conductivity models (Xu et al. 2000). Since electrical conductivity (or resistivity) is extremely 1 

sensitive to small chemical and physical changes, it represents a subtle probe for studying 2 

silicate melts properties under controlled and variable conditions (T, P, composition and fO2) 3 

(Pommier et al. 2008; Gaillard and Iacono Marziano 2005; Gaillard 2004; Tyburczy and Waff 4 

1985, 1983). Several studies have contributed to improve the technique of electrical 5 

impedance measurements over the past decades (e.g. Lupotto et al. 1987; Hodge et al. 1976; 6 

Bauerle 1969).   7 

Experimental difficulties raised by electrical measurements include the maintenance of 8 

a well-constrained electrical cell geometry and the necessity to limit the interactions between 9 

the sample and the components of the electrical cell. In addition, the problem of the 0 

contribution of the electrical response of the electrodes to the measured resistance can be of 1 

non negligible importance (Tyburczy and Waff 1983) and needs to be quantified. Most 2 

electrical measurements of natural silicate melts are 2-electrode based, whereas the 4-3 

electrode system is mostly used by the material science community. The resistance of the 4 

electrodes (Relectrodes) is included in the impedance measured by the 2-electrode system, which 5 

can affect the electrical response of the sample (effective resistance), particularly for low 6 

resistivity melts. It is therefore important to evaluate the contribution of the electrodes in the 7 



 4 

experimental conductivity database for silicate melts. Because this problem concern most of 8 

the current database of electrical resistivities of natural melts, it also raises a direct implication 9 

in the interpretation of magnetotelluric profiles in molten or partially molten regions of the 0 

Earth’s crust and mantle. 1 

The main goal of this study is to address the influence of the electrode configuration 2 

on the measurement of the resistivity of melts in laboratory. We measured the electrical 3 

response of three silicate melts (a basalt, a phonolite and a borosilicate) using two different 4 

techniques, based on 2- and 4-electrode measurements. Experiments were conducted at 1 bar 5 

and in the T range [800-1430°C]. The influence of the electrical response of the electrodes on 6 

the 2-electrode data was identified, demonstrating the need for a significant correction of the 7 

impedance measurements. Errors on resistivity values of silicate melts due to electrodes 8 

contribution were estimated for the investigated samples as well as for samples from other 9 

studies. We recommend values of corrected Arrhenian parameters for the calculation of 0 

electrical resistivity of natural silicate melts. 1 

 2 

EXPERIMENTS 3 

 Starting products  4 

The three starting materials were a borosilicate synthetized at the CEMHTI (CNRS-5 

Orléans, France), a phonolite from Mt. Vesuvius (Pommier et al., 2008), and an alkali basalt 6 

from the Pu’u’ ‘O’o volcano (Kilauea). The composition of the Kilauea basalt is close to the 7 

typical composition of MORB-type basalts. The samples were chosen for their differences in 8 

chemical composition and their geological interest. The starting materials were finely 9 

crushed, melted in air at 1400°C during ~1h and quenched into a glass. The composition of 0 

the starting glasses is presented in Table 1. For the 2-electrode measurements, the starting 1 

materials were melted in air in a Pt crucible and the resulting bubble-free glass was drilled to 2 

cylinders (Pommier et al. 2008). For the 4-electrode measurements, the starting materials 3 



 5 

were melted in an alumina crucible which was directly used in the electrical conductivity 4 

measurements (Simonnet et al.2003). 5 

 6 

Basic concepts of complex impedance measurements 7 

Complex impedance measurements allow to study conduction processes by 8 

discriminating most of polarization effects observed during a scan in frequency (Bruin and 9 

Franklin, 1981). While the electrical resistance of geologic materials has been measured for 0 

almost one century (e.g. Volarovich and Tolstoi, 1936), impedance measurements applied to 1 

solid electrolytes are more recent (Bauerle, 1969; Tyburczy et Fisler, 1995 and references 2 

therein). The interpretation of impedance spectra in terms of transport mechanisms has been 3 

widely investigated (Roberts et Tyburczy, 1994; Huebner et Dillenburg, 1995; Roling, 1999).  4 

Impedance spectroscopy consists in recording the electrical impedance of a material at 5 

variable frequency. An ac current is delivered between two “current electrodes” and an 6 

induced ac voltage drop is measured between two “voltage electrodes”. The complex 7 

impedance Z* is deduced, Z*=U*/I*, U* being the voltage drop vector and I* being the 8 

current vector (Simonnet et al. 2003). In the 2-electrode system, current and voltage 9 

electrodes are conveyed through only two electrodes. 0 

The complex impedance Z* is the sum of a real and an imaginary parts: Z*=R+jX, R 1 

being the electrical resistance and X the reactance. Thus, the determination of the electrical 2 

resistance of a material consists in extracting the real part of the complex impedance Z*material 3 

(Bagdassarov et al. 2004; Gaillard 2004; Pommier et al. 2008). The electrical resistivity ρ 4 

(ohm.m) is deduced from the value of R (ohm) by using the following relation: 5 

RG.=ρ     (1)  6 

where G is the geometric factor (m) and depends on the dimensions of the material studied 7 

and on the distance between electrodes. 8 

 9 
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Experimental setups 0 

The two experimental setups are presented in Figure 1a. 2-electrode experiments were 1 

performed at the ISTO and 4-electrode experiments at the CEMHTI (Orléans, France). All 2 

experiments were conducted in air. In both cases, the glass sample was placed in the hot spot 3 

of the furnace. Temperature, monitored with a Eurotherm controller, was measured by a type 4 

S thermocouple, placed adjacent to the conductivity cell, and is known to within ±2°C. 5 

Impedance was measured in response to an AC signal in the 1Hz-1MHz frequency range 6 

using an impedance gain/phase analyzer (Solartron 1260, Schlumberger Co.), the voltage 7 

amplitude being 0.1 to 0.5V.  8 

In the 2-electrode configuration, the two groups of welded electrodes are connected to 9 

a Pt tube (external electrode) and a Pt wire (internal electrode), respectively. The cylindrical 0 

geometry of the sample (L from 3.5 to 9mm; OD from 4.5 to 7.5mm and ID=1mm) implies 1 

the electrical resistivity to be coaxially measured. An alumina plug prevents the two 2 

electrodes from being in contact with each other (Pommier et al. 2008). In the 4-electrode 3 

configuration, two Pt sheets serve as current electrodes and two Pt wires measure the voltage 4 

drop. The four electrodes are connected separately to the impedance spectrometer and the 5 

resistivity is measured between the wires. These Pt foils are totally immersed in the liquid 6 

sample contained in the alumina crucible (L>10mm; OD=30mm). As shown in Figure 2, 7 

measurements performed at different immersion depths of the electrodes underline that the 8 

wetting effect on the measured electrical resistance is negligible for an immersion >5mm 9 

(similarly to Gaillard et al. 2008 for very conductive carbonate liquids with high wetting 0 

properties). All 4-electrode measurements were performed at an immersion depth of ~8mm. 1 

The precision of the immersion depth of the electrodes in the melt is controlled by a 2 

mechanical displacement system allowing the depth to be determined with a good precision 3 

(0.02mm, Malki and Echegut 2003). 4 
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 Equivalent electrical circuits are presented in Figure 1b for both configurations. The 5 

different components of the electrodes (conductivity cell parts + connecting metallic wires) 6 

are associated in series with the effective complex impedance of the sample (Z*sample). 7 

Contrary to the 2-electrode system, the current in the 4-electrode setup is not delivered in the 8 

loop of measurement of the potential. As a result, the electrical impedance of the cell is not 9 

involved in the measured impedance (Z*measured) and: 0 

Z*measured = Z*sample + Z”induct   (2) 1 

where Z”induct (the imaginary part X of Z*electrodes) represents the inductive effects of the 2 

electrodes and was found to be negligible for frequencies <0.1MHz (Simonnet 2004). 3 

According to Figure 1b, the impedance measured using a 2-electrode system can be written: 4 

Z*measured = Z*sample + Z*electrodes = [R+jX]sample + [RPt parts + Z”induct + (Rpol // Cpol)]electrodes       (3) 5 

where RPt parts is the resistance of the Pt tube and Pt wires (Figure 1a) and the association Rpol 6 

// Cpol represents the polarization effects (ionic double-layer). The best method for estimating 7 

the electrode contributions is to conduct a short-circuit experiment. Because Pt resistivity is 8 

temperature-dependent, short-circuit measurements must be done at temperature. This 9 

experiment consists in connecting the two electrodes with a small Pt wire (Figure 1a). 0 

Electrical measurements are performed on an empty cell (i.e. without sample) and Z*short-circuit 1 

= Z*electrode.  2 

 3 

Data reduction and calibration 4 

An example of the electrical response of the sample to a scan in frequency is presented 5 

in the complex plane (Z’, Z”) Figure 1c. Graphically, the value of the electrical resistance R 6 

corresponds to the intersection of the electrical response with the real axis (i.e. Z”=0). The 7 

first part of the response (Z’<R and Z”>0) represents the induction effects whereas the second 8 

part (Z>R and Z”<0) is attributed to the impedance of the interface between the sample and 9 

the electrode (Huebner and Dillenburg 1995). 0 



 8 

The determination of the resistivity value ρ requires the determination of the 1 

geometric factor G (Eq. 1). For the 4-electrode configuration, G was determined through the 2 

calibration of the cell. Calibration was performed using three aqueous KCl solution (0.01, 0.1 3 

and 1M) of known resistivity at room temperature. Standard liquids are generally used for this 4 

calibration (Wu and Koch, 1991). The geometric factor of the 4-electrode cell is calculated by 5 

measuring the resistance R of the KCl solution and using Eq. 1. Similar values of G were 6 

obtained using the different KCl solutions and the geometric factor was found to be 0.039m. 7 

For the 2-electrode configuration, the diffusion formalism in a cylinder in which diffusion is 8 

coaxial (Crank 1975) showed that G can be written as follows:  9 

)ln(

2

intdd

L
G

ext

π=   (4) 0 

where L is the length of the cylindrical glass sample, dext is the outer diameter and dint the 1 

internal diameter. A constant value of the geometric factor during the experiment is assumed. 2 

The uncertainty on ρ due to error propagation of typical uncertainties on R, L, dext and dint is 3 

in the range of 7-12.5% for all melts. Eq. 4 yielded values of G ranging from 0.015 to 0.019m. 4 

These values were confirmed by the calibration of the 2-electrode setup cell using KCl 5 

solution (1M). 6 

 7 

Chemical characterization of the samples 8 

 Most glass samples were analyzed after the experiment with a Camebax SX-50 9 

electron microprobe in order to check for interactions between the sample and the cell parts 0 

(Pt and alumina). Analyses were conducted at 15 kV, 6 nA, 10 s on peak and 5 s on 1 

background. No significant variations in oxides contents were measured in the samples after 2 

2-electrode experiments, in agreement with the observations of other studies using similar 3 

electrical cells (Pommier et al. 2008; Gaillard 2004). Iron was found to be present at very low 4 

concentrations (<0.5wt%) in the Pt electrodes from the 2-electrode setup. Iron depletion was 5 
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thus too small to change significantly the FeO content of the melt. Therefore, we considered 6 

that iron loss was of minor importance in this study. Electron microprobe traverses were 7 

performed in one sample from the 4-electrode experiments in order to estimate the 8 

contamination of the melt by the alumina crucible. Al2O3 enrichment was found to affect the 9 

melt on a distance <1mm from the Al2O3 crucible/melt interface. The melt volume occupied 0 

by the immersed electrodes (see Figure 1a) is not spatially concerned by the contaminated 1 

melt. A contamination of the whole volume of melt due to convection can be excluded, due to 2 

the small value of the Rayleigh number (<200, Jaupart and Tait 1995). 3 

 4 

RESULTS 5 

The electrical resistivities of the three investigated melts measured using the 2 and 4 6 

electrode configurations are presented Figure 3. For both configurations, measurements 7 

during heating and cooling cycles yielded similar resistivity values, which demonstrates 8 

reproducibility (in agreement with Pommier et al. 2008 and Malki and Echegut 2003). The 9 

short-circuit experiment was performed with the 2-electrode system, from 800 to 1400°C. A 0 

resistance from 1.5 to 2ohm was measured in this T-range, corresponding to the contributions 1 

of the electrodes. The configuration adopted for the short-circuit experiment (Figure 1a) does 2 

not take into account the resistance of the conductivity cell (Pt tube and inner Pt wire). The 3 

resistance of these two Pt parts was calculated on the investigated T range using the known 4 

resistivity of Pt and Eq. 1. At 1200°C, the resistance of the Pt tube and inner wire (external 5 

and internal electrodes, respectively) represent less than 1% of the resistance of the 6 

conductivity cell, the 99% corresponding to the Pt wires (cf Figure 1a). This result underlines 7 

the very low contribution of the Pt tube and inner wire to the whole electrode resistance and 8 

validates the configuration used for the short-circuit experiment. For all 2-electrode 9 

experiments, the resistance of the electrodes was deduced from the measured resistance at 0 

each T: 1 
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Rsample = Rmeasured – Relectrodes  (5) 2 

and         ρsample = ρcorrected = G.Rsample         (6) 3 

These corrected resistivity values correspond to the “2-electrode corrected” data in Figure 3. 4 

The good agreement between 2-electrodes corrected data and 4-electrode data is clearly 5 

shown. 6 

 The principal result shown in Figure 3 is that the 2-electrode setup used in this study 7 

implies a low correction on the measured resistivity values of low-conductive melts 8 

(phonolite and basalt), while electrical measurements of high-conductive melts (borosilicate) 9 

require either to perform a short-circuit experiment in order to quantify the electrodes 0 

contributions or the use of a 4-electrode setup. The correction on 2-electrode data of 1 

resistivity values of the basaltic liquid only represents between 2 and 10% of the 4-electrode 2 

value and is thus negligible for our coaxial experimental setup. The correction of the 2-3 

electrode data was found to increase with temperature. This can be easily understood since the 4 

electrical resistivity of silicate melts decreases with increasing T whereas the resistivity of Pt 5 

wires has the opposite behaviour. As shown in Figure 3, the influence of the electrodes affects 6 

dramatically the resistivity of the less resistive melt (borosilicate). Indeed, at 1400°C, the 7 

resistivity measured with the 2-electrode system (0.05ohm.m) is six times higher than the 8 

resistivity value given by the 4-electrode system (0.008ohm.m). A slight but noticeable 9 

difference was observed for the data of the phonolitic melt at the highest temperatures: at 0 

1260°C, the resistivity value from the 2-electrode experiment is 0.1ohm.m greater than the 1 

value measured in the 4-electrode experiment, corresponding to an error on the 4-electrode 2 

value of 37% (=100.((ρ2-electrode-ρ4-electrode)/ρ4-electrode)= 100.(0.1/0.27)).  3 

Measurements were performed at high temperatures on a large interval. The 4 

temperature dependence of the electrical response of the investigated samples is shown in 5 

Figure 3. All the data can be fitted by an Arrhenian formalism: 6 
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with σ the electrical conductivity (ohm.m)
-1

, ρ the electrical resistivity (ohm.m), σ0 the pre-8 

exponential factor (ohm.m)
-1

, Ea the activation energy (J/mol), R the universal gas constant 9 

(J.mol
-1

.K
-1

) and T the temperature (K). Values of the Arrhenian parameters calculated from 0 

4-electrode measurements are similar to those from 2-electrode corrected measurements and 1 

are presented in Table 2.  2 

 3 

DISCUSSION 4 

 Experiments performed with our 2-electrode setup have underlined the importance of 5 

the contributions of the electrodes to the measured resistivities of very low resistivity 6 

materials. Comparison was made with other 2-electrode setups from other studies. Setups 7 

characteristics are listed in Table 3 and results are presented in Figure 4. The 2-electrode 8 

setup used in this study is similar to the setup used in Pommier et al. (2008) (experiments on 9 

dry and hydrous tephritic to phonolitic samples), Gaillard and Iacono Marziano (2005) 0 

(basalt) and Gaillard (2004) (dry and hydrous rhyolite). Only the sample dimensions slightly 1 

changed, modifying the value of G (Eq. 4). The results of the short-circuit experiment 2 

performed in this study can be applied to correct the results from the studies mentioned above. 3 

Our setup was compared with the techniques presented in Rai and Manghnani (1977) 4 

(basalts), Waff and Weill (1975) (trachyte and andesite) and Presnall et al. (1972) (synthetic 5 

basalt). The electrical response of the electrodes was estimated using indications given in the 6 

different studies. For studies using the loop technique (Rai and Manghnani 1977; Waff and 7 

Weill 1975), the resistance of the electrodes corresponds to the sum of the resistances of two 8 

metallic wires, calculated as follows: 9 

S

l
R wirewire .ρ=   (8) 0 
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with ρwire the resistivity of the metal (ohm.m) (given in the literature), l the length of the wire 1 

(m) and S the cross-section area of the wire (m²). Regarding the study from Presnall et al. 2 

(1972), the resistance of the Pt wires was estimated using Eq. 8 and the resistance of the 3 

conductivity cell was calculated using Eq. 1 for the adopted cell geometry (consisting in two 4 

Pt crucibles fitted into each other). The sum of both resistances (wires and conductivity cell) 5 

corresponds to the resistance of the electrodes. An error of ~20% is assumed on calculations 6 

of Rcell, due to the lack of information regarding the length of metallic wires or the geometry 7 

cell. 8 

 The contributions of the electrodes to the measured resistance were estimated using 9 

the Rmeasured/Relectrodes ratio for this and previous 2-electrode studies, and are presented in 0 

Figure 4. The coaxial setup used in our laboratory is efficient for measuring the electrical 1 

properties of dry natural silicate melts (Rmeasured/Relectrodes >5) and the correction of the 2 

electrodes contributions will not significantly modify the measured resistance. In Gaillard 3 

(2004) and Pommier et al. (2008), the lowest values of the Rmeasured/Relectrodes ratio were 4 

obtained for the hydrous rhyolite and hydrous phonolite, respectively, i.e. the most conductive 5 

investigated samples. For these samples, Relectrodes  represents 10 to 40% of Rsample, the 6 

contribution of the electrodes to the measured resistance increasing with increasing T. The 7 

low values of the ratio for the borosilicate from this study and carbonatites from Gaillard et al. 8 

(2008) underline the need in conducting short-circuit experiments prior to 2-electrode 9 

measurements on very conductive melts. In Gaillard et al. (2008), who performed 4-electrode 0 

measurements, a comparison between 4-electrode and 2-electrode data on 1 

(Na,K,Ca0.25)2(CO3)2 at 740°C has shown that electrodes are less conductive than the 2 

carbonatite melt. Using a 2-electrode setup similar to the one of the present study implies that 3 

the correction of the resistance of the electrodes is not needed for low conductivity values, 4 

while it can be critical for high electrical conductivity values. 5 
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 The critical parameter controlling the electrodes contribution is the dimensions of the 6 

metallic wires. According to Eq. 8, the smaller the diameter and the longer the length of a 7 

metallic wire, the higher the resistance of the wire and, thus, of the electrodes. This is 8 

particularly critical for measurements using the loop technique, since the cell components are 9 

two long metallic wires of small diameter (~0.2 to 0.6mm) (Rai and Manghnani 1977; Waff 0 

and Weill 1975). The calculation of the sample geometric factor as well as technical 1 

considerations regarding these two previous studies is detailed in Waff (1976). The adopted 2 

configuration leads to an important contribution of the electrodes to the measured resistance: 3 

Relectrodes ~5ohm at 1500°C for both studies, while Rmeasured is about 6 to 10ohm at the same 4 

temperature. An important effect of the electrodes on the electrical measurements was also 5 

calculated for the setup used in Presnall et al. (1972): at 1500°C, the contribution of the 6 

electrodes to the measured resistivity represents 30%. 7 

 Whatever the 2-electrode setup used, the electrodes contribution decreases with 8 

temperature. As a consequence, the correction of 2-electrode measurements is negligible for 9 

low conductivity values, such as the conductivity of silicate glasses and solids (e.g. 0 

Wanamaker and Duba, 1993; Behrens et al. 2002; Poe et al. 2008; Pommier et al. 2008). 1 

 Errors on resistivity values determined using a 2-electrode system can be importance 2 

in the interpretation of magnetotelluric anomalies. Laboratory data are needed to interpret 3 

high conductive zones detected in the Earth’s interior and, particularly, to put constraints on 4 

the composition and storage conditions of the melt. Depending on the cell configuration and 5 

the length of the connecting metallic wires, measured resistance can be twice as great as the 6 

effective resistance of the melt, because of electrodes contributions (Figure 4). A similar 7 

change in the electrical response of a silicate melt is observed when increasing the 8 

temperature of several hundreds of °C or adding a few wt% of water (Pommier et al. 2008; 9 

Gaillard 2004; Tyburczy and Waff 1983, 1985). The identification of the electrodes 0 

contributions (Figure 4) in the electrical measurements from other studies allowed the 1 
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correction of resistivity values. Based on these corrected resistivities, we have determined 2 

Arrhenian laws for each melt. The corresponding Arrhenian parameters, Lnσ0 and Ea, are 3 

presented in Table 4 and compared to the original published values. These corrected values 4 

allow the determination of the electrical resistivity of natural melts on a wide range of 5 

chemical composition. The improvement of the interpretation of anomalies detected by 6 

geophysical methods is also a matter of electrical measurements in laboratory, including the 7 

technical concern of the contributions of the electrodes. 8 

 9 

CONCLUSION 0 

Electrical impedance measurements using 2-electrode and 4-electrode systems have 1 

been used to discriminate the electrodes contributions of the 2-electrode setup to the measured 2 

resistance. The electrodes contributions are dominated by the electrical response of the 3 

connecting metallic wires and are successfully eliminated by performing a short-circuit 4 

experiment. A correction of the electrodes contribution is possible only if the dimensions (in 5 

particular, the length of the metallic wires) are well constrained. The 2-electrode setup used in 6 

this study is particularly efficient for measuring the electrical resistivity of low-conductive 7 

melts (like most natural silicate melts), whereas the electrode contribution can be important 8 

for very conductive melts (like carbonatites). Significant electrode effects, particularly for 9 

low-resistive melts and at HT were observed for other 2-electrode setups from previous 0 

studies. Errors on the corresponding resistivity values of the melts can be non-negligible in 1 

the interpretation of magnetotelluric anomalies. A correction of the database of the resistivity 2 

of natural melts was performed and recommended values of Arrhenian parameters were 3 

proposed. 4 

 5 

 6 

 7 
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Table 1: Composition of the starting glasses (wt%).

Sample                Borosilicate     Phonolite         Kilauea basalt 

SiO2                 50      55.73        49.96  

TiO2               0        0.16          2.41  

Al2O3               8      21.94        13.24 

FeOt               2        1.95        10.88 

MnO               0          -           0.13  

MgO               0        0.19          7.50 

CaO               0        2.87        10.58 

Na2O             22        6.11          2.29 

K2O               0      10.14          0.38 

B2O3             18                     -             -  

Total           100      99.09        97.89 



Table 2: Values of the Arrhenian parameters. 

Sample     Corrected*         Uncorrected° Corrected* Uncorrected°
Lnσ0 (ohm.m)

-1
     Lnσ0 (ohm.m)

-1 
Ea (kJ/mol) Ea (kJ/mol) 

Borosilicate       10 (1.5; 0.1)         5 (0.5; 0.1)     73 (14; 1)    31 (5.5; 2)

Phonolite        8 (0.6; 0.1)          7 (0.5; 0.2)     83 (7; 2)    79 (5; 2) 

Kilauea basalt       14 (1.5; 0)          13 (1.5; 0.1)    177 (22; 1)    167 (17; 2)

* Corresponds to results from 2-electrode measurements corrected. Similar results with the 4-

electrode measurements. See text for details. 

° Corresponds to results from 2-electrode measurements. 

Relative errors and standard deviations in terms of least unit cited on Ea and Lnσ0 values are 

shown in parentheses (error; standard deviation). 

Error propagation has been estimated using the error on Lnσ and Eq. 7. 

∆Lnσ = (1/σ).∆σ= di
diRl

de
deRl

l
di

de
Ln

Rl
R

di

de
Ln

lR
∆−+∆+∆−+∆− 1

.
2

11
.

2

1
.

²2

1
.

²2

1

ππππ
with R the electrical resistance, l the sample length, de and di its outer and inner diameters, 

respectively, and ∆X the error on X. ∆R=0.5ohm, and ∆de=∆di=∆l=0.1mm. 
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Figure captions 

Figure 1: 2-electrode and 4-electrode configurations. a) Drawing of the electrical cells 

connected to the impedance spectrometer. U and I represent the “voltage” and “current 

electrodes”, respectively. The connection of the 2 electrodes for the short-circuit experiment 

is represented by the dashed line. Note that the short-circuit experiment is performed on a 

free-sample cell. b) Equivalent circuit of both cells. With the 2-electrode setup, the resistance 

of the electrodes is counted in the measured impedance (Z*measured). Rpol // Cpol represent 

the polarization effects, Z”induct the inductive effects. See text for details. c) Electrical 

responses observed in the Nyquist plan (Z’, Z”) for the Kilauea basalt at 1300°C. The 

resistance of the sample R(ohm) is obtained for Z” = 0 and represents the real part of the 

complex impedance (Z’). The higher value of R in the 2-electrode system is attributed to the 

contribution of the resistance of the two electrodes. The short-circuit measurements underline 

the contribution of the cell in the 2-electrode configuration. 

Figure 2: Changes in electrical resistance as a function of the immersion depth of the 4-

electrode system. 

Figure 3: Dependence of the electrical resistivity with temperature for the three investigated 

melts using 2-electrode (triangles) and 4-electrodes (crosses) configurations. Circles 

correspond to the 2-electrode data without the contribution of the resistivity of the electrodes 

(“2-electrode corrected”). See text for details. Inset graphs focus on the high temperatures 

data. Error bars are shown for the 2-electrode corrected data. 

Figure 4: Ratio of the measured resistance and the resistance of the electrodes for this study 

and other studies of the electrical conductivity of silicate melts using 2-electrode 

measurements. P et al. 08: Pommier et al. (2008), G et al. 08 : Gaillard et al. (2008), GIM 05 : 

Gaillard and Iacono Marziano (2005), G 04 : Gaillard (2004), RM 77 : Rai and Manghnani 

(1977), WW 75 : Waff and Weill (1975), Pr et al. 72 : Presnall et al. (1972). Gaillard et al. 

(2008) performed a 4-electrode study, the data point was a test with a 2-electrode 

configuration. The lower the ratio, the higher the contribution of the electrodes to the 

measured resistance. 
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